
Advanced Studies in Pure Mathematics 52, 2008 

Groups of Diffeomorphisms 

pp. 221-250 

Conjugation-invariant norms on groups of geometric 

origin 

Dmitri Buragoa, Sergei Ivanovb and Leonid Polterovichc 

Abstract. 

A group is said to be bounded if it has a finite diameter with 

respect to any hi-invariant metric. In the present paper we discuss 

boundedness of various groups of diffeomorphisms. 

§1. Introduction and main results 

1.1. The main phenomenon 

A group G is said to be bounded if it is bounded with respect to any 

hi-invariant metric (that is, as a metric space, it has a finite diameter). 

A conjugation-invariant norm v : G -+ [0; +oo) is a function which 

satisfies the following axioms: 

(i) v(l) = 0; 

(ii) v(f) = v(f- 1 ) Iff E G; 

(iii) v(fg) :::; v(f) + v(g) 'Vf, g E G; 
(iv) v(f) = v(gfg- 1 ) 'Vf,g E G; 

(v) v(f) > 0 for all f =f. 1. 

Thus a group is bounded iff every conjugation-invariant norm is 

bounded. 

Convention: In this paper we work only with conjugation

invariant norms, so by default a norm is a conjugation-invariant 

norm. 

If one drops condition (v), vis said to be a pseudo-norm. It can imme

diately .be converted into a norm by adding 1 to all elements except the 

Received October 4, 2007. 

Revised February 26, 2008. 

a Partially supported by the NSF Grant DMS-0412166. 

bPartially supported by RFBR grant 05-01-00939. 

cPartially supported by the Israel Science Foundation grant # 509/07. 



222 D. Burago, S. Ivanov and L. Polterovich 

unity. Hence a group is unbounded if it admits an unbounded pseudo

norm. Observe that on a simple group every non-trivial pseudo-norm 

is automatically a norm: Indeed, the set of all elements with vanishing 

pseudo-norm forms a normal subgroup. Hence in the sequel condition 

(v) can be dropped everywhere when we deal with simple groups such 

as various groups of smooth diffeomorphisms.d 

Two norms on a group are called equivalent if their ratio is bounded away 

from 0 and oo. The trivial norm, which exists on any group, equals 1 

on every element except the identity. 

Given a connected manifold M, denote by Diff0 (M) the identity 

component of the group of c= smooth compactly supported diffeomor

phisms. This group is simple due to a theorem by Thurston [34]. The 

central phenomenon discussed in this paper is as follows: in all known 

to us examples any norm on Diff0 (M) is equivalent to the trivial one. 

Below we confirm this phenomenon for spheres, all closed connected 

three-manifolds and the annulus. However we have neither a proof nor a 

counter-example for closed surfaces of genus ;:::: 1 and the Mobius strip. 

1.2. Setting the stage 

1.2.1. Conjugation-generated norms. Many interesting norms come 

from the following construction: Let G be a group, and let K C G be 

a symmetric subset, that is x E K whenever x- 1 E K. We say that 

the set K conjugation-generates (or, for brevity, c-generates) G if every 

element hE G can be represented as a product 

(1) 

where each h; is conjugate to some element h; E K: h; = a;h;ai 1 , 

a; E G. In this case define a norm qK(h) as the minimal N for which such 

a representation exists. We shall say that the norm qK is c-generated 

by the subset K. If K is finite, G is said to be finitely c-generated. For 

instance, every simple group G is finitely c-generated by K = { x, x- 1 } 

with an arbitrary x =f. 1. 

Note that the norm qK has the following extremal property: for any 

norm q bounded on K there is a constant >. such that q :::; >.qK. Hence, 

if K is finite, the group G is bounded if and only if qK is bounded. 

dA group is called simple if it has no non-trivial normal subgroups. In 

the 1970-ies, simplicity of various interesting groups of diffeomorphisms was 

established by highly non-trivial methods in works of Herman [16], Thurston 

[34], Mather [21, 22], Banyaga [2]. We refer to Banyaga's book [3] for a detailed 

discussion. 
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Example 1.1. Groups SL(n, JR) for n ~ 2 and SL(n, Z) for n ~ 3 

are finitely c-generated by the set K of all elementary matrices whose 

off-diagonal term equals ±1. Moreover we claim that the number of 

terms in the decomposition (1) is bounded by a constant which does not 

depend on h. 

In the case of SL(n, JR) the claim follows from an appropriate version 

of the Gauss elimination process. 

