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CONJUGATE II-VARIATION AND PROCESS INVERSION

By L. DE HAAN AND S. I. REsNICK!
Erasmus University, Rotterdam and Colorado State University

The well-known concept of conjugate slowly varying functions is special-
ized to the subclass II of the slowly varying functions. The concept is then used
to connect convergence of certain increasing stochastic processes (suitably
normalized) with convergence of their inverses.

1. Introduction. For a slowly varying function L(x), it is well known that there
always exists an asymptotically unique slowly varying function L*(x) satisfying

lim, ,  L(x)L*(xL(x)) = lim,_,  L*(x)L(xL*(x)) =1

(de Bruijn (1959), Seneta (1976), page 25). L and L* are called conjugate slowly
varying functions. Conjugate pairs arise when one attempts to find asymptotic
inverses of regularly varying functions and a prescription for finding an L* from L
is as follows: given L form the 1-varying function R(x) = xL(x) and then invert;
i.e., find the asymptotically unique inverse R ~! with the property that R, R ~!(x)
~ R R(x) ~ x. R™'is also 1-varying so that R ~'(x)/x is slowly varying and
this is the desired L*.

In this paper the concept of conjugate slowly varying functions is specialized to a
proper subclass of the slowly varying functions called II. The class IT will now be
defined. The definition differs slightly from de Haan (1970) but is appropriate for
the present circumstances. All functions in this paper are assumed measurable and
real valued. Suppose m: R* — R™* has the property that there exist functions g:
RY* S5 R* b: Rt - R* such that forall x > 0

. w(tx) — b(1)
1.1 lim,, L — A
(L) ' 8(1)
Then we say = is II*-varying and write # € II*. The class I~ is defined similarly
except for # € II™ we require

= log x.

(1.1) lim a(tx) — b(r) = —log x.

e1())

Finally IT = IT* u II~. The function g appearing in (1.1) and (1.1’) is called an
auxiliary function of 7 and is known to be slowly varying as is = itself (cf. de Haan,
1970). Setting x = 1 in (1.1) and (1.1’) shows it is always possible to take b = .
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CONJUGATE II-VARIATION 1029

A useful way to partition the class of slowly varying functions is to use the
equivalence relation of asymptotic equivalence: L, and L, are asymptotically
equivalent iff L,(x) ~ Ly(x) as x > o. On II a more useful partitioning is
obtained as follows:

DEFINITION. Suppose 7, 7, € II and g is an auxiliary function of #,. We say =,
and 7, are II-equivalent, written 7; ~p,, iff for some ¢ € R

7, (1) — my(0) _
(1.2) hm,_m—g(;)— =c

In this case 7, has auxiliary function g. Note if (1.2) holds and =, € IT* then

7,(1) — my(e*) _
e g(?)

so it is usually no loss of generality to suppose ¢ = 0 in (1.2). It is easily verified
that ~p; is an equivalence relation which partitions II into equivalence classes.

In Section 2 we catalogue some simple but essential properties of II and prove
that if # € II* then #* € II™. This is applied in Section 3 to an inversion problem
in weak convergence of stochastic processes.

Suppose X = {X(¢),¢ > 0} is a stochastic process all of whose paths lie in
D(0, ), the space of right continuous functions with finite left limits on (0, o). In
applications X frequently arises from a sequence of random variables (rv’s)
{§,, n > 0} by setting X(#) = §,,. Call X a Il-varying process if there exist 7 € II
with auxiliary function g and a random element Y of D(0, o) such that Y(#) is a
nondegenerate random variable for each ¢ and

X(n.) — w(n)

(1.3) T =>unY
where =, denotes weak convergence in the Skorohod M, topology on D(0, <o)
(cf. Skorohod 1956, Vervaat 1973, Whitt 1971). M, convergence on D(0, co) is M,
convergence on Dla, b] for all 0 < a < b which are continuity points of the limit.
Weak convergence notation and usage are as in Billingsley (1968) except that “=,”
denotes weak convergence in the T-topology on D(0, o). T is either M, or J; and
is usually M,. From Section 2 of Durrett and Resnick (1976) we have that Y is
stochastically continuous and possesses a scaling property: for any u > 0

Y(u.) =,Y(-) % log u;
the sign preceding log u is determined by whether 7 € IT* orw € I1".

We now form an inverse for the process X by analogy with the construction of a
conjugate slowly varying function. Define Z(f) = ¢tX(¢) and suppose Z has nonde-
creasing paths. Let Z ~! be the right continuous inverse and define the process X*
by X*(t) = Z~'(¢)/t. Then in Section 3 we show

(14) .———X*(”; ’Zn;’*('” R

lim 0

MI_Y
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where 7, 7* are a conjugate pair and g,. is an auxiliary function of #*.

With the monotonicity assumption on Z, (1.3) and (1.4) are equivalent in the
sense either implies the other and in fact a joint statement then ensues in the
manner of Iglehart and Whitt (1971). Of course if X is monotone, Z is also and this
is the case in the examples of Section 3 drawn from renewal and extreme value
theory. If Z is not monotone but has unbounded paths, one can still invert and
obtain (1.4) by passing first from X to X' whereX'(£) = sup,,,X(s). This point
is thoroughly discussed in Vervaat (1972) and Whitt (1974).

