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Conjugate Symmetric Sequency-Ordered Complex Hadamard
Transform

Aye Aung, Boon Poh Ng and Susanto Rahardja

Abstract—A new transform known as conjugate symmetric
sequency-ordered complex Hadamard transform (CS-SCHT) is
presented in this paper. The transform matrix of this transform
possesses sequency ordering and the spectrum obtained by
the CS-SCHT is conjugate symmetric. Some of its important
properties are discussed and analyzed. Sequency defined in the
CS-SCHT is interpreted as compared to frequency in the discrete
Fourier transform. The exponential form of the CS-SCHT is
derived, and the proof of the dyadic shift invariant property
of the CS-SCHT is also given. The fast and efficient algorithm
to compute the CS-SCHT is developed using the sparse matrix
factorization method and its computational load is examined as
compared to that of the SCHT. The applications of the CS-SCHT
in spectrum estimation and image compression are discussed. The
simulation results reveal that the CS-SCHT is promising to be
employed in such applications.

Index Terms—Complex Hadamard transforms, discrete or-
thogonal transforms, fast algorithms, dyadic shift invariant, con-
jugate symmetric sequency-ordered complex Hadamard trans-
form (CS-SCHT).

I. INTRODUCTION

THE Hadamard transform has been considered widely as a
practical tool to process signals, especially in the areas of

digital signal and image processing, filtering, communications
and digital logic design [1]–[9] due to its simple implemen-
tation with the use of fast algorithms. It is known from the
literature that the Walsh functions can be arranged to form
any of three main orderings which are in common use. They
are the Walsh or sequency order, dyadic order and natural or
Hadamard order [10], [11]. The choice of orderings depends
on the particular applications [12]. Since, the row vectors of a
Hadamard matrix are simply the sampled versions of the Walsh
functions, the ordering of Hadamard transforms describes the
sequence in which the Walsh functions are positioned in the
transform matrix. For instance, the Walsh Hadamard transform
(WHT) matrix simply expresses that a sampled Walsh function
series is arranged in natural or Hadamard order. If the Walsh
function values are arranged in ascending values of sequencies
in the transform matrix, a sequency-ordered Walsh transform
(SOWT) is obtained. In most applications of signal processing,
sequency ordering is preferred due to its analogy to frequency
in the discrete Fourier transform (DFT) [13], [14].

A set of complex orthogonal transforms known as unified
complex Hadamard transforms (UCHTs) is introduced in

Copyright (c) 2008 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

A. Aung and B.P. Ng are with the School of Electrical and Electronic
Engineering, Nanyang Technological University, Singapore 639798 (E-mail:
aye aung@pmail.ntu.edu.sg and ebpng@ntu.edu.sg).

S. Rahardja is with the Agency for Science, Technology, and Research
(A*STAR), Institute for Infocomm Research, Singapore 138632 (E-mail:
rsusanto@i2r.a-star.edu.sg; susantorahardja@ieee.org).

[15]–[17] for such needs especially employed for multiple-
valued logic design, communications and the signal process-
ing applications dealing with complex-valued functions. The
transform matrices are confined to four complex integer values
{±1,±j} where j =

√−1. But the UCHT matrices do not
exhibit certain ordering which may correspond to the WHT or
the SOWT. Thereafter, sequency-ordered complex Hadamard
transform (SCHT) whose transform matrix shows the sequency
ordering is introduced in [18] for some particular applications
in communications and signal processing. It is a complex
Hadamard transform whose row vectors are arranged in an
increasing number of sequencies. The SCHT is shown to have
certain significance in spectrum estimation as well as in image
watermarking. It has also been applied in the direct sequence
(DS) CDMA systems [19], in which each row vector of an
SCHT matrix is used as a complex spreading sequence to be
assigned to a particular user. But the SCHT coefficients are
the complex numbers comprised of real and imaginary parts
and they are not conjugate symmetric, hence, more memory
are needed to store the coefficients for analysis and synthesis
in transform implementation. For example, the SCHT may
not be suitable to be employed in image compression as it
contradicts the goal of reducing bit rate (which implies less
transform coefficients to store) for image compression. On the
other hand, only half of the spectral coefficients are required
for the analysis in the UCHTs with the half spectrum property
(HSP) and the DFT (whose spectrum is conjugate symmetric).
It is then the purpose of this paper to propose a new version of
SCHT called conjugate symmetric sequency-ordered complex
Hadamard transform (CS-SCHT for short) whose spectrum is
conjugate symmetric, and which is expected to outperform
previous introduced SCHT in spectrum estimation. As said,
the CS-SCHT spectrum is conjugate symmetric so only half
of spectral coefficients are required for synthesis and analysis.
This in turn reduces the memory requirement in processing
for the applications such as real-time image watermarking and
spectrum estimation.

Now let us focus on sequency defined in the SCHT [18].
In fact, sequency of the SCHT is complex sequency which
describes the amount of rotations (the number of zero cross-
ings) of each row vector of an SCHT matrix in the unit circle
of a complex plane over a normalized time base 0 ≤ t ≤ 1.
This is analogous to frequency in the DFT if frequency is
defined as the number of times that each row vector of a DFT
matrix crosses the imaginary axis in the unit circle per unit
time interval. In the DFT, however, the term frequency refers
to periodic repetition rate of sinusoidal waves as well as the
rotation of individual row vector in a DFT matrix in the unit
circle. This is because the DFT transform matrix is conjugate
symmetric and we can intuitively regroup the row vectors of a
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DFT matrix to obtain the corresponding sinusoidal waves with
respective frequencies (which is to be explained in Section III).
The rotation of each row vector of a DFT matrix in the unit
circle and the periodic repetition rate of the corresponding
sinusoidal waves are observed to be the same, which defines
frequency in the DFT.