As for SL(n, Z), denote by£ the set of all elementary matrices whose 

only non-zero off-diagonal element equals to 1. There exists N = N(n) E 

N so that every element from SL(n, Z) can be written as a product of 

:s; N matrices of the form EP, where E E £ and p E Z (in other words, 

SL(n, Z) possesses a bounded generation by elements from£), see [9, 37]. 

The claim readily follows from the fact that each EP = [A, BP] for some 

A, B E £. Let us prove this identity: let Eij (where i =I j) denotes 

the elementary matrix from £ whose only non-zero off-diagonal element 

stands in the i-th raw and j-th column. Without loss of generality, put 

i = 1,j = 3. Then Ef3 = [E12, E~ 3 ] as required. 

It follows from the claim that the "extremal" norm QK is bounded, 

and hence the groups in question are bounded in view of extremality of 

QK· 

Example 1.2. The commutator length. Given a group G, de

note by G' its commutator subgroup. The norm on G' c-generated by 

the set of all simple commutators [a, b] = aba-lb- 1 is called the com

mutator length and is denoted by clc. This norm has a long history and 

has been intensively studied in various contexts, see e.g. [5]. 

1.2.2. The role of the commutator subgroup. The next observations 

suggest that the commutator subgroup plays a significant role in the 

study of boundedness. 

Proposition 1.3. If H 1 (G) ·- G/G' is infinite then G is un

bounded. 

In particular, an abelian group is bounded if and only if it is finite. 

Note that unbounded norms maybe non-extendable from a normal 

subgroups to the ambient group. Consider, for instance, the group 

Af f(Z) of transformations of the real line of the form u f--+ EU + z 

withE= ±1 and z E Z. It can be considered as an extension of Z (the 

group of integer translations) by an element t of order 2 (the reflection 

over the origin) and with one additional relation tz = z- 1t. Thus Z is a 

normal subgroup of index 2 in Af f(Z). Of course, Z has an unbounded 
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norm, while Af f(7L) admits no unbounded norms since tis conjugate to 

tz2n (by zn) for all integers n. However, the situation changes when one 

deals with the commutator length on the commutator subgroup: 

Proposition 1.4. Let G be any group. If the commutator length 

on G' is unbounded then G itself is unbounded. 

Propositions 1.3 and 1.4 are proved in Section 1.2.5 below. 

1.2.3. Stably unbounded norms. Given a conjugation-invariant norm 

v on a group G, we define its stabilization by 

v(r) 
Vxo (f) = lim -- . 

n---~ooo n 

Let us emphasize that stabilization of a norm is not in general a norm. 

An unbounded norm v is called stably unbounded if v00 (f) =f. 0 for some 

f E G. 

For instance, an infinite abelian torsion group is unbounded by 

Proposition 1.3 but never stably unbounded. 

Example 1. 5. Consider a group 7L2 of all finite words over { 0, 1} 

with componentwise addition mod 2 (that is, a direct sum of countably 

many copies of 7L2 ). This group admits no stably unbounded norms 

since the order of every element is 2. On the other hand, the length of a 

word is an unbounded norm. There is a natural action of 7L2 on 7L x 7L2 : 

the i-th generator swaps (i, 0) and (i, 1). Thus the norm in our example 

can be interpreted as "the size of support". 

Open Problem. Does there exist a group that does not admit a 

stably unbounded norm and yet admits a norm unbounded on some 

cyclic subgroup? 

1.2.4. Stable commutator length and quasi-morphisms. In what fol

lows we shall focus on the stable commutator length. Let G be any 

group. The commutator length clc on G' is stably unbounded if and 

only if G admits non-trivial homogeneous quasi-morphisms [5]. Recall 

that a function r : G ----> R is called a quasi-morphism if there exists 

C > 0 so that 

lr(ab)- r(a)- r(b)l ~ C 'Va, bEG. 

A quasi-morphism is called homogeneous if r( an) = nr( a) for all a E G 

and n E 7L. A quasi-morphism is called non-trivial if it is not a morphism. 

Convention: In this paper we deal with homogeneous quasi

morphisms only, so by default quasi-morphism means a homo

geneous quasi-morphism. 
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Example 1.6. G = SL(2, Z) carries an abundance of quasi-mor

phisms (cf. e.g. [4]) and hence the commutator norm on SL(2, Z) is 

stably unbounded. Thus G is unbounded in view of Proposition 1.4, in 

contrast with SL(n, .Z) for n 2 3 (see Example 1.1 above). 

