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Summary

 

Conjugated linoleic acid (CLA) is a unique lipid that elicits dramatic reductions
in adiposity in several animal models when included at 

 

£

 

1% of the diet. Despite
a flurry of investigations, the precise mechanisms by which conjugated linoleic
acid elicits its dramatic effects in adipose tissue and liver are still largely unknown.

 

In vivo

 

 and 

 

in vitro

 

 analyses of physiological modifications imparted by conju-
gated linoleic acid on protein and gene expression suggest that conjugated linoleic
acid exerts its de-lipidating effects by modulating energy expenditure, apoptosis,
fatty acid oxidation, lipolysis, stromal vascular cell differentiation and lipogenesis.
The purpose of this review shall be to examine the recent advances and insights
into conjugated linoleic acid’s effects on obesity and lipid metabolism, specifically
focused on changes in gene expression and physiology of liver and adipose tissue.
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Conjugated linoleic acid; general information

 

The conjugated linoleic acid (CLA) family consists of sev-
eral conjugated and stereoisomeric variations of linoleic
acid (

 

cis, cis

 

-

 

D

 

9,12

 

-octadecadienic acid), of which 16 have
currently been identified (1–3). Natural forms of CLA can
be found predominantly in ruminant products, such as
milk, cheese and beef (3–7), and exist primarily (80–90%)
as the 

 

cis

 

-9, 

 

trans

 

-11 isomer (c9t11), also known as
rumenic acid (7–10). Within ruminants, lamb contains the
highest concentration of CLA, and veal the lowest (7).
Measurements of c9t11-CLA in human adipose tissue have
found that its presence is highly correlated with milk fat
intake (11), and CLA intake averages about 200 mg d

 

-

 

1

 

 for
men and 150 mg d

 

-

 

1

 

 for women (12). Anaerobic ruminant
bacteria, such as 

 

Butyrivibrio fibrisolvens

 

, produce CLA
(predominantly c9t11-CLA) through biohydrogenation of
linoleic acid and 

 

a

 

-linolenic acid obtained from plant mate-
rial (9,13,14). A recent study has shown that endogenous
synthesis is responsible for more than 91% of the c9t11-

CLA present in milk fat (15). Upon synthesis, CLA is either
absorbed or further metabolized to vaccenic acid (

 

trans

 

-11-
octadecenoic acid) (13), which can be converted back to
c9t11-CLA by the enzyme 

 

D

 

9 desaturase (also called
stearoyl-CoA desaturase) (14,16).

Several methods are currently available to chemically
synthesize CLA (17–19). Current CLA supplements used in
feeding studies are synthesized by alkaline isomerization of
linoleic acid-enriched vegetable oils (e.g. safflower and sun-
flower oil) and are mostly available in a 1:1 ratio of c9t11-
CLA and 

 

trans

 

-10, 

 

cis

 

-12 (t10c12)-CLA (9,20). Several
companies offer dietary supplements containing CLA;
examples include Your Life

 

®

 

, Natrol

 

®

 

 and Nature’s Way

 

®

 

(21). Recently, Loders Croklaan Lipid Nutrition reported
they obtained self-affirmed GRAS (generally recognised as
safe) status for their product Clarinol

 

TM

 

, potentially leading
to its use in functional foods in the USA (22). Cogniz, a
competing company, expects that their product Tonalin

 

®

 

will receive GRAS status very soon (22). Even though CLA
supplements are readily available, specific benefits for

 

obesity

 

 reviews (2005) 
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humans appear to be relatively small and any detrimental
effects are subject to further investigation [see Terpstra (20)
for detailed review].

 

The effects of conjugated linoleic acid in the 
body

 

In 1987 Ha 

 

et al

 

. (4) reported that CLA present in fried
ground beef reduced tumour incidence in mice chemically
treated to induce epidermal neoplasia; their results initiated
a flurry of research (visit http://www.wisc.edu/fri/clar-
efs.htm for a list of publications on CLA since 1987) (14).
To date a majority of the experiments using CLA have used
an isomeric mix containing approximately a 1 : 1 ratio of
c9t11- and t10c12-CLA (approximately 40% and 44%,
respectively; referenced as MI-CLA in the remainder of the
review) (14). These experiments, both 

 

in vivo

 

 and 

 

in vitro

 

,
have reported that CLA has beneficial effects (at least in
some animal species) against cancer [see Belury (23) for
review], atherosclerosis [see McLeod (24) for review], dia-
betes and obesity (reviewed below). Studies also have
reported that results vary between species, and that the
c9t11- and t10c12-CLA isomers have differential effects on
body composition. However, it now appears clear that the
t10c12-CLA isomer is responsible for changes 

 

in vivo

 

 and

 

in vitro

 

, particularly in body composition and adipocyte
morphology (14,25–29). Described below is a brief synop-
sis of observations in diabetes, followed by a detailed
review of CLA’s effects on obesity, specifically focused on
changes in gene expression and physiology of liver and
adipose tissue.