The weak convergence results of Section 3 are complementary to those of several
authors who have studied the relationship of weak convergence behavior of sums
of ii.d. rv’s to the weak convergence of the associated first passage processes. See,
for example, Vervaat (1972), Gut (1973, 1975), Mohan (1975), Whitt (1974),
Bingham (1972, 1973), Lindberger (1978), Chow and Hsiung (1976) and, of course,
Billingsley (1968). Whitt (1974) in particular is helpful in understanding the
relationship between X, X' and the first passage processes and why the M,
topology is used.

A final word on notational conventions: U € RV, means U: R* — R * and
lim, , (U(tx)/ U(t)) = x* for x > 0 and p € R.

The auxiliary function of = € II will always be denoted by g. If = appears with
subscripts so will the auxiliary function. The auxiliary function of #* will be
denoted by g,..

2. Conjugate Il-variation. It is convenient to begin by collecting some pre-
liminary results for easy reference:

PropPosITION 1.

- (2.1) The limits (1.1) and (1.1) hold uniformly on compact subsets of (0, o).

(2.2) = € 1L iff for every function r € RV, we have wor € Il. The auxiliary function
of mor is gor. Moreover wor ~pw if and only if r(x)/x — ¢ > 0(x — o).

(23) 7 € I1* iff 1/7 € I1™. The auxiliary function of 1/ is g/w

24) lim, _, ,7(x)/g(x) = co.

(2.5) Suppose L € RV, and m € I1*. Then L.w € I1* with auxiliary function L.g iff

lim,_m( LL((’;‘)) - 1) ;8 =0 forallx >0

(cf. Bojanic and Seneta, 1971).

PrOOF. (2.1): See Balkema (1973), page 141.
(2.2): We have

r(tx)
n(r(x)) = B((®) _ ”(—r@"'(t)) b(r(1)
e &(r(9)) e g(r(1))
and by (2.1) the limit is * log x as required. Use (2.1) to see that («(z~'r(¢).1) —
w(?))/ g(t) converges if and only if #(x)/x — ¢ > 0(x — o).

lim
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Q3): If 7 € II*

O/ = O/ ) gy m) )
g()/7(z) w(tx)m()g(1)/ (1)
since IT C RV,

(24): If 7 €II" and 7 is nondecreasing, the result is well known, see, for
example, de Haan (1976), page 539. If # € II* but is not monotone, use Proposi-
tion 2 below. If # € I1™, the result follows by (2.3).

(2.5): The result follows immediately from

lim,

L(tx)m(tx) — L()n(1) _ ( L(tx) — L(t)) 7 (tx) + a(tx) — w(¢)
L(1)g(?) L(z) g(1) - g(1)

and in fact that # € RV,
The definition of II given in the introduction does not assume monotonicity. The
reason this is not required is contained in the next result.

PROPOSITION 2.

@) If m €I* then 3my € II*, w ~pm, and m, is ultimately continuous and
strictly increasing.

M) If  €I1I™ then 3my € I17, m ~p7y and xmy(x) is ultimately continuous and
strictly increasing.

ProoF. (a) from (1.1) and (2.1)

em(tx) . 7(1)
N=— = i~ dx= . log x

t—>00 g( t) 1 x

The numerator of the left hand side equals

lim dx =1.

f;-.l’(::—e)ds + gy ise) = m(s) = () g5 — (o).

Since (7(te) — w(¢))/g(t) > log e = 1, there exists #, such that if ¢ > £, we have
7(te) — m(t) > 0. Define m(¢) = [l-m(se)/s ds + [{(n(se) — m(s))/s ds and the
result follows.

(b) For 7, € IT* there is @, ~pm, such that =) exists and g,(x) = xmy(x) (cf.
de Haan, 1970, page 34 in case m, is monotone). To see this use the construction in
(a) above to get a m, which is ultimately continuous and strictly increasing and
IT-equivalent to «,. Then repeat this procedure once more to get a 7, which is
differentiable and 7, ~pmy ~p7;.

Next note that 7; ~pm, iff 1/7, ~1/7, which can easily be checked by the
method of (2.3). Therefore, if 7 € I, then 7;: = 1/7 € II" and there exists =, as
previously described with 1/7, ~g7 and x/my(x) ultimately strictly increasing
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( x ),= 1 (1 _ x'rr;(x))

7y(x) 7y(x) 7y(x)

is ultimately positive. This is because xm5(x)/my(x) = g,(x)/7,(x) = 0 by (2.4).
Finish by setting 7, = 1/m,.

since

DEerFINITION. Conjugate- II-function: suppose # € II with auxiliary function g.
Any function 7*: R* — R™ satisfying

n(x){ g(x)} "' [w(x)m*(xm(x)) = 1] =0
is a conjugate II-function for =.