Introduce the class 9 of groups G with finite H 1 (G) = G/G' (we wish to 

rule out conjugation-invariant stably unbounded norms coming from the 

first homology, see Proposition 1.3 above). Note that various interesting 

groups of diffeomorphisms are simple (see footnote in Section 1.1 above) 

and hence belong to this class. 

Open Problem. Does there exist a finitely presented group G E g 
whose commutator length is unbounded but stably bounded? 

Open Problem. Does there exist an unbounded finitely presented 

group which admits no unbounded quasi-morphisms? 

A. Muranov informed us that he has an example of a finitely generated, 

but not finitely presented, group from g whose commutator length is 

unbounded but stably bounded. The existence of an infinitely generated 

group with this property readily follows from Muranov's work [26], who 

constructed a sequence of simple groups Gi, i E N of finite commutator 

length diameter ni, where ni ----> oo. The infinite direct product G = 
Il Gi is as required. 

A mystery related to the notion of stable unboundedness is as follows. 

Open Problem. Does there exist a group G E g whose commu

tator length is stably bounded, but which admits a stably unbounded 

norm? In other words, does the existence of a stably unbounded norm 

on G yields existence of non-trivial quasi-morphisms? In fact, we do not 

know even a single example of a group from g that admits no non-trivial 

quasi-morphisms but carries a norm that is unbounded on some cyclic 

subgroup. 

Here is a (somewhat artificial) example of groups for which existence of a 

stably unbounded norm yields existence of non-trivial quasi-morphisms. 

Start with an arbitrary group G E 9 and set G to be the extension of 

G x G by an element t so that 

t 2 = 1, and t(g1,g2)C1 = (g2,g1) 'ig1,g2 E G. 

Proposition 1. 7. The group G lies in 9 for every G E 9. 

Proposition 1.8. Suppose that for some G E Q, the group G admits 

a stably unbounded norm. Then G admits a non-trivial quasi-morphism. 
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1.2.5. Quasi-norms. 

Definition 1.9. Let G be a group. We say that a Junction 

q : G ___, [0; +oo) is a a quasi-norm (for brevity, a q-norm) if: 

(i) q is quasi-subadditive: there is a constant c such that 

q(ab) ~ q(a) + q(b) + c; 

(ii) q is quasi-conjugation-invariant: there is a constant c such that 

(iii) q is unbounded. 

One can see that in fact the existence of a q-norm implies the ex

istence of an unbounded norm: This norm can be constructed by (i) 

symmetrization: taking the maximum of the norm of a and a- 1 for each 

a, (ii) redefining the norm of a to be the maximum of norms of its conju

gates b-1ab, and (iii) by adding a sufficiently large constant to the norm 

of all elements excluding the identity. 

Hence a group is unbounded if it admits a q-norm; in other words, 

the existence of unbounded norms and q-norms are equivalent. However 

q-norms are often defined in a more natural way: A motivating example 

is provided by the absolute value of a non-trivial homogeneous quasi

morphism. Another advantage of q-norms is that they behave nicely 

under epimorphisms: 

Lemma 1.10. The pull-back of a q-norm under an epimorphism is 

a q-norm. In particular, if a group G admits a homomorphism onto an 

unbounded group, G itself is unbounded. 

This follows immediately from the definitions and discussion above. Let 

us apply the lemma for proving results stated in 1.2.2: 

Proof of Proposition 1.3: 

STEP 1: Let us show that any infinite abelian group G admits an un

bounded norm. 

If G is finitely generated, than by the classification theorem it has a 

Z as a direct factor, and hence it admits an epimorphism onto Z. Thus 

G admits an unbounded norm by Lemma 1.10. 

For a countably generated G, let us enumerate its generators g1 , 

g2, .... Define the norm of g to be the smallest k such that g lies in the 

subgroup generated by g1 , g2 , ... , gk. This norm is unbounded. 

In general, any infinite abelian group contains an infinite finitely 

or countably generated subgroup, and the above construction provides 
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us with a norm on this subgroup H. Now choose any element g from 

G \Hand consider a subgroup H' generated by the union of Hand g. 

Combining the easily verifiable fact that the norm extends from H to 

H' with Zorn's lemma completes the proof. 