 

Diabetes

 

The anti-diabetogenic effects of CLA differ markedly
between species 

 

in vivo

 

, ranging from beneficial effects in
rats (30–34) to detrimental effects in mice (28,35–37) and
humans (20,38,39). In 1998, Houseknecht 

 

et al

 

. (30)
showed that 1.5% MI-CLA improved hyperinsulinaemia
and normalized glucose tolerance in Zucker diabetic fa/fa
(ZDF) rats fed for 14 days. They also reported a CLA-
mediated increase in adipocyte-specific fatty acid-binding
protein 2 (aP2) mRNA levels and activation of the perox-
isome proliferator-activated receptor-

 

g

 

 (PPAR-

 

g

 

) 

 

in vitro

 

,
indicative of modulation through this transcription factor
(see below for further review on CLA’s interactions with
PPAR-

 

g

 

) (30). Differing 

 

in vitro

 

 results were reported by
Granlund 

 

et al

 

. (40) who recently showed in 3T3-L1 adi-
pocytes that t10c12-CLA did not activate PPAR-

 

g

 

 and
selectively inhibited thiazolidinedione-induced PPAR-

 

g

 

 acti-
vation, implicating t10c12-CLA as a PPAR-

 

g

 

 antagonist
(33). A later 

 

in vivo

 

 study conducted by Ryder 

 

et al

 

. (31)
confirmed CLA’s effects on glucose tolerance and insulin
action. They reported improved insulin-stimulated glucose

tolerance and glycogen synthase activity in soleus muscle
of ZDF rats supplemented with MI-CLA, compared with
rats fed a control diet or supplemented with c9t11-CLA
(91% pure). They further showed that within the 50 : 50
mixture, these effects were predominantly exerted by the
t10c12-CLA isomer (31). Similar studies with fa/fa Zucker
rats have confirmed these results, and attributed t10c12-
CLA’s anti-diabetogenic effects to reduced oxidative stress
and muscle lipid levels (32,33). A recent 

 

in vivo

 

 study by
Nagao 

 

et al

 

. (34) showed that 1% MI-CLA increased adi-
ponectin gene expression and plasma levels in male ZDF
rats fed for 8 weeks. They proposed that this also may be
a potential mechanism by which CLA reduces hyperinsuli-
naemia (34). Several groups report opposite effects 

 

in vivo

 

in mice (28,35–37) and humans (38,39), showing that
t10c12-CLA supplementation leads to insulin resistance.
This may result from a decrease in plasma leptin levels (41),
or an increase in triacylglycerol levels in muscle by t10c12-
CLA (20). The paradoxical effect of the t10c12-CLA iso-
mer in diabetes is a dramatic example of the species-specific
differences that exist with supplementation of this fatty
acid. However, the degree of obesity in the animal model
is an important factor to consider when assessing CLA
effects. Indeed, it should be emphasized that a majority of
the studies on rats have utilized overtly obese models while
murine models were mostly non-obese and that the effects
of CLA could vary accordingly. For example, the relative
increase in insulin sensitivity observed when obese animals
(rats) are fed CLA may result from decreased adiposity,
whereas the effect in lean (murine) models may stem from
the lipodystrophic effects of CLA.

 

Obesity

 

The de-lipidative effects of MI-CLA were first observed by
Park 

 

et al

 

. (42) in the ICR (Institute for Cancer Research)
line of mice supplemented with 0.5% CLA. They reported
a 60% decrease in body fat after about 4–5 weeks of feed-
ing (42). Similarly, studies using MI-CLA and predomi-
nantly the t10c12-CLA isomer reported decreased body fat
in other lines of mice [see Pariza 

 

et al

 

. (14) for review].
Reductions in adiposity have been reported in Sprague-
Dawley and Zucker (lean) rats; however, the effects are not
as striking as in mice (25–30%) (43–45). Interestingly, MI-
CLA increased fat deposition in obese and albino rats
(45,46). Sisk 

 

et al

 

. (45) showed that 0.5% MI-CLA reduced
insulin levels in male and female obese Zucker rats fed
for 5 and 8 weeks, respectively, and suggested that the
increased fat could be attributed to a normalized  glucose
tolerance,  coupled  with  hyperphagia.  A recent study con-
ducted with rats fed for 28 days varied the source of
protein (either casein or soy) in 0, 0.1, 0.5 and 1.0% MI-
CLA-supplemented diets (47). The results showed that the
de-lipidative effect of CLA was more pronounced in rats

http://www.wisc.edu/fri/clarefs.htm


 

obesity 

 

reviews

 

Conjugated linoleic acid evokes de-lipidation

 

R. L. House

 

 et al.

 

249

 

© 2005 The International Association for the Study of Obesity. 

