
Conjugate Gradient Sparse Solvers:

Performance-Power Characteristics ∗

Korad Malkowski, Ingyu Lee, Padma Raghavan, Mary Jane Irwin

The Pennsylvania State University

Department of Computer Science and Engineering

University Park, PA. 16802 USA

{malkowski, inlee, raghavan, mji}@cse.psu.edu

Abstract

We characterize the performance and power attributes of

the conjugate gradient (CG) sparse solver which is widely

used in scientific applications. We use cycle-accurate sim-

ulations with SimpleScalar and Wattch, on a processor and

memory architecture similar to the configuration of a node

of the BlueGene/L. We first demonstrate that substantial

power savings can be obtained without performance degra-

dation if low power modes of caches can be utilized. We

next show that if Dynamic Voltage Scaling (DVS) can be

used, power and energy savings are possible, but these

are realized only at the expense of performance penalties.

We then consider two simple memory subsystem optimiza-

tions, namely memory and level-2 cache prefetching. We

demonstrate that when DVS and low power modes of caches

are used with these optimizations, performance can be im-

proved significantly with reductions in power and energy.

For example, execution time is reduced by 23%, power

by 55% and energy by 65% in the final configuration at

500MHz relative to the original at 1GHz. We also use

our codes and the CG NAS benchmark code to demonstrate

that performance and power profiles can vary significantly

depending on matrix properties and the level of code tun-

ing. These results indicate that architectural evaluations

can benefit if traditional benchmarks are augmented with

codes more representative of tuned scientific applications.

1 Introduction

Computational modeling and simulation is typically

used to understand complex systems or physical phenomena

in many scientific and engineering disciplines such as aero-

dynamics [14] and fluid flows [7]. The models in many of

∗The work was supported in part by the National Science Foundation

through grants NSF ACI-0102537 and NSF CCF-0444345, and by the

Director, Office of Science, Division of Mathematical, Information, and

Computational Sciences of the U.S. Department of Energy under contract

number DE-AC03-76SF00098.

these applications are described by partial differential equa-

tions (PDEs). The computational solution of such nonlin-

ear PDE based models require the use of high performance

computing architectures. The simulation software is typi-

cally designed to exploit architectural features of such ma-

chines. In such tuned simulation codes, advanced sparse

matrix algorithms and their implementations play a critical

role; sparse solution time typically dominates total applica-

tion time, which can be easily demonstrated.

In this paper, we consider the performance, power and

energy characteristics of a widely used sparse solver in

scientific applications, namely a conjugate gradient (CG)

sparse solver. Our goal is to increase the power and en-

ergy efficiency of the CPU and the memory subsystem for

such a CG based sparse solver, without degrading perfor-

mance and potentially even improving it. Toward this goal,

we begin by specifying a processor and memory system

similar to that in the BlueGene/L, the first supercomputer

developed for power-aware scientific computing [24]. We

use cycle-accurate simulations with SimpleScalar [25] and

Wattch [4] to study performance and power characteristics

when low power modes of caches are used with Dynamic

Voltage Scaling (DVS) [6]. Towards improving perfor-

mance, we explore the impact of memory subsystem opti-

mizations in the form of level 2 cache prefetching (LP), and

memory prefetching (MP). Finally, towards the improved

evaluations of architectural features of future systems, we

consider how interactions between the level of code tuning,

matrix properties and memory subsystem optimizations af-

fect performance and power profiles.

Our overall results are indeed promising. They indicate

that tuned CG codes on matrices representative of the ma-

jority of PDE-based scientific simulations can benefit from

memory subsystem optimizations to execute faster at sub-

stantially lower levels of system power and energy. Our

results, at the level of a specific solver and specific architec-

tural features, further the insights gained at a higher system

level through earlier studies on the impact of DVS on scien-

1-4244-0054-6/06/$20.00 ©2006 IEEE

CG(A,b)

%% A - input matrix, b - right hand side

x0 is initial guess;

r = b − Ax0; ρ = rT r; p = r
for i=1,2,... do

q = Ap
α = ρ/(pT q)
xi = xi−1 + αp
r̃ = r − αq
if ||r̃||/||b|| is small enough then stop

ρ̃ = r̃T r̃
β = ρ̃/ρ
p = r + βp
r = r̃; ρ = ρ̃

end for

Figure 1. The conjugate gradient scheme.

tific computing workloads on clusters [10, 19].

The remaining part of this paper is organized as follows.