STEP 2: Assume now that GIG' is infinite. By Step 1, it admits an 

unbounded norm. Look at the epimorphism G --+ GIG'. Applying 

Lemma 1.10 we conclude that G is unbounded. • 

Proof of Proposition 1.4: If [G, G] has infinite index, look at the 

epimorphism G --+ H := GIG'. The group His an infinite abelian group, 

thus by Proposition 1.3 H is unbounded, and hence G is unbounded in 

view of Lemma 1.10. 

Otherwise, if H is finite, one can check that the commutator norm 

can be extended from the commutator to the whole group (even though 

in general q-norms cannot be extended from finite index subgroups, see 

an example above). Indeed, pick a (finite!) setS of representatives from 

cosets of G'. Then every element of G can be uniquely written as hs 

where h E G', s E S. Define a q-norm of such an element g = hs by 

q(g) = cla(h). The approximate conjugation invariance of this norm 

follows from the fact that conjugation can be written as a multiplication 

by a commutator (and hence it changes the norm by at most 1). To 

prove the approximate triangle inequality, note that for g1 = h1s1 and 

gz = hzsz 

Write 

s1s2 = h(s1, sz)t(s1, sz), 

where h(s1 , s2) E G' and t(s1, s2) E S. Thus 

q(g1gz) = cla(h1hz[h2 1, s1]h(s1, sz)). 

Put C = maxs,,s 2 ES cla(h(s1, sz)). Applying the triangle inequality for 

the commutator length, we get 

Thus q is indeed a q-norm. • 

1.2.6. Fine norms. A norm v on G is called fine if 0 is a limit point 

of v( G). Otherwise the norm is called, following a suggestion by Yehuda 

Shalom, discrete. For instance, conjugation-generated norms assume 

integer values only and hence are discrete. On the other hand a hi

invariant Riemannian metric on a compact Lie group gives rise to a 

bounded fine norm on the group. 
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1.2. 7. Meager groups. A norm v on a group is not equivalent to the 

trivial norm if it is either unbounded or fine. A group G is called meager 

if every conjugation-invariant norm on G is equivalent to the trivial one 

(i.e. is bounded and discrete). 

1.3. Norms on diffeomorphism groups 

1.3.1. Smooth diffeomorphisms. In this section we present the main 

results of the paper which deal with norms on groups Diff0 (M), where 

M is a smooth connected manifold. We start with the case of closed 

manifolds. 

Theorem 1.11 (Main Theorem). 

(i) The group Diff0 (M) does not admit a fine conjugation-invari

ant norm for all connected manifolds M. 

(ii) The group Dijj0 (Sn) is meager (where sn is a sphere); 

(iii) The group Diff0 (M) is meager for any closed connected 

3-dimensional manifold M. 

After the first draft of this paper appeared, T.Tsuboi [35] generalized 

this result and, remarkably, established meagerne13s of Dif fo(M) for all 

odd-dimensional closed manifolds. 

Let us give two important examples of conjugation-invariant norms on 

Diffo(M). 

Example 1.12. The commutator length: Since Diff0 (M) is a 

simple group [34] it coincides with its commutator subgroup and hence 

the commutator length (see Example 1.2) is a well-defined invariant 

norm on Diff0 (M). Introduce the commutator length diameter eld(M) E 

N U oo as maxcl(f) over all f E Diffo(M). 

Theorem 1.13. 

(i) For the sphere, cld(Sn) :=:; 4; 

(ii) For any closed connected 3-dimensional manifold M, 

cld(M) :::; 10. 

Example 1.14. The fragmentation norm: Every element f E 

Diff0 (M) can be represented as a finite product of diffeomorphisms sup

ported in an embedded open ball (this is the famous fragmentation 

lemma, see e.g. [3]). The fragmentation norm frag(f) is the mini

mal number of factors required to represent an element f E Diff0 (M). 

Clearly, frag is an conjugation-invariant norm on Diffo(M). The next 

result shows that the fragmentation norm is responsible for meagerness 

of Diffo(M). 
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Proposition 1.15. The group Diff0 (M) is meager if and only if the 

fragmentation norm is bounded. 

Open Problem. Is the fragmentation norm bounded for the case 

of closed surfaces? 

Let us now turn to open manifolds. 

Definition 1.16. We say that a smooth connected open manifold 

M is portablee if it admits a complete vector field X and a compact 

subset M 0 withthe following properties: 

• M 0 is an at tractor of the flow xt generated by X: for every 

compactsubsetK C MthereexistsT > Osothat xr(K) C Mo. 