 

obesity 

 

reviews 

 

6

 

, 247–258

 

fed the soy diet, indicating that dietary protein may alter
the effects of CLA and contribute to differing observations
between experiments (47). In swine MI-CLA decreased fat
deposition and increased lean tissue (48–52). Generally,
experiments conducted in humans have shown that neither
MI-, c9t11- or t10c12-CLA has a significant effect on body
weight (20,21,53). In a randomized double-blind trial using
60 overweight or obese people supplemented for 12 weeks,
Blankson 

 

et al

 

. (54) showed that MI-CLA reduced body fat
mass but had no effect on body mass index (BMI) (54).
Similar effects have been reported in other human trials
with MI- (55–57) and t10c12-CLA (57). It should be noted
that the loss of body fat is 40–50% greater in mice than
observed in humans (20); however, mice are generally fed
approximately five times more CLA than humans (per kilo-
gram body weight). In summary, de-lipidative effects of MI-
and t10c12-CLA have been demonstrated in mice (42), rats
(43–45,47), pigs (48–52) and humans (note that CLA
reduced body fat mass but had no effect on BMI) (54–57).
In contrast, negative effects of CLA on adiposity have been
shown in obese rats (45,46), but not in humans (20,21,53).

 

Feed intake

 

An issue that has remained controversial is the effect of
CLA on feed intake. Several studies in mice, rats and pigs
have reported that CLA has little to no effect on feed intake
(36,43–45,49–51,58–60), while others have reported a
reduction in feed intake (27,31,46,48,52,61–63). However,
studies conducted in mice and rats with a pair-fed group
on a CLA-supplemented diet confirmed a significant
decrease in fat pad mass compared with pair-fed controls,
indicating that a reduction in feed intake does not solely
account for a reduction in fat mass (27,31,64). It is possible
that CLA either has an adverse organoleptic quality, or
alters metabolism in such a way as to impart a reduction
in feed intake. Given the phenotypic effects on metabolic
tissues (e.g. adipose and liver) reported in the literature, the
latter possibility is most probable; however, confirmation
hinges upon further investigation.

 

Lipid metabolism

 

Several 

 

in vivo

 

 studies in mice and rats have shown that
CLA incorporates into membrane phospholipids and alters
fatty acid homeostasis (65–70), with c9t11-CLA accumu-
lating to a greater extent than t10c12-CLA in liver phos-
pholipids (65). However, Brown 

 

et al

 

. (71) showed that 

 

in
vitro

 

, t10c12-CLA readily incorporated into the neutral and
phospholipid fractions of human preadipocyte cultures
exposed for 12 d. Upon absorption, CLA that is not catab-
olized through 

 

b

 

-oxidation by hepatocytes in mice (66) and
rats [

 

in vivo

 

 (68) and 

 

in vitro

 

 (72,73)] is converted into a
conjugated 18:3 product by 

 

D

 

6 desaturase and then further

elongated and desaturated into conjugated 20:3 and 20:4.
More specifically, Sebedio 

 

et al

 

. (68) showed that in rats
supplemented with either the c9t11- or t10c12-CLA isomer,
the t10c12-CLA isomer was preferentially metabolized to
16:2 and 18:3 conjugated isomers and c9t11-CLA to a
conjugated 20:3 isomer. The physiological effects of CLA
may partly result from competition with linoleate as sub-
strate for 

 

D

 

6 desaturation. This is the rate-limiting step for
arachidonate formation from linoleate, and implicates CLA
[specifically t10c12-CLA 

 

in vitro

 

 in human preadipocytes
(71)] in reduced arachidonate accumulation in phospholip-
ids and subsequently reduced eicosanoid production 

 

in vivo

 

in mice and 

 

in vitro

 

 in human preadipocytes (65,66,71).
In addition to adipose tissue, a major organ affected by

CLA treatment is the liver. When mice are supplemented
with CLA, the liver becomes steatotic and increases in mass
up to four times, an effect exerted predominantly by the
t10c12-CLA isomer (28,35,66,69,74). A CLA study in
mice attributed this to an increase in liver triglycerides
(TGs), cholesterol, cholesterol esters and FFAs (69); oppo-
site effects on liver TGs have been reported in the rat (68).
The t10c12-CLA isomer also was associated with an
increase in 18:1 n-9 and a decrease in 18:2 n-6 (69) and
has been shown to alter fatty acid profiles in rats and pigs
(67,68,75). Other experiments conducted 

 

in vivo

 

 in rats
(68), mice (76) and pigs (77), and 

 

in vitro

 

 with human
preadipocytes (71), HepG2 cells (78) and 3T3-L1 adipo-
cytes (79), have confirmed an increase in the ratio of
saturated fatty acids to monounsaturated fatty acids
(SFA : MUFA), in particular palmitate : palmitoleate (16:0/
16:1) and stearate : oleate (18:0/18:1) with t10c12-CLA
supplementation [for a review on effects between species,
see Evans 

 

et al

 

. (80)]. This is likely caused by a reduction
in stearoyl-CoA desaturase-1 (discussed later in this
review), an enzyme that catalyses the biosynthesis of
monounsaturated fatty acids preferentially from 16:0 and
18:0 substrates (76,81). The early effects of t10c12-CLA in
mice had no impact on the SFA : MUFA ratio after 4 days
of supplementation (82), indicating that the change might
be indirect instead of a direct effect of CLA.