In this paper, we introduce the conjugate symmetric version
of the SCHT, whose sequency is directly related to frequency
of the DFT. The rest of the paper is organized as follows.
Section II describes the construction of the CS-SCHT trans-
form matrix based on the conjugate symmetric natural-ordered
complex Hadamard transform (CS-NCHT) whose construction
is based on the WHT and the direct block matrix operation.
The definition of the direct block matrix operator is also given.
The interpretation of sequency in the CS-SCHT is presented
in Section III. Some important properties of the CS-SCHT are
derived and analyzed in Section IV, including the exponential
property of the CS-SCHT, the dyadic shift invariant CS-
SCHT power spectrum and its proof. Using the sparse matrix
factorization approach, a fast algorithm to compute an N -
point CS-SCHT is derived in Section V and its computational
complexity is examined as compared with that of the SCHT.
Some applications of the CS-SCHT are suggested in Section
VI together with the supporting simulation results and discus-
sions. Finally, this paper is concluded in Section VII.

II. BASIC DEFINITIONS OF THE CS-SCHT

In this section, we shall present the construction of the CS-
SCHT matrices. Before going directly to the generation of
the CS-SCHT, we first define the direct block matrix operator
which is to be used in the subsequent construction.

Let B be a block matrix such that

B =

⎡
⎢⎢⎢⎣

B11 B12 · · · B1N

B21 B22 · · · B2N

...
...

. . .
...

BM1 BM2 · · · BMN

⎤
⎥⎥⎥⎦ ,

R be a row block matrix, that is,

R =
[

R1 R2 · · · RN

]
and C be a column block matrix which is

C =
[

C1 C2 · · · CM

]T
.

Then the direct block matrix operator � is defined as

B � R =

⎡
⎢⎢⎢⎣

B11R1 B12R2 · · · B1NRN

B21R1 B22R2 · · · B2NRN

...
...

. . .
...

BM1R1 BM2R2 · · · BMNRN

⎤
⎥⎥⎥⎦ (1)

and

B � C =

⎡
⎢⎢⎢⎣

B11C1 B12C1 · · · B1NC1

B21C2 B22C2 · · · B2NC2

...
...

. . .
...

BM1CM BM2CM · · · BMNCM

⎤
⎥⎥⎥⎦ (2)

where the submatrices Bmn,Rk and Cl are the square ma-
trices which have the same dimensions, and m, n, k and l are
positive integers such that 1 ≤ m, l ≤ M and 1 ≤ n, k ≤ N .
If the dimensions of the submatrices are 1 × 1, the operation
of the direct block matrix operator is equivalent to that of the
matrix operator defined in [15].

Now we first define the CS-NCHT based on the WHT
and the direct block matrix operator as the CS-SCHT is a
bit-reversed version of the CS-NCHT. Hence, the generation
of the CS-SCHT is different from that of the SCHT where
the SCHT is constructed based on the complex Rademacher
matrices [18]. Let HN be any CS-NCHT matrix of dimension
N ×N where N = 2n. Then, it is a square matrix defined as

HN =
[ HN/2 HN/2

H′
N/2SN/2 −H′

N/2SN/2

]
(3)

where

S2n−1 =
[

I2n−2 0
0 jI2n−2

]
(4)

and H′
N/2 is a real Hadamard matrix whose rows are arranged

in a certain manner and it is defined recursively as

H′
N/2 =

[ H′
N/4 H′

N/4

H′
N/4I

′
N/4 −H′

N/4I
′
N/4

]
(5)

where (N/4) = 2n−2,

I′2n−2 =
[

I2n−3 0
0 −I2n−3

]
(6)

is the identity matrix of size 2n−2 × 2n−2 where the bottom
half of the elements are multiplied by (−1). Consequently,
HN/2 and H′

N/2 can be further reduced to the dimension of
2 × 2, which is defined as

H′
2 = H2 =

[
1 1
1 −1

]
.

In this way, an N ×N CS-NCHT matrix can be expressed
using the CS-NCHT matrices of order (N/2) × (N/2), and
the smallest dimension of the CS-NCHT matrix will be the
size of 4 × 4 as shown below.

H4 =
[ H2 H2

H′
2S2 −H′

2S2

]
=

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1
1 j −1 −j
1 −j −1 j

⎤
⎥⎥⎦ .

(7)
As a result, any CS-NCHT matrix of dimension N ×N can

be defined using the WHT matrix and the direct block matrix
operator as follows:

HN = WN � A′
n−1,n−1 � · · · � A′

2,2 � A1,1 (8)

where N = 2n, WN is the N × N WHT matrix,

A1,1 = [I2n−1 ,S2n−1 ]T

A′
2,2 = [I2n−2 ,S2n−2 , I2n−2 , I′2n−2 ]T

...

A′
n−1,n−1 = [I2,S2, I2, I′2, · · · , I2, I′2]

T (9)
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where (·)T represents the transpose, and � denotes the direct
block matrix operator which was previously defined.

Let us, for example, consider N = 8. Then, n = log2 8 = 3
and (8) becomes

H8 = W8 � A′
2,2 � A1,1. (10)

Substituting the corresponding values defined in (9) into (10),
we have

H8 =

⎡
⎢⎢⎣

W2 W2 W2 W2

W2 −W2 W2 −W2

W2 W2 −W2 −W2

W2 −W2 −W2 W2

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

I2

S2

I2

I′2

⎤
⎥⎥⎦ �

[
I4

S4

]

(11)

where W2 =
[

1 1
1 −1

]
is the 2×2 WHT matrix. Therefore,

H8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 j −1 −j 1 j −1 −j
1 −j −1 j 1 −j −1 j
1 1 j j −1 −1 −j −j
1 −1 j −j −1 1 −j j
1 −1 −j j −1 1 j −j
1 1 −j −j −1 −1 j j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

As such any CS-NCHT matrix of dimension N × N where
N = 2n can be achieved. Having defined the CS-NCHT, a
CS-SCHT matrix can be obtained from a CS-NCHT matrix
through a bit reversal conversion and vice versa. Let HN be
any CS-SCHT matrix of size N × N . Then it is defined as

HN (p, k) = HN (b(p), k) (13)

where p and k are the row and column indices of a matrix
such that 0 ≤ p, k ≤ N − 1 and b(p) is the decimal number
obtained by the bit-reversed operation of the decimal p. As an
example, H8 is obtained as