In Section 2, we describe the CG based sparse solvers in

terms of their underlying operations. In Section 3, we de-

scribe our base RISC PowerPC architecture, our method-

ology for evaluating performance, power and energy at-

tributes through cycle-accurate simulation, and our memory

subsystem optimizations. Section 4 contains our main con-

tributions characterizing improvements in performance and

energy, and differences in improvements resulting from the

interplay between code and architectural features. Section 5

contains some concluding remarks and plans for future re-

lated research.

2 Sparse Linear System Solution Using Con-

jugate Gradients

In this section, we describe the CG algorithm with an

emphasis on how its main computations access the memory

subsystem. Figure 1 contains an outline of a generic CG

algorithm used in many applications. This CG scheme uses

standard data structures for storing the sparse matrix A, and

vectors p, q, r. Only the nonzeroes of the sparse matrix,

A, and its corresponding indices are explicitly stored using

a standard sparse format. The vectors p, q, r are stored as

one-dimensional arrays in contiguous locations in memory.

A single iteration of the CG requires one matrix-vector

multiplication, two vector inner products, three vector addi-

tions and two floating point divisions. Among these opera-

tions, the matrix-vector multiplication dominates the com-

putational cost accounting for more than 90% of the overall

execution time.

Due to the sparse nature of the matrix A, the number

of floating point operations per access to the main memory

is relatively low during matrix vector multiplication. Ad-

ditionally, the access pattern of the elements in the vector

p depends on the sparsity structure of A. Sparse matrices

from typical scientific applications can be ordered to a band

form where the nonzeroes are clustered around the diago-

nal using a scheme such as RCM [12]. This improves the

locality of access in p. Such re-orderings can be used with

other techniques like register-blocking and loop-unrolling

to further improve the performance [15, 26]; some of these

techniques may actually increase number of floating-point

operations.

SPARSITY [15] is a highly optimized matrix-vector

multiplication routine. It utilizes register and cache block-

ing to improve performance typically after an RCM order-

ing is applied to the matrix. Figure ?? shows how SPAR-

SITY reduces the row and column index overhead while

enabling data local accesses on a sample sparse matrix by

using a “2x1” register blocking with loop unrolling. Al-

though there is a slight increase in floating point operations

and storage requirements due to the addition of explicit ze-

roes into the matrix structure, the scheme considerably out-

performs the unoptimized kernel [15].

To demonstrate the interplay between code optimiza-

tions, matrix properties, and architectural optimizations, we

examine four forms of the CG algorithm. The first cor-

responds to a natural un-optimized implementation (CG-

U) of a plain conjugate gradient algorithm. The second

corresponds to its optimized version (CG-O) using SPAR-

SITY [15]. For each, we consider a sparse matrix typical

of scientific applications, namely bcsstk31 from a well

known test collection [13]. The matrix is considered with

two different orderings (i) using RCM, with corresponding

CG forms labeled CG-O RCM, CG-U RCM, and (ii) using a

random ordering (CG-O Random, CG-U Random). The lat-

ter are used primarily to discuss how our CG codes relate to

a well known benchmark code, the CG code from the NAS

benchmark (CG-NAS) [2] and to thus characterize how fea-

tures of CG-NAS impact power and performance evalua-

tions. In all cases, we evaluate the performance and power

characteristics for a set of 25 complete CG iterations; i.e.

25 iterations of the for loop in Figure 1. This is consistent

with the number of CG iterations used in CG-NAS. This

is sufficient to capture the behavior of typical applications

which require several hundred iterations for convergence to

a solution of desired accuracy [3].

3 Modeling Performance and Power Charac-

teristics

We now describe our methodology for emulating ar-

chitectural features to evaluate their performance and en-

ergy characteristics. The power and performance of

sparse kernels are emulated by SimpleScalar3.0 [5] and

Wattch1.02d [4] with extensions to model memory sub-

system enhancements. We use Wattch [4] to calculate the

power consumption of the processor components, includ-

Figure 2. The base architecture.

ing the pipeline, registers, branch prediction logic. Wattch

does not model the power consumed by the off-chip mem-

ory subsystem. We therefore developed a DDR2 type mem-

ory performance and power simulator for our use. More

details of our power modeling through Wattch can be found

in [22].