 

How does conjugated linoleic acid work? 
Mechanistic elucidation

 

Currently, mechanisms by which CLA imparts its dramatic
effects on liver and adipose tissue are largely unknown. A
review of the literature indicates that it reduces adiposity
by increasing energy expenditure, apoptosis, fatty acid oxi-
dation, lipolysis and inflammation, as well as decreasing
energy intake, stromal vascular (SV) cell differentiation and
lipogenesis (Fig. 1). In an effort to further elucidate the de-
lipidative mechanisms of CLA, several groups have con-
ducted experiments analysing protein and gene expression
of molecules involved in metabolism of the liver and adi-
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pose tissue. A summary of this literature with respect to
gene expression is provided in Table 1.

 

Adipose tissue

 

One of the mechanisms by which CLA imparts its effects
is by increasing energy expenditure (shown with MI-CLA
supplementation) (59–62). Several groups have offered
insight into mechanisms by which energy is expended with
CLA treatment. Recently the uncoupling proteins have
been of particular interest in energy expenditure and oxi-
dation. Uncoupling proteins (UCPs) are a family of several
molecules that include UCP1, UCP2 and UCP3 (100). Pre-
dominantly expressed in the mitochondrial inner mem-
brane of brown adipose tissue, UCP1 forms a proton
channel that leaks protons that would otherwise be used
to drive adenosine triphosphate (ATP) synthesis, resulting
in the production of heat (101). Precise functions of UCP2
and UCP3 are currently unclear, but they have been impli-
cated in regulation of insulin secretion and fatty acid
metabolism, respectively (100,102); UCP2 is generally
expressed ubiquitously, but is abundantly expressed in
white adipose tissue, and UCP3 is predominantly expressed

in skeletal muscle (103). Upon CLA supplementation, sev-
eral 

 

in vivo

 

 studies have reported an increase in UCP2
expression (an effect which is most prominent with t10c12-
CLA supplementation) (31,35,60,81,83,84), in brown and
white adipose tissue and either no effect (60) or a decrease
in UCP1 and UCP3 expression (83,84).

In addition to increasing energy expenditure, t10c12-
CLA reduces adipose tissue mass by initiating apoptosis
and modulating differentiation of preadipocytes. Using a
polygenic obese line of mice (M16), Miner 

 

et al

 

. (63)
showed that apoptosis in retroperitoneal fat pads of mice
fed MI-CLA was fourfold greater than observed in control
mice. They reported an approximately 50% decrease in the
weight of retroperitoneal fat pads and an approximately
40% decrease in the weight of epididymal fat pads after
5 days of treatment with MI-CLA (63). In later work,
Hargrave 

 

et al

 

. (27) confirmed 

 

in vivo

 

 that the t10c12-CLA
isomer was predominantly responsible for this effect. Inter-
estingly, they also reported that the reduced fat effect of
t10c12-CLA was independent of genetic strain (excluding
the effect on adipocyte apoptosis) (27). Evans 

 

et al

 

. showed
that 3T3-L1 adipocytes treated with 100 

 

m

 

M MI-CLA
(major effect was shown to be from t10c12-CLA) showed
increased apoptotic activity (104). However, 30 

 

m

 

M
t10c12-CLA did not appear to cause apoptosis in cultures
of human adipocytes (71,86). Studies 

 

in vivo

 

 with mice
have shown that an increase in the tumour necrosis factor-

 

a

 

 (TNF-

 

a

 

) mRNA levels [a cytokine shown to induce leptin
production, lipolysis, adipocyte de-differentiation, insulin
resistance, as well as apoptosis of pre- and mature adipo-
cytes (105)] in adipose tissue resulted from MI-CLA sup-
plementation, further indicating that apoptosis is one of the
probable mechanisms of murine de-lipidation exerted by
CLA (35,85). However, in an 

 

in vitro

 

 analysis with human
adipocytes, Brown 

 

et al

 

. found that t10c12-CLA had no
effect on TNF-

 

a

 

 (86). It therefore appears that with respect
to adipocyte apoptosis, the CLA effect 

 

in vitro

 

 (human
adipocytes) contrasts with effects 

 

in vivo

 

 (mice).