H8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H8(0, k)
H8(1, k)
H8(2, k)
H8(3, k)
H8(4, k)
H8(5, k)
H8(6, k)
H8(7, k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H8(0, k)
H8(4, k)
H8(2, k)
H8(6, k)
H8(1, k)
H8(5, k)
H8(3, k)
H8(7, k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

in which the row vectors of the matrix are arranged in increas-
ing order of zero crossings in the unit circle of a complex
plane. Besides, the pth row of the matrix is the conjugate of
the (N − p)th row vector where p = 1, 2, . . . , (N/2) − 1 and
N = 2n, hence, the spectrum obtained by using this matrix
is shown to be conjugate-symmetric. The 0th and (N/2)th
row vectors correspond to the DC and Nyquist frequency
components in the DFT matrix, respectively. As such any CS-
SCHT matrix of dimension N × N can be generated. This
completes the construction of the CS-SCHT. Having developed
the CS-SCHT matrix, the CS-SCHT of an N -point complex
signal vector xN = [x(0), x(1), . . . , x(N − 1)]T is defined as

XN =
1
N

HNxN (15)

where XN = [X(0), X(1), · · · , X(N − 1)]T is the trans-
formed complex column vector, (·) denotes the complex
conjugate and HN is the CS-SCHT matrix as defined in (13).
The data sequence can be uniquely recovered from the inverse
transform, that is,

xN = HT
NXN (16)

since HT
NHN = H∗

NHN = NIN (unitary property) where
(·)∗ represents the complex conjugate transpose.

III. INTERPRETATION OF SEQUENCY

The complex Hadamard matrix generated in (13) exhibits
sequency ordering, that is, the row vectors of the CS-SCHT
matrix are positioned in an ascending order of sequencies.
Sequency is defined as one half of the average number of
zero crossings per unit time in the unit circle of a complex
plane [11], [13]. As indicated earlier, sequency in the CS-
SCHT is analogous to frequency in the DFT. Since the CS-
SCHT matrix of dimension N × N where N = 2n is
conjugate symmetric, we can intuitively separate the real and
imaginary terms and regroup them as in the DFT to obtain
the corresponding waveforms (which is an approximation of
the sinusoidal waves). This process is illustrated below. The
new real matrix obtained from the N × N CS-SCHT matrix
is denoted as HR,N and

HR,N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HN (0, k)
1
2 (�{HN(1, k)} − �{HN(N − 1, k)})
1
2 (�{HN(1, k)} + �{HN(N − 1, k)})
1
2 (�{HN(2, k)} − �{HN(N − 2, k)})

...
1
2

(�{
HN (N

2 − 1, k)
} −�{

HN (N
2 + 1, k)

})
1
2

(�{
HN (N

2 − 1, k)
}

+ �{
HN (N

2 + 1, k)
})

HN(N
2 , k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)
Considering N = 8 as an example, HR,8 is obtained as

HR,8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H8(0, k)
1
2 (�{H8(1, k)} − �{H8(7, k)})
1
2 (�{H8(1, k)} + �{H8(7, k)})
1
2 (�{H8(2, k)} − �{H8(6, k)})
1
2 (�{H8(2, k)} + �{H8(6, k)})
1
2 (�{H8(3, k)} − �{H8(5, k)})
1
2 (�{H8(3, k)} + �{H8(5, k)})

H8(4, k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
0 0 1 1 0 0 −1 −1
1 1 0 0 −1 −1 0 0
0 1 0 −1 0 1 0 −1
1 0 −1 0 1 0 −1 0
1 −1 0 0 −1 1 0 0
0 0 −1 1 0 0 1 −1
1 −1 1 −1 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

where H8 is the CS-SCHT matrix of size 8 × 8, �{·}
and �{·} represent real and imaginary parts of a complex
number, respectively. The waveforms which are relevant to



4

0
1
2

-1
0
1

-1
0
1

-1
0
1

-1
0
1

-1
0
1

-1
0
1

-1
0
1

0
t0 t1 t2 t3 t4 t5 t6 t7

,8 (0, )R kH

,8 (1, )R kH

,8 (2, )R kH

,8 (3, )R kH

,8 (4, )R kH

,8 (5, )R kH

,8 (6, )R kH

,8 (7, )R kH

Fig. 1: Approximation of the sinusoidal waves in the DFT using the
corresponding waveforms from the CS-SCHT.

each row vector of (18) are shown in Fig. 1 together with the
corresponding sinusoidal waveforms from the DFT. It can be
seen from the figure that the CS-SCHT is an approximation of
sine and cosine waveforms in the DFT by using the pertinent
staircase waveforms. Sequency can be expressed as periodic
repetition rate of the approximated waveforms as in the case
of the DFT where frequency indicates the periodic repetition
rate of sinusoidal waveforms. Besides, sequency in the CS-
SCHT also satisfies the previous definition which is one half
of the average number of zero crossings of each row vector
of a matrix in the unit circle of a complex plane per unit time
interval. For example, sequency of the pth row vector of a CS-
SCHT matrix is p as the number of zero crossings is 2p. Since
the pth and (N − p)th row vectors of the CS-SCHT matrices
where p = 1, 2, . . . , (N/2)− 1 are conjugate-symmetric, they
represent the same sequency except that they have different
directions of rotations in the unit circle, i.e., clockwise and
anti-clockwise directions. This is closely related to frequency
in the DFT in which positive frequency and negative frequency
(which correspond to the conjugate-symmetric row vectors in
the DFT matrix) rotate in oppositive directions as well. It is
observed that the phase shifts are not the same each time the
row vector of a CS-SCHT matrix rotates in the unit circle,
however, the total phase shifts of each row vector of the CS-
SCHT matrix are the same as that of the DFT matrix having
the same dimension. It should be noted that frequency can be
regarded as a special measure of sequency applicable to the
sinusoidal waveforms only.