3.1 Base Architecture

Our base architecture has two floating point units and

two integer ALUs. Each FPU has a multiplication/division

module and modules for other arithmetic and logic; thus,

the system is capable of issuing 4 floating point instructions

each cycle. The data path width of the CPU is 4 instructions

and data paths between memory and L3 cache are 128 bit

wide with cache lines of 128 bytes, i.e., 16 double precision

operands or 32 integer operands.

We model a cache hierarchy with three levels on chip, in-

cluding a 32KB data/32KB instruction level 1 cache (L1), a

2KB level 2 cache (L2), and a 4MB unified level 3 cache

(L3). Wattch is configured to model only two levels of

cache, but we added new functions to model our hierarchy.

We used CACTI [4] modes for a 4MB SRAM L3 cache.

We operate the SRAM L3 at system frequency and voltage

levels when we consider different frequency-voltage pairs

to simulate the effects of utilizing DVS.

The specifications of the off-chip memory are partic-

ularly important for characterizing sparse matrix compu-

tations. We assume a DDR2 type memory power model

with our base architecture to start with a lower-power con-

figuration than what is possible with standard DDR type

memory. We model nine 256MBit x 8 chips to provide

256MB of memory with specifications obtained from Mi-

cron Technology Inc. data sheets [16] with memory oper-

ating at 266MHz. We verified our approach by observing

that the timing delays for our system with the CPU clock

frequency at 700MHz is similar to those reported in the lit-

erature [1, 24].

Our base architecture is similar to the configuration in

the BlueGene/L[24] based on the PowerPC440 embedded

core. The main difference is that we only model a single-

core because Wattch currently does not allow for the sim-

ulation of more than one thread of execution. This is still

realistic, because the BlueGene/L processor is not designed

to work in the SMP mode; Level 1 caches are not consis-

tent and the recommended usage for the second core is as

a communication co-processor. Furthermore, if both cores

are fully utilized for computation, the demands on the mem-

ory subsystem will only increase, potentially magnifying

the interactions between code tuning and memory subsys-

tem optimizations. More details of our system and its re-

lation to the processor in the BlueGene/L can be found in

[22].

3.2 Memory Subsystem Optimizations

Starting with the base architecture, henceforth denoted

by ‘B,’ we consider memory subsystem optimizations that

can potentially benefit sparse applications. These optimiza-

tions focus on prefetching to mask the latencies of memory

access; such prefetchers have been considered in other con-

texts [8, 18, 21, 23]. Details include:

• Memory prefetching (on or off), stride-1, at the mem-

ory controller, labeled ‘MP’; this feature reduces the

effective latency of memory access depending on data

access patterns. It is modeled by adding a prefetch

buffer to the memory controller in the form of a 16

element table where each element holds a cache line

of 128 bytes. On a load, if data is not available in the

prefetch buffer, a new entry is allocated in the table

using a full LRU replacement policy, and the mem-

ory controller does a prefetch for the next cache line

upon completion of the original load; see Figure 3. We

model the power consumed by our prefetch buffer as

the cost of operating a small 16 entry, direct mapped

cache with a 128 byte cache line due to problem with

CACTI.

• Level 2 cache prefetching (on or off), stride-1, denoted

by ‘LP’; this feature can benefit codes with locality of

data access but poor data re-use in caches. When a read

at address a completes, a read is scheduled for address

a + L2 cache-line size. The extra energy consumption

is modeled as second cache access.

Figure 3. A memory prefetcher implementa-
tion.

3.3 Emulating Low-Power Modes of
Caches and Processors

Future architectures are expected to exploit power-

saving modes of caches and processors. These include

sleepy or low-power modes of caches [17] where signifi-

cant fractions of the cache can be put into a low power mode

to reduce power. Additionally, power can be decreased by

Dynamic Voltage Scaling (DVS) [6] where the frequency

and the voltage are scaled down. We now model how these

features can be utilized by sparse scientific applications if

they are exposed in the Instruction Set Architecture (ISA).

The 4MB SRAM L3 cache in our base architecture, typ-

ical of many high-end processors, accounts for a large frac-

tion of the on-chip power. To simulate the potential impact

of cache low power modes of future architectures on CG

codes, we perform evaluations by considering the follow-

ing L3 cache sizes: 256Kb, 512KB, 1MB, 2MB and 4MB.

To model DVS [6], we consider eight CPU frequencies

with corresponding nominal Vdd voltages. The frequency-

Vdd pairs we used are: 300MHz-0.46V; 400MHz-

0.66V; 500MHz-0.77V; 600MHz-0.84V; 700MHz-0.88V;

800MHz-0.93V; 900MHz-1.03V; and 1000MHz-1.20V.