 

Trans

 

-10, 

 

cis

 

-12-conjugated linoleic acid also inhibits
preadipocyte proliferation and differentiation 

 

in vitro

 

(104,106,107). While at first there was some conflict (79),
it now seems that modulation of preadipocyte differentia-
tion by t10c12-CLA appears to be driven, in part, by
down-regulation of PPAR-

 

g

 

 expression (108). An excep-
tion is CLA’s interactions with porcine adipocytes in vitro,
which have shown either an opposite or no effect on
PPAR-g (89,109). After reporting an increase in porcine
preadipocyte differentiation and no increase in PPAR-g
mRNA concentration in porcine SV cells exposed to either
t10c12-, c9t11- or MI-CLA for 2 days, McNeel and Mers-
mann (89) suggested that the differing effects of CLA
depended on species, CLA isomer and experimental condi-
tions. It should be noted that after 2 days of CLA (c9t11-,
t10c12-, MI-CLA) treatment, they observed no further

Figure 1 Proposed model of the de-lipidative effects of t10c12-CLA on 
mRNA concentration, depicting the differentiation of a preadipocyte to an 
adipocyte and subsequent lipid filling of the adipocyte. The model sug-
gests that conjugated linoleic acid (CLA) imparts its effects by increasing 
expression of genes associated with apoptosis, fatty acid oxidation, lipol-
ysis and inflammation, as well as decreasing stromal vascular cell differ-
entiation, and lipogenesis (as indicated by horizontal or blocked arrows). 
Expressions of specific genes modulated (≠ or Ø) by t10c12-CLA are 
annotated adjacent to their respective function.
IL, interleukin; SREBP-1, sterol regulatory element-binding protein-1; LPL, 
lipoprotein lipase; aP2, fatty acid-binding protein 2; ACBP, acyl-CoA-
binding protein; GPAT, glycerol-3-phosphate acyltransferase; GLUT-4, 
glucose transporter-4; GPDH, glycerol-3-phosphate dehydrogenase; 
ACC, acetyl-CoA carboxylase; FAS, fatty acid synthase; SCD, stearoyl-
CoA desaturase; TNF-a, tumour necrosis factor-a; UCP, uncoupling pro-
tein; PPAR-g, peroxisome proliferator-activated receptor-g; C/EBP-a, 
CCAAT/enhancer-binding protein a.
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Table 1 List of genes in adipose and liver tissue effected by conjugated linoleic acid (CLA). Genes are classified by their ascribed function and in 
juxtaposition to each is the type of isomer used in the studies, the reported effect and species it was observed in

Gene Isomer Effect Species Study Literature

Adipose
Energy expenditure

Uncoupling protein-1* MI Ø Mouse In vivo (83,84)
´ Rat (60)

(31,83)
Uncoupling protein-2† MI t10c12 ≠ Mouse In vivo (31,35,60,81,83,84)

MI ´ Rat (83)
Uncoupling protein-3 MI Ø Mouse In vivo (83,84)

´ Rat (83)

Apoptosis
Tumor necrosis factor-a MI ≠ Mouse In vivo (35,85)

t10c12 ´ Human In vitro (86)

Differentiation
Peroxisome proliferator-activated receptor-g MI t10c12 Ø Mouse In vivo

In vitro
(35,81,84)
(40,87,88)

t10c12 ´ Human
Porcine

(40,71,86)
(89)

CAAT/enhancer-binding protein-a t10c12 Ø Human In vitro (71)
Fatty acid-binding protein 2 (aP2) t10c12 Ø Mouse

Human
In vitro (40,88)

(40,71)
MI ≠ Rat In vivo (30)

Acyl-CoA-binding protein t10c12 Ø Human In vitro (71)
Perilipin t10c12 Ø Human In vitro (71)

Adipokines
Leptin MI t10c12 ≠ Mouse In vivo (84,90)

t10c12 Rat (91)
Ø Human In vitro (71)

Adiponectin t10c12 Ø Mouse In vivo (90)
Inflammation

Interleukin-6 t10c12 ≠ Human In vitro (86)
Interleukin-8 t10c12 ≠ Human In vitro (86)

Fatty acid/glucose transport
Lipoprotein lipase MI t10c12 Ø Mouse In vivo

In vitro
(25,42,82)
(88,92)

´ Porcine (89)
Glucose transporter 4 MI Ø Mouse In vivo (84)

t10c12 Human In vitro (71)

Lipolysis
Hormone-sensitive lipase t10c12 Ø Human In vitro (71)

Lipogenesis
Acetyl-CoA carboxylase† MI Ø Mouse In vivo (35,85,93)

t10c12 Human
Bovine

In vitro (71)
(94)

Fatty acid synthase† MI Ø Mouse In vivo (35,93)
t10c12 In vitro (88)

Bovine (94)
Stearoyl-CoA desaturase 1† t10c12 Ø Mouse

Bovine

In vitro
In vivo
In vitro

(79)
(93)
(94)

Stearoyl-CoA desaturase 2 t10c12 ≠ Mouse In vitro (88)
Glycerol-3-phosphate dehydrogenase t10c12 Ø Human In vitro (71)
Glycerol-3-phosphate acyltransferase‡ t10c12 Ø Bovine In vivo (95)
Sterol regulatory element-binding protein-1 MI Ø Mouse In vivo (35)
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change in porcine SV cell differentiation or PPAR-g mRNA
concentration.