• There exists a diffeomorphism (} E Diffo ( M) so that 

B(Mo) n Mo = 0. 

The set M 0 is called the core of a portable manifold M. 

For instance, any manifold M which splits as P x ~n, where P is a 

closed manifold, is portable. Indeed, the vector field X (p, z) = - z fz 
and the compact Mo = P x {lzl ~ 1} satisfy the conditions above. 

Furthermore, M is portable if it admits an exhausting Morse function 

with finite number of critical points so that all the indices are strictly 

less than ~ dim M. This implies, for example, that every 3-dimensional 

handlebody is a portable manifold. 

The next result is the main "local" block in the proof of Theorem 1.11 ( ii) 

and (iii). 

Theorem 1.17. The group Diff0 (M) is meager provided M is 

portable. 

For instance, any norm on Diff0 of an open ball is bounded. Together 

with Theorem l.ll(i) this immediately yields Proposition 1.15. Fur

thermore, Diffo of a 2-dimensional annulus is meager (as well as for any 

product~ x M). However, it is still unknown whether the same holds 

for the open Mobius band! 

Our next result deals with the commutator length diameter of a portable 

manifold. 

Theorem 1.18. For a portable manifold M, cld(M) ~ 2. 

eThis notion is a mock version of subcritical Liouville manifolds in symplec

tic topology. 
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1.3.2. Volume-preserving and symplectic diffeomorphisms: examples 

and problems. In contrast to groups Diff0 , the identity components of 

groups of compactly supported volume preserving and symplectic diffeo

morphisms, as well as their commutator subgroups, are never meager: 

they admit a fine norm. 

Example 1.19. The size-of-support norm: The counterpart of 

Example 1.5 above for diffeomorphism groups is as follows. Consider 

the identity component Diff0 (M, vol) of the group of compactly sup

ported volume-preserving diffeomorphisms of a smooth manifold M of 

dimension > 0. Define the norm of a diffeomorphism as the volume of its 

support. This norm is necessarily fine, and it is unbounded whenever the 

volume of M is infinite. However this norm is never stably unbounded: 

in fact, it is bounded on all cyclic subgroups. 

In some situations, stably unbounded norms on the commutator sub

group of Diff0 (M, vol) can be "induced" from the fundamental group of 

M even when the volume of M is finite: 

Example 1.20. Suppose that M is a closed manifold equipped 

with a volume form. Suppose that H := 1r1 (.i\1) has trivial center. Then 

the commutator length on the commutator subgroup of Diff0 (M, vol) 

is stably unbounded provided the commutator length on H' is stably 

unbounded, see [15, 29]. 

However, in dimension ~ 3 no unbounded norms on volume-preserving 

diffeomorphisms are known so far in the cases when the manifold has 

simple topology and finite volume. 

Open Problem. Assume that n ~ 3. Does the identity compo

nent of the group of volume preserving diffeomorphisms of the sphere 

sn admit an unbounded conjugation-invariant norm? Does the iden

tity component of the group of compactly supported volume preserv

ing diffeomorphisms of the ball of finite volume admit an unbounded 

conjugation-invariant norm? 

In the symplectic category, interesting norms inhabit the group Ham( M, w) 

of compactly supported Hamiltonian diffeomorphisms of a symplectic 

manifold (M, w). 

Example 1.21. The Hofer norm on Ham(M,w) ([17], see also 

[28]) is fine. Its unboundedness is a long-standing conjecture in sym

plectic topology. Nowadays it is confirmed for various symplectic mani

folds including for instance surfaces, complex projective spaces with the 

Fubini-Studi symplectic form and closed manifolds with 1r2 = 0. Further, 
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the Hofer norm on groups of Hamiltonian diffeomorphisms is known to 

be stably unbounded for various closed symplectic manifolds. However 

it is unbounded, but not stably unbounded, for the standard symplectic 

vector space ~zn (Sikorav, [33]). 

Example 1.22. The commutator length on Ham(M,w) is known 

to be stably unbounded for various symplectic manifolds (see [4, 12, 13, 

7, 15, 30, 31]) including all surfaces and complex projective spaces of 

arbitrary dimension. 

Example 1.23. The group Ham(~ 2 n) admits the Calabi homo

morphism (the average Hamiltonian) to R The kernel of the Calabi 

homomorphism coincides with the commutator subgroup of Ham(~ 2 n), 

which is known to be simple [2]. This group is stably bounded with re

spect to the commutator length. This is proved by D. Kotschick in [18]. 