4 Empirical Results

In this section, we evaluate the impact of using low

power modes of caches, and low power modes of the pro-

cessor using DVS, along with memory subsystem optimiza-

tions for sparse CG solvers with different levels of tuning

typical of scientific applications. We are interested in both

the effect of memory subsystem optimizations and software

optimizations. To evaluate performance, we use execution

time (in seconds) as our metric. Other metrics include the

average system power consumed the processor and memory

(in Watts) and energy (in Joules), computed as the product

of the system power and execution time.

600MHz 1000MHz
0

0.2

0.4

0.6

0.8

1

T
im

e
 (

s
)

CG−U : Time

600MHz 1000Mhz
0

0.2

0.4

0.6

0.8

1

T
im

e
 (

s
)

CG−O : Time

600MHz 1000MHz
0

2

4

6

8

10
CG−U : Power

P
o

w
e

r
(W

)

256KB
512KB
1MB
2MB
4MB

600MHz 1000Mhz
0

2

4

6

8

10
CG−O : Power

P
o

w
e

r
(W

)

256KB
512KB
1MB
2MB
4MB

Figure 4. Execution time (top) and average

system power (bottom) for CG-U (left) and
CG-O (right) for bcsstk31 with RCM. Values

are shown at two frequencies, 600MHz and

1000MHz with 5 cache sizes: 256KB, 512KB,
1MB, 2MB and 4MB.

In figures in this section, plots for the base architec-

ture are labeled ‘B’, plots for base architecture with either

a memory or an L2 prefetcher are labeled ‘MP’ and ‘LP’

respectively, and plots for the base architecture enhanced

by both features are labeled ‘LP+MP’. The x-axis shows

some or all frequencies in the range 300MHz to 1000 MHz

(1GHz) while the y-axis is used to show execution time,

power and energy values.

4.1 Power and Performance Tradeoffs Us-
ing DVS and Low Power Modes of
Caches

We begin by evaluating the power and performance

tradeoffs for CG when DVS and the low power modes of

caches can be utilized. Figure 4 shows execution time and

average power consumption of a CG based solver for the

base architecture at the original frequency of 1 GHz and

when the frequency is scaled down to 600 MHz for a series

of cache sizes 256KB, 512KB, 1MB, 2MB and 4MB. The

plots on the left are for the unoptimized version of the CG

(CG-U) algorithm. The plots on the right show results for

an optimized implementation of the CG solver (CG-O), uti-

lizing register blocking and loop unrolling. In both cases,

we consider the bcsstk31 matrix with an RCM ordering

typical of scientific applications.

inherently have cache reuse. The RCM ordering im-

proves the locality of access in the source vector and the

SMV-O blocking allows some reuse but these levels of reuse

are sufficiently small and unaffected by larger cache sizes.

Observe that the cache size has very little impact on the

performance of both CG-U and CG-O while significantly

reducing the power. This is primarily because SMV-U,

SMV-O and CG inherently have low cache reuse. Conse-

quently, utilizing low power modes of caches can lead to

significant decreases power consumption without adverse

impacts on performance. This effect is more pronounced

at higher frequencies. Observe also that as DVS is utilized

and both frequency and voltage are scaled down, the execu-

tion time increases and the power decreases for both CG-U

and CG-O. Observe also that power reductions are signifi-

cantly more than the increase in execution time when both

are measured relative to their values at 1000MHz. This is as

expected; a linear scaling down of the frequency and volt-

age results in cubic improvements in power, while the CPU

cycle time (and hence the execution time) is in inverse linear

proportion to the frequency.

Henceforth, we will only report results for system con-

figurations with the smallest cache size of 256KB. This will

represent the impact of using low power modes of caches

as we continue with for CG-U (left) and CG-O (right) run

on RCM ordered bcsstk31. Results relative to CG-U run on

bcsstk31 ordered with RCM at 1000MHz, 4MB cache.

4.2 Impact of L2-Cache and Memory
Prefetchers

We now consider in detail the impact on performance

and power when memory and L2 prefetchers are used with

DVS and sleepy modes of the level 3 cache.