Both in vivo studies in mice (35,81,84) and in vitro
studies in human (71,86), and 3T3-L1 adipocytes
(40,87,88), have confirmed that, upon CLA [predomi-
nantly t10c12-CLA  (40,71,88)]  supplementation,  there  is
a decrease in PPAR-g expression, indicating a reduction in
differentiation of preadipocytes to mature adipocytes.
Additionally in these species, there is a decrease in the
mRNA levels of CCAAT/enhancer-binding protein a (C/
EBP-a) and PPAR-g target genes such as aP2, perilipin-A
and acyl-CoA-binding protein (ACBP) (40,71,88). In con-
trast, in vivo studies with rats show activation of PPAR-g
and an increase in aP2 expression (observed with MI-CLA
supplementation) (30,110). Interestingly, Brown et al. (71)
observed a t10c12-CLA-mediated increase in leptin gene
expression in vitro with human adipocytes. This finding is
in contrast to in vivo studies that have reported a decrease
in leptin mRNA levels in mice and rats (84,90,91), and no
effect or a decrease in serum leptin levels in humans and
rats, respectively (38,43,111,112). However, Brown et al.
(86) confirmed their previous observations in vitro on
t10c12-CLA-mediated increase in leptin gene expression
and demonstrated that t10c12-CLA increased production

and secretion of the proinflammatory adipokines interleu-
kin-6 (IL-6) and IL-8 from human SV cells containing
newly differentiated adipocytes (86). They proposed a
mechanism where, upon secretion from SV cells, IL-6 and
IL-8 exert paracrine effects on neighbouring newly differ-
entiated adipocytes (86). This may lead to phosphorylation
of transcription factors through induction of mitogen-acti-
vated protein kinase kinase/extracellular signal-related
kinase (MEK/ERK) signalling that in turn inhibits expres-
sion of PPAR-g and its downstream targets (86). This
would then lead to a decrease in glucose and fatty acid
uptake and their subsequent synthesis into TG (86).

In agreement with observations on t10c12-CLA-medi-
ated decrease in glucose and fatty acid uptake, several in
vivo and in vitro studies have reported a reduction in the
expression of lipoprotein lipase (LPL: fatty acid uptake)
(25,42,71,82,86,88,92) and glucose transporter-4 (GLUT-
4) (71,84,86). Other studies have analysed the effects of
CLA on energy metabolism in adipose tissue, showing that
t10c12-CLA increased fatty acid oxidation in 3T3-L1 adi-
pocytes, thereby suggesting another mechanism by which
it lowers TG content (26,42). Similar effects also have been
reported in vivo with rats (113). Associated with these
observations, there is a MI-CLA-mediated increase in car-

Liver
Fatty acid synthesis

Acetyl-CoA carboxylase MI ≠ Mouse In vivo (96)
t10c12 ´ (93)

Fatty acid synthase MI ≠ Mouse In vivo (96)
t10c12 ´ (93)

ATP-citrate lyase MI ≠ Mouse In vivo (96)
Malic enzyme MI ≠ Mouse In vivo (96)
Stearoyl-CoA Desaturase 1 t10c12 ´ Mouse In vivo (93)

Fatty acid oxidation
Carnitine palmitoyl-transferase I (liver) MI t10c12 ≠ Mouse In vivo (96,97)
Carnitine palmitoyl-transferase I (muscle) t10c12 ≠ Mouse In vivo (97)
Carnitine palmitoyl-transferase II MI ≠ Mouse In vivo (96)
Trifunctional enzyme-a MI ≠ Mouse In vivo (96)
Trifunctional enzyme-b MI ≠ Mouse In vivo (96)
Peroxisomal acyl-CoA oxidase MI t10c12 ≠ Mouse In vivo (90,96–98)
Peroxisomal bifunctional enzyme MI ≠ Mouse In vivo (96)
Peroxisome proliferator activated receptor-a t10c12 Ø Mouse In vivo (90)
Fatty acid-binding protein MI ≠ Rat In vitro (99)
Cytochrome P450 t10c12 ≠ Mouse In vivo (90)

MI ´ Rat In vitro (99)

Gene Isomer Effect Species Study Literature

ATP, adenosine triphosphate; MI, mixed isomer-CLA; t10c12, trans-10, cis-12-CLA; ≠, Ø, ´; mRNA concentration increase, decrease or no effect,
respectively.
*Observed in brown adipose tissue.
†Observed in mammary tissue as well as in adipose.
‡Observed in mammary tissue.