Alternatively, this readily follows from the algebraic packing inequality 

given by Theorem 2.7 below. In contrast to this, the commutator length 

on [Ham( B 2n), Ham( B 2n)], where B 2n is the standard symplectic ball, 

is stably unbounded, see [4]. 

Example 1.24. A somewhat less understood example is the frag

mentation norm (cf. Example 1.14 above). Let (M,w) be a closed sym

plectic manifold and let U C M be an open subset. The Hamiltonian 

fragmentation lemma (see [2]) states that every Hamiltonian diffeomor

phism f can be written as a product h 1 o ... o hN, where each h; is 

conjugate to an element from Ham(U). Define the fragmentation norm 

fragu(f) as the minimal number of factors in such a decomposition. Us

ing methods of [14], one can show that for certain symplectic manifolds 

fragu is unbounded on Ham(M) provided the subset U is displaceable 

by a Hamiltonian diffeomorphism (e.g. U is a ball of a small diameter). 

Let us elaborate this statement. 

First of all recall [32, 27, 25] that for elements of the universal cover 

~(M) of the group of Hamiltonian diffeomorphisms one can define 

spectral invariants which come from Floer homology of the action func

tional. Denote by Ji: ~(M) ---+~the asymptotic spectral invariant as 

defined in [14]. For various interesting symplectic manifolds Ji descends 

to a function Jk on Ham(M). This is for instance the case for symplectic 

manifolds with 1r2 ( M) = 0 (due to M. Schwarz [32]) and for standard 
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complex projective spaces (see [13]). f We continue discussion on the 

fragmentation norm assuming that ji does descend to f-L· 

Second, if U is displaceable, Theorem 7.1 in [14] guarantees that 

(2) IJ.L(¢'lf;)- J.L(¢)- J.L('lf!)l ::::; min(fragu(¢), fragu('!f!)) 

for all¢, 'If; E Ham(M). At this point there is a dichotomy which roughly 

speaking depends on the algebraic structure of the quantum homology 

ring of ( M, w): 

PossiBILITY 1: The left hand side of (2) is a bounded function on 

Ham(M) x Ham(M), and thus J.L is a quasi-morphism on Ham(M). For 

instance, this is the case for the complex projective spaces [13]. 

POSSIBILITY 2: The left hand side of (2) is unbounded, and thus a 

fortiori the fragmentation norm on Ham(M) is unbounded. For instance 

this is the case for the standard symplectic tori (IR.2n jz2n, dp 1\ dq). 

Let us explain why Possibility 2 holds for the two-torus: Take a pair of 

disjoint meridians Land K on the torus. Let <P, '.!! be two smooth cut off 

functions on the torus with disjoint supports which equal 1 near L and 

K respectively. Let { ¢t} and { 'lf;t} be the Hamiltonian flows generated 

by <P and '.!!. A standard calculation in Floer homology shows that the 

left hand side of (2) with¢= r/Jt, 'If; = '!f!t goes to infinity as t ___, oo. This 

proves unboundedness of the Hamiltonian fragmentation norm fragu 

for the 2-torus. 

We conclude with an open problem. In spite of the fact that the 

complex projective spaces enjoy Possibility 1 above, the question on 

unboundedness of the Hamiltonian fragmentation norm in this case is 

widely open even for CP1 = S 2 . 

ORGANIZATION OF THE PAPER: In the next section we introduce alge

braic packing and displacement technique which is used for the proof 

of the main results stated in the introduction. As an illustration, we 

deduce there Theorem l.ll(i) and Proposition 1.8. Theorems 1.17 and 

1.18 are proved in Section 3.1. These theorems, combined with topolog

ical decomposition technique (which is standard in the case of spheres, 

and less trivial in the case of three-manifolds) are applied to the proof of 

Theorems l.ll(ii),l.13{i) in Section 3.2 and of Theorems l.ll(iii),l.13(ii) 

in Section 3.3. 

fin general, ji may descend to Ham(.l\1!) and may not. We refer to a recent 

paper [23] by D. McDuff for new results and a detailed discussion of the current 

state of art in this problem. We thank D. McDuff for an illuminating discussion 

on this topic. 
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§2. Algebraic tools: packing and displacement 

Here we present the algebraic tools used for proving Theorems 1.11 

(i), 1.17 and 1.18. We use a number of tricks which imitate displacement 

of supports of diffeomorphisms and decomposition of diffeomorphisms 

into products of commutators in a more general algebraic setting. The 

tricks of this nature appear in the context of transformation groups at 

least since the beginning of 1960-ies (see e.g. [1]). The system of notions 

introduced below in parts imitates and extends the one arising in the 

study of Hofer's geometry on the group of Hamiltonian diffeomorphisms. 