IV. PROPERTIES OF THE CS-SCHT

In this section, we shall present the properties of the CS-
SCHT.

Property 1: Exponential Property of the CS-SCHT. Let
h(p, k) be the element at the pth row and kth column of any

CS-SCHT matrix of dimension N × N where N = 2n and
0 ≤ p, k ≤ N − 1. Then,

h(p, k) = (−1)
�n−1

r=0 grkr (−j)
�n−1

r=0 frkr (19)

where n = log2 N and kr is the rth bit of the bi-
nary representation of the decimal integer k, i.e., (k)10 =
(kn−1, kn−2, . . . , k0)2. Besides, gr is defined to be the rth bit
of the binary Gray code [11] of bit reversal representation of
the decimal p, and we also define fr to be the rth bit of the
binary bits of the highest power of 2 in b(p)/2 where b(p) is
the decimal number obtained through a bit-reversed conversion
of the decimal p. The example for N = 8 is illustrated in
Table I to achieve the binary values for the said notations. The
complex conjugate of the CS-SCHT matrix can be generated
easily by just changing −j to j in (19).

TABLE I: BINARY REPRESENTATIONS FOR gr AND fr .

p Binary
Bit

reversal gr b(p) b(p)/2

Highest
power of 2 fr

0 000 000 000 0 0 0 000
1 001 100 110 4 2 2 010
2 010 010 011 2 1 1 001
3 011 110 101 6 3 2 010
4 100 001 001 1 0.5 0 000
5 101 101 111 5 2.5 2 010
6 110 011 010 3 1.5 1 001
7 111 111 100 7 3.5 2 010

Property 2: Unitarity. The CS-SCHT is an orthogonal
transform whose row vectors are orthogonal in the complex
domain as

| detHN | = NN/2 (20)

and
HNH∗

N = H∗
NHN = NIN (21)

where HN symbolizes any CS-SCHT matrix of dimension
N × N .

Property 3: Linearity. The CS-SCHT is a linear transforma-
tion like the DFT.

Property 4: Parseval’s Theorem. The energy of the signal
in the time and sequency domains is expressed as

1
N

N−1∑
n=0

|x(n)|2 =
N−1∑
k=0

|X(k)|2 (22)

where X(k) represents the CS-SCHT coefficients in the se-
quency domain and x(n) is the signal in the time domain.

Property 5: Conjugate Symmetry. The spectrum transformed
by the CS-SCHT is conjugate-symmetric, i.e., the CS-SCHT
coefficients X(k) and X(N−k) are conjugate-symmetric pairs
where k = 1, 2, . . . , (N/2)− 1.

Property 6: Dyadic Shift Invariant Power Spectrum. Let
h(p, k) be any element of a CS-SCHT transformation matrix.
Then the transformation is said to be dyadic shift invariant
(DSI) as [20]

h(p, k⊕m) =

⎧⎨
⎩

h(p, k) · h(p, m), if both elements
are imaginary

h(p, k) · h(p, m), otherwise
(23)
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and
||h(p, k)||2 = h(p, k) · h(p, k) = 1 (24)

where ⊕ represents the modulo-2 addition and h(p, k) ∈
{±1,±j}.

Proof : Let h(p, k) be the (pth, kth) element of any CS-
SCHT matrix where N = 2n and p, k = 0, 1, . . . , N − 1.
From Property 1, the exponential form of the CS-SCHT is

h(p, k) = (−1)
�n−1

r=0 grkr (−j)
�n−1

r=0 frkr

h(p, k ⊕ m) = (−1)
�n−1

r=0 gr(kr⊕mr)(−j)
�n−1

r=0 fr(kr⊕mr).

(25)

From Table II, the Boolean function gr(kr⊕mr) is equivalent
to the function grkr ⊕ grmr. Therefore, we have

h(p, k ⊕ m) = (−1)
�n−1

r=0 gr(kr⊕mr)(−j)
�n−1

r=0 fr(kr⊕mr)

= (−1)
�n−1

r=0 grkr⊕grmr (−j)
�n−1

r=0 frkr⊕frmr .

(26)

TABLE II: THE TRUTH TABLE FOR gr(kr⊕mr) AND grkr⊕grmr .

gr kr mr kr ⊕ mr grkr grmr

gr

·(kr ⊕ mr)
grkr⊕
grmr

0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 0

Now let us consider each term contained in (26). Then, from
Table III, it can be found that

(−1)
�n−1

r=0 grkr⊕grmr = (−1)
�n−1

r=0 grkr+grmr

= (−1)
�n−1

r=0 grkr+
�n−1

r=0 grmr

= (−1)
�n−1

r=0 grkr · (−1)
�n−1

r=0 grmr .

(27)

On the other hand, Table IV shows that the functions
(−j)

�n−1
r=0 frkr⊕frmr and (−j)

�n−1
r=0 frkr+frmr are not equiv-

alent whenever fr = kr = mr = 1. Therefore, it is expressed
as

(−j)
�n−1

r=0 frkr⊕frmr = (−j)f0k0⊕f0m0(−j)f1k1⊕f1m1

· · · (−j)fn−1kn−1⊕fn−1mn−1 .(28)

In order to convert (b1,r⊕b2,r) to (b1,r+b2,r), consideration
is taken into account only if the two binary operands (i.e., b 1,r

and b2,r) are both equal to one. As indicated in Property 1, fr

represents the binary code of highest power of 2 in b(p)/2
where b(p) is the bit-reversed converted decimal number.
Therefore, it has only one bit of 1 in its binary expression
and the rest are 0 (see Table I for an example). frkr in (28)

TABLE III: THE TRUTH TABLE FOR (−1)kr⊕mr AND (−1)kr+mr .

kr mr kr ⊕ mr kr + mr (−1)kr⊕mr (−1)kr+mr

0 0 0 0 1 1
0 1 1 1 −1 −1

1 0 1 1 −1 −1

1 1 0 2 1 1

TABLE IV: THE TRUTH TABLE FOR (−j)frkr⊕frmr AND

(−j)frkr+frmr .

fr kr mr (−j)frkr⊕frmr (−j)frkr+frmr

0 0 0 1 1
0 0 1 1 1
0 1 0 1 1
0 1 1 1 1
1 0 0 1 1
1 0 1 −j −j

1 1 0 −j −j

1 1 1 1 −1

where r = 0, 1, . . . , n − 1 has only one bit of 1 in its binary
notation. Hence, (28) can be rewritten as

(−j)
�n−1

r=0 frkr⊕frmr

= (−j)f0k0+f0m0(−j)f1k1+f1m1 · · ·
(−j)fn−1kn−1+fn−1mn−1(−1)frkrmr

= (−j)
�n−1

r=0 frkr · (−j)
�n−1

r=0 frmr · (−1)
�n−1

r=0 frkrmr .