Figure 5 shows relative values of the execution time,

power, and energy for unoptimized CG-U (top) and opti-

mized CG-O (bottom). The values are relative to those ob-

served for CG-U for the base architecture, ‘B’ at 1000MHz

with a 4MB level 3 cache, set at 1. Thus, presented val-

ues capture the impacts on power, performance and energy

from the combined effects of hardware and software opti-

mizations. Observe that values smaller than 1 indicate im-

provements in each metric while values greater than 1 indi-

cate degradations. We provide relative values for frequen-

cies of 400, 500, 600 and 700 MHz for the smallest level 3

cache size of 256KB and values at the reference point, i.e.,

‘B’ at 1000 MHz and 4MB L3 cache. At each frequency,

we provide grouped bars representing the addition of either

memory prefetching (MP), or L2 prefetching (LP), or their

combination (LP+MP). In all cases, as stated earlier in Sec-

tion 2, we consider 25 CG iterations for the bcsstk31

matrix with an RCM ordering, typical of scientific applica-

tions as discussed earlier in Section 2.

Observe that for all frequencies reported in this figure,

the optimized version CG-O has significantly better perfor-

mance than CG-U. We will report results for the optimized

version first, and then return to the unoptimized version.

Consider the performance and power metrics for CG-O

along the bottom half of Figure 5. At 400MHz with either

LP or both LP and MP active, we achieve performance bet-

ter than that of CG-U at the reference point of 1000 MHz

with over 60% savings in power. At 500MHz, we improve

the performance by 23% for LP + MP with approximately

55% saving in power and and over 62% savings in energy.

More importantly, at all frequencies with both LP and MP,

executions times for CG-O are better or equal to values ob-

served not only with respect CG-U at the reference point but

also with respect to CG-O at the reference configuration.

Similar improvements are also observed for the unopti-

mized CG (CG-U) shown at the top half of Figure 5. How-

ever, because register blocking and loop unrolling are not

present in CG-U, performance improvements from the use

of LP and MP are smaller, and the frequencies at which per-

formance is better than or equal to that at the reference point

are higher. For example, at 600MHz, with LP + MP, there

is a 10% reduction in execution time, with approximately

51% reduction in power and over 55% for energy savings.

These results show that significant power and energy

savings are possible along with performance improvements

when relatively simple memory subsystem optimizations

are used with DVS and power saving modes of the L3 cache.

4.3 Impact of Sparse Matrix Properties

Our results so far indicate that the level of tuning of the

CG codes affects the degree to which the same set of ar-

chitectural features, including low power modes of caches,

DVS, and memory subsystem optimizations impact the per-

formance and power metrics.

In all our experiments thus far, CG-U and CG-O were

executed on the same matrix which had been reordered us-

ing RCM to increase locality of access in the source vector

during matrix vector multiplication. It is a property of the

sparse matrix which allows such reorderings to be effec-

tive in clustering nonzeroes about the diagonal and it arises

from the fact that PDE-based simulations based on finite-

difference or finite-elements matrices give rise to matrices

with localized connectivity [11]. Sparse matrices from other

applications can have random connectivity. More impor-

tantly, even sparse matrices from PDE-based applications

may occur with a random ordering although they can be re-

ordered to improve locality.

The commonly used CG code from the popular NAS

benchmark [2] used in earlier performance and power eval-

uations, considers CG on a highly unstructured, near ran-

dom sparse matrix. We now consider this code with three

forms of our CG-U and CG-O codes to show how architec-

tural evaluations are particularly sensitive to the the matrix

properties and level of tuning in the code.

Figure 6 shows relative execution time and power for

400 500 600 700 1000
0

0.5

1

1.5

2

2.5

Frequency (MHz)

T
im

e

CG−U : Relative Time

B
LP
MP
LP + MP

400 500 600 700 1000
0

0.5

1

1.5

Frequency (MHz)

P
o

w
e

r

CG−U : Relative Power

B
LP
MP
LP + MP

400 500 600 700 1000
0

0.2

0.4

0.6

0.8

1

1.1

Frequency (MHz)

E
n

e
rg

y

CG−U : Relative Energy

B
LP
MP
LP + MP

400 500 600 700 1000
0

0.5

1

1.5

2

2.5

Frequency (MHz)

T
im

e

CG−O : Relative Time

B
LP
MP
LP + MP

400 500 600 700 1000
0

0.5

1

1.5

Frequency (MHz)

P
o
w

e
r

CG−O : Relative Power

B
LP
MP
LP + MP

400 500 600 700 1000
0

0.2

0.4

0.6

0.8

1

1.1

Frequency (MHz)

E
n

e
rg

y

CG−O : Relative Energy

B
LP
MP
LP + MP

Figure 5. Relative Time, Power and Energy of unoptimized CG (CG-U top) and optimized CG (CG-

O bottom) algorithms solving the bcsstk31 matrix. Results shown for base, LP, MP and LP + MP
configurations run at frequencies of interest with 256KB L3. Results are relative to a fixed reference

point set at 1000MHz, 4MB L3 running CG-U algorithm on RCM ordered bcsstk31 matrix.