We first give a general construction thus establishing the existence of a conjugate
II-function for any = € II. Let # € II and suppose 7, is the function associated
with 7 by the construction of Proposition 2. A conjugate II-function 7* is
7*(x) = vy '(x)/x where vy(x) = xm(x). To see this note that =*(xm(x))
~am*(xm(x)) = x/0y(x) = 1/ mo(x) ~g1/7(x). Since vy(x) is ultimately continu-
ous and strictly increasing there is no (ultimate) ambiguity in the definition of the
inverse vy '(x).

THEOREM 1.

@) If 7 € I1* then w* € I1™ and its auxiliary function is given by g .(xm(x)) ~
g(x)/ 7 (x)(x — o). An explicit form for g,. is g,.(f) = g(vy (N 7T*(£)).

(b) 7, ~pm, iff ¥ ~pw¥. In particular the conjugate I1-function is defined up to a
II-equivalence class.

(©) 7** ~p7.

PROOF. (a), (b): From the definition it follows 7*(x.7(x)) ~ 1/m(x). Use (2.2).

(c): Referring to the construction above we have m(x) ~pv(x)/x hence
7(x7*(x)) ~poo(x7*(x))/ x7*(x) ~gl/7*(x), i.e.,

7*(x){ 8,o(x)} T [7*(x)7(x7*(x)) — 1] = O(x = c0).

REMARK. 7* is also a conjugate function for = according to de Bruijn’s
definition.

REMARK. 7* ~p1/7 if and only if 0 < lim,_, 7(x) < co.

3. Weak convergence of first passage processes. Suppose X is a Il-varying
process so that
G.1) X(u.) — w(u)

g(u)

as u — oo where 7 € II. Let r € RV such that

(32) limu_m( ’r ((‘:")) - t)%)- =0

for all £ > 0. If »(u) = uL(u), L € RV, we have by (2.5) that 7;: = L.x € II with

=>M|Y
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auxiliary function g, = L.g and without loss of generality (by Proposition 2) we
can suppose for our purposes that v,(u) = um,(u) is strictly increasing and continu-
ous. Next define Z(¢) = r(#)X(¢) and suppose the paths of Z are nonnegative and
unbounded. The first passage process of Z is
Z Y (¢) = inf {u|Z(u) >t}
and X*(t) = Z ')/t
THEOREM 2. If (3.1) and (3.2) hold and the paths of Z are unbounded, then

X*(u.) — mi(u)

(3:3) £1(0)

=>M,_Y

where m} is conjugate to mw, and

gt(u) = L(o7 ' (w)g(or ') (nt(w))*
Proor. For convenience regard ¢ as the identity function on R *. Multiply top
and bottom of the left side of (3.1) by r(ur) and use the fact that » € RV to obtain
Z(ut) — r(ut)m(u)
r(u)g(u)
Because of (3.2) this can be rewritten
m(u Z(ut
2 (et~ ) v
By (2.4) m(u)/g(u) — o and calling Z(ut)/ r(u)m(u) = : X,(¢) we obtain by Theo-
rem 7.5 of Whitt (1974) that

() (y-10py - _
g(u)(X“ (t) — 1) =p, — 1Y(2)

= 1Y (2).

and one checks that X,”'(¢) = (Z ~(r(w)m(w)1))/u = (Z ~'(v,(4)?))/u. Change
variables u — v,(u) and rearrange to obtain (3.3).
ExaMpPLE 1. Extreme values: let {{,, n > 1} be iid. rv’s with common distribu-

tion F(x) such that
P[ Viai§ < g(n)x + 7r(n)] —>A(x) =exp {—e™*}

for x € R. It is known that m(u): = F~'(1 — 1/u) € II* and g(u) = F~'(1 —
(1/ue)) — F~'(1 — (1/w)) is an auxiliary function (de Haan, 1970). Futhermore
setting X(u) = \/1 £ we have

X(u.) — w(u)

Rl L A 2N

g(u) .

where Y is the extremal process generated by A(x) (Lamperti, 1964; Resnick,
1975). So (3.3) holds and a limit law for Z ~! ensues where

Z-Y(s) = inf {tl Vg > T(Stj}
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ExampPLE 2. Renewal theory: suppose {£,, n > 1} are i.i.d. nonnegative rv’s in
the domain of attraction of a stable law of index a = 1 so that F(x) = P[{, < x]
has a regularly varying tail of index — 1. Then it is known that
Slrde — ntn(n)

a(n)
where X, is a stable process with only positive jumps of index a =1 and
a(u) = F'(1 = 1/u), m(u) = [§*¥)(1 — F(s)) ds (Skorohod, 1957; Feller, 1971,
page 315; Durrett and Resnick, 1978). Since 1 — F € RV _,, a() € RV, (de Haan,
1970, page 24) and [§(1 — F(s)) ds € II* (de Haan, 1970, page 38) so by (2.2)
m(u) € II*. Define X(r) = S{%;, /¢ and from (3.4) we get

X(u.) — w(u)
g(u)
where Y(f) = X,(#)/t and g(u) = a(u)/u. In this case we get a limit law for
Z~() = inf (5|24 >t/ L(s)}. If r(u) = u so L =1, then a limit emerges for
N(?) = number of renewals in [0, #].

The norming constants for N have been computed by Bingham (1972, 1973) who

also considered a related example of regenerative phenomena.

(3.4)

=741

=>M|Y
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