(29)

The term (−1)
�n−1

r=0 frkrmr is included in the above expression
(its value can be {±1}) considering for the case where fr =
kr = mr = 1 as shown in Table IV. It is also observed
from this expression that whenever fr = kr = mr = 1, the
corresponding elements h(p, k) and h(p, m) are imaginary and
one of them is multiplied with −1, which in fact is similar to
the conjugation of that imaginary element. Therefore, this will
prove the requirement defined in (23). Finally, substituting (27)
and (29) into (26), we obtain

h(p, k ⊕ m) = (−1)
�n−1

r=0 grkr · (−1)
�n−1

r=0 grmr

·(−j)
�n−1

r=0 frkr · (−j)
�n−1

r=0 frmr

·(−1)
�n−1

r=0 frkrmr

h(p, k ⊕ m) =

⎧⎨
⎩

h(p, k) · h(p, m), if both elements
are imaginary

h(p, k) · h(p, m), otherwise
(30)

and also
||h(p, k)||2 = h(p, k) · h(p, k) = 1. (31)

This completes the proof of (23) and (24). The proof is
completed here. It is noted that the power spectrum of a real-
valued input signal obtained through the DSI transformation
is dyadic shift invariant [20]. Hence, the CS-SCHT power
spectrum is also dyadic shift invariant.
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V. FAST ALGORITHM OF THE CS-SCHT

This section will derive the fast algorithm to compute an N -
point CS-SCHT using the matrix factorization method. Since
the CS-SCHT is the bit-reversed counterpart of the CS-NCHT,
the method applied to the latter is also applicable to the
former and vice versa. In this section, we shall present the
factorization method of the CS-NCHT matrix, which leads to
the fast algorithms for the CS-NCHT as well as the CS-SCHT
for which the output is arranged in bit-reversed order. The
forward transformation matrix defined in (15) is the conjugate
of the CS-SCHT matrix but we start with the factoring of
the CS-NCHT matrix to derive the fast algorithm. Let us,
for example, consider N = 8 to conceptualize the method
of factorization. Then, the expression in (3) becomes

H8 =
[ H4 H4

H′
4S4 −H′

4S4

]
(32)

where

S4 =
[

I2 0
0 jI2

]
and H′

4 =
[ H2 H2

H2I′2 −H2I′2

]
.

Equation (32) can be expressed as

H8 =
[ H 0

0 H′
4

] [
I4 0
0 S4

] [
I4 I4

I4 −I4

]
. (33)

Subsequently, H4 and H′
4 can be further factorized and H8

becomes

H8 =

⎡
⎢⎢⎣

H2

H2

H2

H2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

I2

S2

I2

I′2

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

I2 I2

I2 −I2

I2 I2

I2 −I2

⎤
⎥⎥⎦

[
I4

S4

] [
I4 I4

I4 −I4

]

(34)

where the blank spaces represent the zero elements,

H2 =
[

1 1
1 −1

]
, S2 =

[
1 0
0 j

]
and I′2 =

[
1 0
0 −1

]
.

The factorization of H8 can be obtained by just changing
j to −j in the S matrices which are included in (34). This
factorization will result in fast forward CS-NCHT algorithm.
As mentioned earlier, rearranging the output in a bit-reversed
order will provide the CS-SCHT coefficients, which gives rise
to the fast forward CS-SCHT algorithm. The decomposition of
fast forward CS-SCHT for N = 8 is illustrated by the signal
flow graph in Fig. 2.

For simplicity, the multiplication by the scaling factor (1/8)
is omitted in the figure, which in fact can be computed by the
binary shifting operations without needing any arithmetic oper-
ations. As shown in Fig. 2, the signal flow graph contains three
stages and each stage requires eight addition/subtractions. But
a total of 20 + 21 = 3 complex multiplications by factor −j
is needed for three stages. Therefore, it can be concluded that
for an N -point CS-SCHT, the fast algorithm has n = log2 N

-j

-j

-j

x

x

x

x

x

x

x

x

X

X

X

X

X

X

X

X

Fig. 2: Signal flow graph illustrating the computation of an 8-point
CS-SCHT.

stages and each stage needs N addition/subtractions. In gen-
eral, the total computational requirements for complex input
data are N log2 N complex addition/subtractions and

20 + 21 + · · · + 2n−2 =
1 − 2n−1

1 − 2
= (2n−1 − 1) (35)

complex multiplications for the trivial twiddle factors −j.
Compared to fast SCHT algorithm reported in [18], they have
the same number of complex addition/subtractions but this pre-
sented fast CS-SCHT algorithm requires less trivial complex
multiplications than fast SCHT algorithm, that is, (2n−1 − 1)
for the CS-SCHT and (N/4) log2(N/2) = 2n−2(n − 1) for
the SCHT. The numerical numbers are presented in Table V
for the comparison purpose. It can be seen from the table
that when n is increased, the difference becomes larger and
significant.

TABLE V: COMPARISON OF COMPUTATIONAL COMPLEXITY.