CG-O on bcsstk31 and an RCM ordering, CG-O on

bcsstk31 with a random ordering, CG-U on bcsstk31

with a random ordering and the CG from NAS on a matrix

with dimensions close to bccsstk31. Once again, the

values are relative to CG-U on bcsstk31 with an RCM

ordering on the base architecture at 1000MHz and a 4MB

level 3 cache. Values at lower frequencies than 1000MHz

are shown for B, LP, MP, and LP+MP configurations with a

256KB level 3 cache.

Even from a cursory look at Figure 6, it is apparent that

the sparse matrix structure is critical. When it is near ran-

dom, there are significant performance degradations despite

memory subsystem optimizations at all frequencies. Ob-

serve that performance and power profiles of the NAS CG

is very similar to that of CG-U on bcsstk31 with a ran-

dom ordering and in dramatic contrast to that for CG-O on

bcsstk31 with RCM. The best performing configuration

for CG-O RCM, namely (LP + MP), significantly degrades

performance for all instances operating on random matrices.

For CG-O Random, CG-U Random and CG-NAS, the (LP +

MP) configuration performs approximately 20% worse than

the base configuration operating at the same frequency. Not

surprisingly, CG-O performs worse than CG-U with a ran-

dom ordering for bcsstk31 because explicit zeroes added

for 2x1 blocking simply increase the number of arithmetic

operations without benefiting from the locality of access in

the source vector. Although, power savings are possible

from DVS and smaller level 3 cache sizes, these come at

significant performance degradations for randomly ordered

matrices. Consequently, in evaluating the impact of archi-

tectural features on power and performance, it is important

to use codes representative of the application space of high-

performance scientific computing.

4.4 Improving Performance and Power

In the scientific computing community, the primary fo-

cus traditionally has been on performance to enable scal-

ing to larger simulations. However, trends in the micropro-

cessor design community indicate that scaling to future ar-

chitectures will necessarily involve an emphasis on power-

aware optimizations. Consequently, it is important to con-

sider sparse computations which occur in a large fraction of

scientific computing codes. Such sparse computations are

significantly different from dense benchmarks [9, 20] which

can effectively utilize deep cache hierarchies and high CPU

frequencies. We use CG as an example of such sparse com-

putations to demonstrate that it can benefit from low power

modes of the processors and caches and simple memory

subsystem optimizations to reduce power and improve per-

formance.

Figure 7 shows relative values of execution time, power

and energy for CG-U and CG-O on bcsstk31with RCM.

The reference point corresponds to the highest frequency

1000MHz for the base architecture with a 4MB level 3

cache, with CG-U; This is the rightmost point in the plots

to the left in Figure 7. The plots for CG-U (to the left)

400MHz 600MHz 1000MHz
0

1

2

3

4

5
CG−O RCM : Relative Time

B
LP
MP
LP + MP

400MHz 600MHz 1000MHz
0

1

2

3

4

5
CG−O Random : Relative Time

base
LP
MP
LP + MP

400MHz 600MHz 1000MHz
0

1

2

3

4

5
CG−U Random : Relative Time

base
LP
MP
LP + MP

400MHz 600MHz 1000MHz
0

1

2

3

4

5
CG NAS : Relative Time

B
LP
MP
LP + MP

400MHz 600MHz 1000MHz
0

0.2

0.4

0.6

0.8

1
CG−O RCM : Relative Power

B
LP
MP
LP + MP

400MHz 600MHz 1000MHz
0

0.2

0.4

0.6

0.8

1
CG−O Random : Relative Power

B
LP
MP
LP + MP

400MHz 600MHz 1000MHz
0

0.2

0.4

0.6

0.8

1
CG−U Random : Relative Power

base
LP
MP
LP + MP

400MHz 600MHz 1000MHz
0

0.2

0.4

0.6

0.8

1
CG NAS : Relative Power

B
LP
MP
LP + MP

Figure 6. Relative execution time (top row) and relative power (bottom row) for (i) CG-O on bcsstk31

with RCM, (ii) CG-O bcsstk31 with a random ordering, (iii) CG-U on bcsstk31 with a random ordering
and (iv) the NAS benchmark CG (CG NAS) on a matrix with dimensions similar to bcsstk31. Values

are relative to those of CG-U on bcsstk31 with RCM for the base architecture at 1000MHz and a 4MB