Table 1 Continued
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nitine palmitoyl transferase (CPT) (a mitochondrial mem-
brane bound protein essential for shuttling long chain fatty
acids  into  mitochondria  for  b-oxidation)  activity  in  vivo
in mice and rats (42,114). In contrast, Brown et al. (86)
reported a decrease in fatty acid oxidation in vitro in
human adipocytes treated with t10c12-CLA, but not
c9t11-CLA. With exception of UCPs, at the time of this
writing, there have been no studies analysing differential
gene expression response to CLA associated with fatty acid
oxidation in adipose tissue.

Currently, effects of CLA in vivo and in vitro on lipolysis
are conflicting. Several in vitro studies have reported an
increase in lipolysis in response to t10c12- or MI-CLA
(42,71), while no effect has been reported in vivo in mice
(82). Interestingly, Brown et al. (71) reported that a 9-day
treatment in vitro with t10c12-CLA decreased the expres-
sion of hormone-sensitive lipase, a key enzyme in the
lipolytic cycle, suggesting a possible reduction in lipid
breakdown. Therefore, it should be noted that effects of
CLA on gene expression may not accurately correspond to
protein activity, or CLA’s effects on lipolysis are time
dependent.

In association with a decrease in LPL activity, several in
vivo and in vitro studies have reported that t10c12-CLA
decreases lipogenesis (26,41,71,86,115). Two studies [in
vivo in mice (82) and in vitro with human adipocytes
(115)] attribute the predominant t10c12-CLA de-
lipidative effect to lipogenesis inhibition, especially in
early response to CLA (4 days) supplementation, instead
of increased lipolysis (82,115). Lin et al. (93) recently
reported that t10c12-CLA was a more potent inhibitor of
de novo lipogenesis than c9t11-CLA in the mammary
gland of lactating mice. At the gene expression level, both
in vivo and in vitro, there is a reported reduction in acetyl-
CoA carboxylase (ACC) (35,71,93,94), fatty acid synthase
(FAS) (35,88,93,94) and stearoyl-CoA desaturase (SCD)-1
(in mammary tissue) (93,94), as well as the glycolytic/
lipogenic enzyme glycerol dehydrogenase (in vitro) (71)
following treatment with t10c12-CLA. Interestingly, Kang
et al. (81) reported an increase in SCD-2 expression in
adipose tissue, with a decrease in 18:0/18:1 in mice treated
with t10c12-CLA for 4 weeks. Milk fat depression in
dairy cattle resulted in increased levels of endogenous
t10c12-CLA in milk fat, which was correlated with a
reduction in mRNA levels of ACC, FAS, LPL and glycerol
phosphate acyltransferase (95). Tsuboyama-Kasaoka et al.
(35) also reported a decrease in sterol regulatory element-
binding protein-1 (SREBP-1) expression in vivo. The
SREBPs represent a family of transcription factors that
include SREBP-1a, SREBP-1c and SREBP-2. Collectively,
SREBPs are involved in transcriptional activation of more
than 30 genes associated with cholesterol, fatty acid, TG
and phospholipid synthesis (116). SREBP-1a can activate
all of the SREBP-responsive genes, and SREBP-1c is more

specifically associated with fatty acid synthesis, as is
SREBP-2 with cholesterol synthesis (116). Once cleaved
by proteolysis, SREBP-1 releases a fragment that translo-
cates to the nucleus and activates transcription (94). Treat-
ment of a bovine mammary cell line (MAC-T) with
t10c12-CLA did not yield a reduction in SREBP-1 mRNA
concentration; however, there was a reduction of the
SREBP-1 nuclear fragment, indicating that t10c12-CLA
may reduce lipogenesis and lipogenic gene mRNA concen-
tration by inhibiting the proteolytic cleavage of SREBP-1
(94).

Taken together, these data suggest that t10c12-CLA
imparts its de-lipidative activity through both metabolism
and cell cycle control. Further research will be necessary to
elucidate the basis for differences between species and con-
firm in vitro observations in vivo.

Liver

Currently, mechanisms by which the liver becomes steatotic
in response to CLA are unknown. Several in vivo and in
vitro studies have reported an increase in both liver fatty
acid synthesis and oxidation in response to MI-CLA sup-
plementation (98,99,117). Takahashi et al. (96) confirmed
these observations in vivo at both the gene and protein level
in two lines of mice (ICR and C57BL/6J); however, the
degree of increase resulting from MI-CLA supplementation
differed between lines for some enzymes. For fatty acid
synthesis, they reported an increase in activity and mRNA
levels of ACC, FAS, ATP-citrate lyase and malic enzyme
(96). Tsuboyama-Kasaoka et al. (85) also reported an
increase in hepatic ACC mRNA level in vivo, but not FAS.
For fatty acid oxidation, Takahashi et al. (96) reported an
increase in hepatic activity of mitochondrial and peroxiso-
mal palmitoyl-CoA oxidation, CPT, peroxisomal acyl CoA
oxidase (ACO), 3-hydroxyacyl-CoA dehydrogenase and 3-
ketoacyl-CoA thiolase, coupled with an increase in mRNA
level of CPT I and II, trifunctional enzyme-a and -b, ACO
and bifunctional enzyme in vivo. Several other in vivo
experiments in mice also reported that t10c12-CLA causes
an increase in CPT activity, with a greater effect being
exerted by the t10c12-CLA isomer (97,118). Degrace et al.
(97) recently described an increase in CPT I activity in mice
supplemented with t10c12-CLA, along with an increased
rate of carnitine-dependent palmitate oxidation. They also
reported that t10c12-CLA increased the expression of the
CPT I liver isoform, CPT I muscle isoform, and CPT II by
100, 200 and 200%, respectively, compared with controls
(97). This was accompanied by an increase in ACO activity
and gene expression (97). Similar CLA-mediated increases
in ACO gene expression have been previously reported in
vivo with mice (90,98). Degrace et al. (97) also observed a
t10c12-CLA-induced increase in mitochondrial and perox-
isomal fatty acid oxidation capacity when measured in
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vitro, and suggested that hepatic steatosis is not a result of
decreased oxidation.