Number of complex multiplications by the elements −j

n CS-SCHT SCHT

3 3 4
4 7 12
5 15 32
6 31 80
7 63 192
8 127 448
9 255 1024
10 511 2304

This fast CS-SCHT algorithm is well suited to adopt the
pipelined hardware structure, which was proposed for the
SCHT in [21]. The signal flow graph in Fig. 2 is similar to
that of the decimation-in-sequency (DIS) fast SCHT algorithm
(which was used to develop the pipelined hardware structure
for the SCHT) except that the former needs less complex
multiplications by the trivial twiddle factors. As pointed out
in [21], the operations of swapping and subtraction can be
jointly performed with the aid of the 2 : 1 complex multiplex-
ers to accomplish the multiplications with −j. Therefore, it
should be noted that less number of operations are needed to
implement the CS-SCHT as compared to the SCHT.
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VI. APPLICATIONS OF THE CS-SCHT

In this section, we shall present some potential applications
of the CS-SCHT including the supporting simulation results.

A. Spectrum Estimation

The CS-SCHT may have certain significance in signal
analysis and synthesis due to its sequency ordering and its
simple implementation which only requires additions and
subtractions for transformation. Fig. 3 illustrates the magnitude
response for each row vector of the CS-SCHT matrix for
N = 8 and Fig. 4 shows the magnitude response for the DFT
matrix. It can be seen from the figures that sequency in the
CS-SCHT is closely related to frequency in the DFT and the
locations of their main lobes are the same even though there
are uneven main lobes in the magnitude response of the CS-
SCHT as compared to that of the DFT.
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Fig. 3: Magnitude response of the CS-SCHT matrix (N = 8).
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Fig. 4: Magnitude response of the 8 × 8 DFT matrix.

As an example, the CS-SCHT is applied in spectrum esti-
mation of the sinusoidal waves. Fig. 5 shows the magnitude
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Fig. 5: Magnitude spectra of the DFT, CS-SCHT and SCHT for the
sinusoidal wave of 1000 Hz.
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Fig. 6: The highlighted portion in Fig. 5.

spectrum of 512-point DFT, CS-SCHT and SCHT of the
sinusoidal wave of 1000 Hz using the sampling frequency of
500000 Hz (in order to show the complete spectrum). The
corresponding highlighted portion in Fig. 5, which is zoomed
in to provide the clear view, is shown in Fig. 6. It can be seen
from Fig. 5 that both CS-SCHT and SCHT spectra are closely
matched with that of the DFT. The desired main peaks occur
in the same locations for all spectra as shown in Fig. 6. But it
is observed that the SCHT spectrum has more unwanted side
lobes than that of the CS-SCHT as illustrated in the figures.
Therefore, it can be concluded that sequency of the CS-SCHT
is more closely related to frequency of the DFT than that of
the SCHT. Another obvious advantage is that the spectrum
obtained by the CS-SCHT are conjugate-symmetric (like the
DFT spectrum) as shown in Fig. 5, hence, only half of the
spectrum coefficients are required for analysis as compared
with the SCHT spectrum. In a nutshell, the CS-SCHT can
be considered as a good substitute to replace the DFT in
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spectrum estimation while providing simple implementation
and less computational time.

B. Image Compression

Transform coding technique is one of the most popular
methods to compress the digital images. In transform coding,
a linear and reversible transform is used to map the image
into a set of transform coefficients which are then quantized
and coded. The fundamental goal of image compression is to
reduce the bit rate which implies less transform coefficients to
reconstruct the image while maintaining an acceptable fidelity
or image quality. Therefore, the transforms having good energy
compaction property are advisable to be employed in image
compression. It is a well-known fact that most orthogonal
transforms tend to pack a large fraction of the average en-
ergy of the images into a relatively few components of the
transform coefficients (energy compaction property) [22]. The
most well-known orthogonal transform is the discrete cosine
transform (DCT) [11], [22], [23] for its highly information
packing capability as well as the availability of various effi-
cient fast computational algorithms [24]. The current standard
for compression of still images, JPEG, uses the DCT to
compress the images. The WHT [2] is the simplest non-
sinusoidal orthogonal transform and also provides comparable
performance in image compression as compared with the DCT.
It is perhaps a better choice for real-time implementation in
some applications.

In this subsection, the CS-SCHT is proposed to be applied
in image compression. Since an image can be represented as
a matrix consisting of real numbers, real-valued transforms
are preferred to be used in order to obtain the real transform
coefficients. For this purpose, the 8 × 8 transform matrix
which is derived from the CS-SCHT (shown in (18)) could
be used for image compression with very low computational
cost, which merely consists of addition/subtractions. Since the
CS-SCHT is a complex orthogonal transform, its real-valued
transform is also an orthogonal transform. After normalizing
the elements of each row vector of (18) by its 2-norm, the
8 × 8 transform matrix is obtained as

C8 = D8 · HR,8 (36)

where D8 = diag
{√

1
8 ,

√
1
4 ,

√
1
4 ,

√
1
4 ,

√
1
4 ,

√
1
4 ,

√
1
4 ,

√
1
8

}
is the diagonal matrix which consists of the normalization
factors. As mentioned in Section III, the row vectors of this
matrix are the approximations of the sinusoidal waves in the
DFT. Therefore, the input signal can be represented as a linear
combination of its row vectors expecting that the signal energy
could be concentrated on a few transform coefficients for
good compression. The corresponding transform is defined as
follows:

X8 = C8x8 (37)

where X8 = [X(0), X(1), . . . , X(7)]T is the transformed
column vector and x8 = [x(0), x(1), . . . , x(7)]T represents
the input data vector. The data sequence can be recovered
uniquely from the inverse transform, that is,

x8 = CT
8 X8 (38)
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Fig. 7: Signal flow graph of the fast forward algorithm for the real
transform derived from the CS-SCHT (N = 8).

where CT
8 C8 = I8 (orthogonal property). The two dimen-

sional (2-D) transform for an 8 × 8 real image matrix can be
obtained by applying 1-D transform on the rows followed by
the columns. The resultant transform coefficients are the real
numbers, which are suitable for image compression.