L3 cache. At frequencies lower than 1000MHz, values are shown for the base and LP, MP, and LP+MP
configurations with a 256KB L3 cache.

correspond to the base architecture without any memory

subsystem optimizations, while the plots for CG-O (to the

right) correspond to the LP+MP configuration, at different

frequencies with a 256KB level 3 cache.

The plots in Figure 7 show that power savings from DVS

and low power modes of caches can be realized only at

the expense of performance degradations for CG-U on the

base architecture. However, the plots for CG-O clearly indi-

cate that a tuned code with memory optimizations can uti-

lize low power modes of caches and DVS for significant

improvemtns in both execution time and power. Starting

at 400MHz CG-O with LP + MP shows performance im-

provemnts while reducing power by approximately 60%.

Maximum energy savings of 64% are observed at 500MHz

with 22% improvements in execution time and 55% im-

provements in power. Energy savings close to this value can

also be observed at 700MHz, with greater improvements

(62%) in execution time.

5 Conclusions

In this paper, we have shown how low power modes of

processors and caches can be used with simple memory sub-

system enhancements to improve the performance and en-

ergy characteristics of a sparse CG solver. Furthermore, we

show that a tuned code can benefit to a greater degree than

an untuned code from the same set of architectural enhance-

ments. For example, the best improvements in execution

time observed with LP + MP for CG-U is 45% at 1000MHz

while CG-O shows a 55% improvement. Likewise with re-

spect to power, CG-U shows reductions of 52% at 600MHz

with a 256KB level 3 cache, with LP + MP; corresponding

values for CG-O are 60%.

Our results indicate that power-aware scientific com-

puting with sparse matrix can be achieved without perfor-

mance degradation. However, interactions between the ma-

trix properties, level of tuning in the code and architec-

tural optimizations impact performance and power profiles.

Consequently, we conjecture that using representative tuned

codes in addition to more traditional benchmarks will en-

able a more comprehensive assessment of architectural op-

timizations for future high end systems.

References

[1] G. Almási, R. Bellofatto, J. Brunheroto, C. Caşcaval, and

et al.,. An Overview of the Blue Gene/L System Software

Organizaation. In Lecture Notes in Computer Science, Euro-

Par 2003 Parallel Processing: 9th International Euro-Par

Conference, pages 543–555, January 2003.

[2] D. H. Bailey, L. Dagum, E. Barszcz, and H. D. Simon.

NAS parallel benchmark results. In Supercomputing ’92:

Proceedings of the 1992 ACM/IEEE conference on Super-

300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

Frequency (MHz)

R
e
la

ti
v
e
 T

im
e
,
P

o
w

e
r

a
n
d
 E

n
e
rg

y

CG−U : On base architecture

Relative Time
Relative Power
Relative Energy
Reference Point

300 400 500 600 700 800 900 1000

0.5

1

1.5

2

2.5

3

Frequency (MHz)
R

e
la

ti
v
e
 T

im
e
,
P

o
w

e
r

a
n
d
 E

n
e
rg

y

CG−O : With LP + MP

Relative Time
Relative Power
Relative Energy

Figure 7. Relative values of Time, Power and
Energy are shown with respect to CG-U for

bcsstk31 with RCM on the base architecture

at 1000MHz with 4MB level 3 cache. Values
for CG-U are shown to the left for all frequen-

cies with 256KB level 3 cache on the base

architecture, except for the reference point
at 1000MHz, shown with 4MB level 3 cache.

Values for CG-O are shown to the right for
the optimized system with LP + MP at all fre-

quencies with a 256KB level 3 cache. Values

smaller than 1 indicate improvements.

computing, pages 386–393, Los Alamitos, CA, USA, 1992.

IEEE Computer Society Press.

[3] R. Barrett, M. Berry, T. F. Chan, and et al.,. Templates for

the Solution of Linear Systems: Building Blocks for Iterative

Methods, 2nd Edition. SIAM, 1994.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a frame-

work for architectural-level power analysis and optimiza-

tions. In ISCA ’00: Proceedings of the 27th annual interna-

tional symposium on Computer architecture, pages 83–94.