Because PPAR-a has been shown to regulate expression
of enzymes associated with hepatic oxidation (117,119),
CLA may mediate its effects through this transcription
factor; indeed both c9t11- and t10c12-CLA isomers are
ligands of PPAR-a and PPAR-b/d (28,99). In support of this
concept, both CLA isomers (c9t11- and t10c12-) increase
expression of cytochrome P450A1 (CYP4A1: w-hydroxy-
lation of fatty acids), ACO and liver fatty acid-binding
protein in vivo in mice (90) and in vitro in rats (99), all
three of which are known gene targets of PPAR-a regula-
tion. However, a study conducted by Peters et al. (117) in
PPAR-a null mice showed that genes coding liver fatty acid
oxidation and fatty acid binding were still affected by CLA,
and were therefore modulated independent of PPAR-a.
This may result from possible interactions between CLA
and PPAR-b/d which may serve as a PPAR-a-independent
mediator in response to CLA supplementation (117). Addi-
tionally, Warren et al. (90) reported a decrease in PPAR-a
expression in vivo with mice by t10c12-CLA, while still
observing an increase in ACO mRNA levels. In contrast,
PPAR-a expression was increased by c9t11-CLA. There-
fore, it is probable that the effect of t10c12-CLA is not
solely dependent on PPAR-a.

Effects of t10c12-CLA on the SFA : MUFA ratio may
result from a decrease in SCD-1 expression (71,76,78,79).
However, a recent study using SCD-1 null mice showed
that t10c12-CLA exerts its de-lipidative effects independent
of SCD-1 (81). Interestingly, SCD-1 null mice had a heavier
liver mass, but displayed reduced hepatomegaly compared
with wild type (81). Supplementation with t10c12-CLA
significantly reduced adipose tissue mass, but did not sig-
nificantly increase fat accumulation in liver or muscle,
potentially confirming in vivo observations in earlier exper-
iments that CLA increases energy expenditure (59–61,81).
In summary, use of knockout mice has proven to be a
valuable tool in clarifying proposed CLA mechanisms.
These studies suggest that CLA’s impact on liver lipid
metabolism does not solely result from its effects on PPAR-
a or SCD-1, indicating that it exerts its effects via multiple
mechanisms.

Conclusion

It is becoming increasingly clear that the t10c12-CLA iso-
mer of CLA is responsible for many of the effects seen in
diabetes and obesity (14,25–29,31–33,40). The fat-reduc-
ing effects of CLA have been replicated in several species,
with the most dramatic effects observed in mice (42), and
thus the murine models have been the object of intense
research. Despite this investigative flurry, the precise
mechanisms by which t10c12-CLA elicits its dramatic
effects in adipose and liver tissue are still largely

unknown. While a reduction in feed intake, as reported in
some experiments (27,31,46,48,52,61–63), may account
for some decrease in adipose tissue mass, pair-feeding tri-
als have established that it is not solely responsible for
this effect (27,31,64). Indeed, given the dramatic effects
of t10c12-CLA, it is probable that diminution in energy
intake may itself be a result of perturbations on metabolic
homeostasis, rather than some organoleptic quality of the
molecule.

In vivo and in vitro analyses of physiological modifica-
tions imparted by CLA on protein and gene expression
have suggested that CLA exerts its de-lipidating effects by
modulating energy expenditure, apoptosis, fatty acid oxi-
dation, lipolysis, inflammation, SV cell differentiation and
lipogenesis (Fig. 1). We have reviewed the effect of CLA on
genes associated with these processes in different species
(Table 1). While the promise of CLA as a therapeutic agent
for obesity is currently unclear, the potential for its use as
a research tool to elicit a rapid and pronounced reduction
in adipose tissue, as well as mechanistic elucidation of how
it imparts this effect, will continue to add invaluably to the
growing understanding of genetically induced obesity, as
well as dietary and pharmacological methods for its
treatment.
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