The transformation by C8 can be done efficiently with
minimum computational cost by using the fast algorithm.
The fast algorithm to compute this transform is derived for
the purpose of implementation for image compression. The
readers may refer to Appendix for details. The signal flow
graph for fast forward 8-point transform is illustrated in Fig.
7. For simplicity, the normalization factors are omitted in the
figure, which in fact can be computed after or before the
transformation. It can be seen from the figure that only the first
stage needs eight addition/subtractions whereas the second and
third stages merely requires four and six addition/subtractions,
respectively. Therefore, a total of (8 + 4 + 6) = 18 addi-
tion/subtractions is needed to compute an 8-point 1-D trans-
form. On the other hand, 24 addition/subtractions are required
to compute an 8-point traditional fast WHT using the fast
algorithm [11]. The same number of multiplications (which
is eight) is required for both transforms when the signal is
scaled by the normalization factors, which is D8 mentioned
in (36). Hence, an additional savings of (24 − 18) = 6
addition/subtractions (which is 6

24 × 100% = 25%) can be
gained for one transformation by using the proposed transform
as compared to the WHT.

The computer simulations are also conducted to evaluate
the mean square error (MSE) performance of the proposed
transform for energy compaction property as well as the bit
rate (BR) vs peak signal-to-noise ratio (PSNR) performance
for image compression. The image block size considered in
the simulation is the standard size of 8 × 8. The original
images are divided into non-overlapping 8× 8 blocks and the
corresponding transforms are performed on these blocks. Dur-
ing the reconstruction process, the coefficients with maximum
magnitudes on each transformed 8×8 block are selected based
on the compression ratio. Fig. 8 shows the MSE comparison
of various transforms based on the 8 × 8 image blocks with
respect to the number of coefficients chosen for reconstructing
the Lena image. We have also tested for the Lena image based
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Fig. 8: MSE comparison among the DCT, the proposed transform,
and the WHT with respect to the number of coefficients selected
during reconstruction for the Lena image.
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Fig. 9: MSE comparison based on the 16 × 16 image blocks.

on the 16× 16 image blocks and the result is show in Fig. 9.
It can be seen from the figures that the MSE performances of
the proposed transform and the WHT are comparable to each
other for most of the compression ratios (i.e., the number of
coefficients selected). Hence, it is observed that the proposed
transform also possesses good energy compaction property
like the WHT and it is suitable for application in image
compression as well.

For image compression, the default settings for the JPEG
are used [25] to evaluate the bite rate vs PSNR performance.
The test images used in this simulation are the standard Lena
and Barbara images. We have tested on other standard images
as well and the results are consistent. Table VI lists the
comparisons of the PSNR and BR values among the DCT,
the proposed transform and the WHT at different values of
M (which is the number of transform coefficients selected to
reconstruct the original image) for the Lena image. The orig-

TABLE VI: COMPARISONS OF PSNR AND BR AMONG THE
DCT, THE PROPOSED TRANSFORM, AND THE WHT FOR THE
LENA IMAGE.

DCT rCS-SCHT WHT

M PSNR BR PSNR BR PSNR BR

8 27.2634 0.5563 24.7848 0.5587 25.6427 0.5562
12 28.1484 0.6480 25.6359 0.6776 26.5533 0.6756
16 29.6632 0.7408 27.3659 0.8103 27.6694 0.7690
20 30.9772 0.8322 28.1081 0.8982 28.3369 0.8526
24 31.1807 0.8864 28.4672 0.9577 28.6208 0.9132
28 31.9008 0.9321 29.2968 1.0211 29.5068 0.9957
32 32.3919 0.9786 30.0928 1.0972 30.3276 1.0468

M - The number of coefficients taken for reconstruction.
BR - Bit rate (bit/pixel).
PSNR - Peak signal-to-noise ratio (dB).

TABLE VII: COMPARISONS AMONG THE TRANSFORMS FOR THE
BARBARA IMAGE.

DCT rCS-SCHT WHT

M PSNR BR PSNR BR PSNR BR

8 26.9354 0.5805 24.7945 0.5812 25.3570 0.5764
12 27.9808 0.6988 25.8175 0.7330 26.5008 0.7287
16 29.0273 0.7976 27.1819 0.8649 27.3502 0.8300
20 29.9303 0.8863 27.7014 0.9602 27.8418 0.9120
24 30.1210 0.9260 28.0872 1.0203 28.1861 0.9623
28 30.6784 0.9805 28.6956 1.0860 28.8896 1.0510
32 31.0625 1.0248 29.2284 1.1500 29.4820 1.1007

inal Lena image and the respective decompressed images are
shown in Fig. 10 with 20 coefficients chosen for reconstruction
using different transforms. It is observed from Table VI that
when the values of M become larger, the corresponding PSNR
values and bit rates are increased for various transforms.
That is, more binary bits are required to represent the pixel
values of the images with increased values of M , hence, less
distortion is occurred to the reconstructed images. Obviously,
at any particular value of M , the DCT outperforms the other
transforms in terms of PSNR and bit rates at the expense of
highly computational cost. On the other hand, it is found from
the table that the PSNRs of the reconstructed images and the
corresponding bit rates for the proposed transform and the
WHT are close to each other at any individual value of M .
Besides, their reconstructed image qualities are also equally
good enough to compare to that of the DCT as shown in Fig.
10. No significant visual degradation occurs in both images.

But the advantage of the proposed transform over the WHT
is the reduced computational cost. As mentioned earlier, an
extra savings of 6 addition/subtractions (25%) can be acquired
for one transformation by using the proposed transform as
compared to the WHT. If an image of 512 × 512 pixels is
considered for image compression, the total number of blocks
will be (512×512)÷(8×8) = 4096 and each block needs 16
transformations using (37). As one transformation performs
24 addition/subtractions, a total of 24×16×4096 = 1572864
addition/subtractions is needed for the whole computation
if the WHT is used. However, only a total of 1572864 ×
0.75 = 1179648 addition/subtractions is required for the
proposed transform, hence, we can obtain an additional saving
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(a)
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Fig. 10: (a) The original image of Lena, the decompressed images
of Lena using (b) the DCT, (c) the proposed transform, and (d) the
WHT using 20 transform coefficients.

of 1572864 × 0.25 = 393216 addition/subtractions, which
is significant in the hardware implementation especially for
real-time applications. Therefore, if the hardware savings and
simplicity are the first priority to be considered rather than
the image quality in the applications, the proposed transform
and the WHT are shown to be better choices than the DCT,
but among them, the proposed transform is better option to be
considered.