ACM Press, 2000.

[5] D. Burger and T. M. Austin. The SimpleScalar tool set,

version 2.0. SIGARCH Comput. Archit. News, 25(3):13–25,

1997.

[6] K. Choi, R. Soma, and M. Pedram. Fine-grained dynamic

voltage and frequency scaling for precise energy and per-

formance trade-off based on the ratio of off-chip access to

on-chip computation times. In DATE ’04: Proceedings of

the conference on Design, automation and test in Europe,

page 10004. IEEE Computer Society, 2004.

[7] T. Chung. Computational fluid dynamics. Cambridge Uni-

versity Press, 2002.

[8] F. Dahlgren and P. Stenstrm. Evaluation of stride and

sequential hardware-based prefetching in shared-memory

multiprocessors. IEEE Trans. on Parallel and Distributed

Systems, 7(4):385–398, April 1996.

[9] J. Dongarra. Top500 list and the LINPACK benchmark.

http://www.top500.org/lists/linpack.php.

[10] X. Feng, R. Ge, and K. W. Cameron. Power and energy

profiling of scientific applications on distributed systems. In

IPDPS’05, 2005.

[11] J. George. Nested dissection of a regular finite element ele-

ment mesh. SIAM J. Numerical Analysis, 10:345–363, 1973.

[12] J. A. George and J. W.-H. Liu. Computer Solution of Large

Sparse Positive Definite Systems. Prentice-Hall Inc., Engle-

wood Cliffs, NJ, 1981.

[13] I. D. R. Grimes and J. Lewis. User’s guide for the harwell-

boeing sparse matrix collection (release i). Technical Report

TR/PA/92/86, CERFACS, Toulouse Cedex, France, Oct.

1992.

[14] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith.

Performance modeling and tuning of an unstructured mesh

CFD application. In Proceedings of SC2000. IEEE Com-

puter Society, 2000.

[15] E.-J. Im and K. A. Yelick. SPARSITY. http://www.

cs.berkely/yelick/sparsity.

[16] M. Inc. Micron Technical Note TN-47-04 Cal-

culating Memory System Power for DDR2,

2004. http://download.micron.com/pdf/

technotes/ddr2/TN4704.pdf.

[17] T. Ishihara and F. Fallah. A non-uniform cache architecture

for low power system design. In ISLPED ’05: Proceedings

of the 2005 international symposium on Low power elec-

tronics and design, pages 363–368, New York, NY, USA,

2005. ACM Press.

[18] N. P. Jouppi. Improving direct-mapped cache perfor-

mance by the addition of a small fully-associative cache

and prefetch buffers. In ISCA ’90: Proceedings of the 17th

annual international symposium on Computer Architecture,

pages 364–373, New York, NY, USA, 1990. ACM Press.

[19] N. Kappiah, V. Freeh, D. Lowenthal, and F. Pan. Exploit-

ing slack time in power-aware, high-performance programs.

IEEE/ACM Suptercomputing 2005, 2005.

[20] C. Lazou. LINPACK results refuel IBM/INTEL chip debate.

HPCWire, 12(29), July 2003.

[21] W.-F. Lin, S. K. Reinhardt, and D. Burger. Designing a

modern memory hierarchy with hardware prefetching. IEEE

Trans. Comput., 50(11):1202–1218, 2001.

[22] K. Malkowski, G. Link, P. Raghavan, and M. J. Irwin.

Energy-aware memory optimizations for fast sparse scien-

tific computations. Submitted to IEEE Trans. Computer.

[23] S. A. McKee, R. H. Klenke, K. L. Wright, W. A. Wulf, M. H.

Salinas, J. H. Aylor, and A. P. Batson. Smarter memory: Im-

proving bandwith for streamed references. IEEE Computer,

pages 54–63, February 1998.

[24] T. B. Team. An overview of the BlueGene/l Supercomputer.

In SC ’02: Proceedings of the 2002 ACM/IEEE conference

on Supercomputing, pages 1–22. IEEE Computer Society

Press, 2002.

[25] E. L. D. E. Todd Austin. SimpleScalar: An Infrastructure for

Computer System Modeling. IEEE Computer, pages 59–67,

February 2002.

[26] S. Toledo. Improving the memory-system performance of

sparse-matrix vector multiplication. IMB Journal of Re-

search and Development, 41(6):711–72, 1997.