Table VII summarizes the comparisons for the Barbara
image which contains high frequency components. We have
observed from the table that the results are consistent with
previous findings concluded for the Lena image.

VII. CONCLUSION

The conjugate symmetric sequency-ordered complex
Hadamard transform is discussed in this paper. It has been
shown that sequency defined in the CS-SCHT is more closely
related to frequency in the DFT as compared to that of
the SCHT. It can be seen that the CS-SCHT is a close
approximation to the sinusoidal waves in Fourier analysis
using the staircase waveforms while the SOWT provides
the approximation of the sine and cosine waves in the
DFT using the square waves [26]. As the name follows,
the CS-SCHT spectrum of a real-valued data sequence
is conjugate-symmetric as well as the transform itself is
sequency-ordered and suitable for complex-valued functions,
which makes it unique among the transforms. Due to the
conjugate-symmetric property, only half of the spectrum are
needed for analysis and synthesis, which leads to achieve
memory savings in the processing of the transform in the
applications as compared to the SCHT.

The construction of the CS-SCHT is based on the CS-
NCHT. It has been shown that they can be obtained from
the WHT and the direct block matrix operation. Some impor-
tant properties of the CS-SCHT are discussed and analyzed.
The exponential property of the CS-SCHT is mentioned and
the definition of dyadic shift invariant property for complex
Hadamard transform is given. Subsequently, it has been proved
that the power spectrum acquired by the CS-SCHT is dyadic
shift invariant. The fast CS-SCHT algorithm is derived using
the sparse matrix factorization approach and its computational
complexity is examined. It has been investigated that less
number of complex multiplications by the trivial twiddle
factors, i.e., −j are required to compute an N -point CS-
SCHT as compared to that of the SCHT using the fast
algorithm. Therefore, less number of swapping and subtraction
operations are required when implementing the transform in
the pipelined hardware structure [21]. The applications of
the CS-SCHT in spectrum estimation and image compres-
sion are also mentioned in this paper. The CS-SCHT has
been shown to be a better choice to replace the DFT (at
the cost of some loss in accuracy of estimation) in signal
analysis and synthesis as compared to the SCHT with simple
implementation and less computational complexity. Moreover,
the new transform which is derived from the CS-SCHT is
proposed in image compression. The fast algorithm to compute
the 8-point proposed transform is also derived especially for
use in image compression. It has been found that the PSNR
values of the reconstructed images with respect to the original
image using the proposed transform are comparable to that
of the WHT at any chosen value of M , the number of
coefficients selected. Their corresponding bit rates are also
close to each other. But the proposed transform requires less
number of addition/subtractions with the use of the presented
fast algorithm as compared to that of the WHT. Therefore, the
proposed transform have been shown to be better alternative
to substitute the DCT in image compression if simplicity and
computational cost are the important factors to be considered
in the applications.

APPENDIX

FAST ALGORITHM FOR A REAL TRANSFORM DERIVED

FROM THE CS-SCHT

From (37), the transform is given by

X8 = C8x8 (39)

where C8 is the transform matrix as defined in (36), x8

and X8 are the input data and transformed column vectors,
respectively. Firstly, the row vectors of C8 are rearranged
through a conversion of the bit reversal and converted Gray
code [11]. The example for such conversion for N = 8 is
tabulated in Table VIII. Therefore, (39) becomes

PX8 = PC8x8 (40)

where P is a permutation matrix which provides the arrange-
ment of the row vectors of C8 as mentioned in Table VIII.
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TABLE VIII: CONVERSION THROUGH A BIT REVERSAL AND
CONVERTED GRAY CODE (N = 8).

Decimal Binary Bit Reversal Converted Gray Code Decimal

0 000 000 000 0
1 001 100 111 7
2 010 010 011 3
3 011 110 100 4
4 100 001 001 1
5 101 101 110 6
6 110 011 010 2
7 111 111 101 5

Therefore,

CP = PC8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
0 1 0 −1 0 1 0 −1
1 0 −1 0 1 0 −1 0
0 0 1 1 0 0 −1 −1
0 0 −1 1 0 0 1 −1
1 1 0 0 −1 −1 0 0
1 −1 0 0 −1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(41)
For simplicity, the scaling factor diagonal matrix D8 is omitted
in the above expression and the subsequent derivation. Now
let us focus on the factorization of the matrix in (41) to derive
the fast algorithm. CP can be rewritten and factorized as

CP =
[

C4 C4

C′
4 −C′

4

]
=

[
C4 0
0 C′

4

] [
I4 I4

I4 −I4

]
(42)

where

C4 =

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1
0 1 0 −1
1 0 −1 0

⎤
⎥⎥⎦ , C′

4 =

⎡
⎢⎢⎣

0 0 1 1
0 0 −1 1
1 1 0 0
1 −1 0 0

⎤
⎥⎥⎦ .

Equation (42) can be further factorized as

CP =

⎡
⎢⎢⎣

C2 C2

Î2 −Î2

0 C′
2

C2 0

⎤
⎥⎥⎦

[
I4 I4

I4 −I4

]
(43)

where

C2 =
[

1 1
1 −1

]
, C′

2 =
[

1 1
−1 1

]
and Î2 =

[
0 1
1 0

]
.

Finally, we have

CP =

⎡
⎢⎢⎣

C2

Î2

C′
2

C2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

I2 I2

I2 −I2

0 I2

I2 0

⎤
⎥⎥⎦

·
[

I4 I4

I4 −I4

]
(44)

which results in fast forward algorithm after substituting it
into (40). The output sequence is needed to be rearranged
according to the permutation matrix P. The signal flow graph
for the fast forward algorithm is illustrated in Fig. 7.
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