Note also that various interesting results on infinitely displaceable sub

groups were obtained in a recent work of D. Kotschick [18]. 

2.1. Algebraic packing and displacement energy 

Let G be any group. We say that two subgroups H 1 , Hz c G com

mute if h1h2 = hzh1 for all h1 E H 1, h2 E Hz. We denote by Conj<P 

the automorphism of G given by g ~ ¢g¢-1. A subgroup H C G is 

called m-displaceable (where m ~ 1 is an integer) if there exist elements 

¢o := 1, ¢1, ... , cPm E G so that the subgroups Conj</J, (H), Conj<PJ (H) 

pair-wise commute for all distinct i, j E {0; ... ; m }. A subgroup H is 

called strongly m-displaceable if in the previous definition one can choose 

¢k 's to be consecutive powers of the same element ¢ E G: cPk = ¢k. In 

this case we shall say that ¢ m-displaces H. 

Note that form= 1 both notions coincide, and, for brevity, we refer 

to a 1-displaceable subgroup as to displaceable. 

Introduce two numerical invariants related to the above notions. 

The algebraic packing number p( G, H) = m + 1, where m is the maximal 

integer such that H is m-displaceable. This is a purely algebraic invari

ant. The second quantity involves a conjugation-invariant norm, say v 

on G. Define the order m displacement energy g of H with respect to v 

as em(H) = inf v(¢) where the infimum is taken over all ¢ E G which 

m-displace H. We put em(H) = +::xJ if His not strongly m-displaceable. 

While speaking on displaceability, we tacitly assume that the sub

group H is non-abelian. Indeed, every abelian subgroup H is m-displace

able by 1 for every mEN and hence em(H) = 0. 

Example 2.1. Let M be a smooth connected manifold. Put G = 

Diff0 (M). Take any open ball B C M. Let H be the subgroup of G 

gThis notion is an algebraic counterpart of the symplectic displacement 

energy introduced by Hofer in [17]. 
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consisting of all diffeomorphisms supported in B. Choose any diffeo

morphism ¢ E Diff0 (M) which displaces B: B n ¢(B) = 0. Then H 

commutes with Conjq,(H), soH is displaceable. 

Theorem 2.2. Let H c G be a strongly m-displaceable subgroup of 

G. Assume that G is endowed with a conjugation-invariant norm v. 

(3) 

(i) For every element x E H' with clH(x) = m the following in

equalities hold: 

v(x) ~ 14em(H) 

and 

(4) cla(x) ~ 2; 

(ii) In the case clH(x) = 1, that is x = [f, g] for some f, g E H, we 

have that 

(5) v(x) ~ 4e1(H); 

Corollary 2.3. Assume that an element FE G m-displaces H for 

every m;:::: 1. Then cla(h) ~ 2 for all hE H'. 

This follows immediately from inequality ( 4). 

Theorem 2.2(ii) is proved in [11]. The argument is very short: indeed, 

assume that Conjq,(H) commutes with H. Then [f, g] = [f · cpf- 1¢-1 , g]. 

Using bi-invariance of v we get that 

v([f, g]) ~ 2v([f, ¢]) ~ 4v( ¢) . 

Taking the infimum over all ¢displacing H we get inequality (5). The 

proof of Theorem 2.2(i) is more involved, see Section 2.2 below. 

Let us give some sample applications of Theorem 2.2. First, we 

deduce from inequality (5) the fact that the group Diff0 (M) does not 

admit a fine norm. 

Proof of Theorem l.ll(i): Assume on the contrary that Diff0 (M) 

admits a fine norm, say v. Take any ball B C M and pick two non

commuting diffeomorphisms f and g supported in B. For any E·> 0 take 

h E Diff0 (M) with 0 < v(h) < E. Note that since h :/:- 11 there exists a ball 

C c M so that h displaces C. Since all balls in M are isotopic, there is 

a diffeomorphism 'ljJ E Diff0 (M) with '1/J(C) =B. Therefore¢:= 'ljJh'ljJ- 1 
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displaces B, and hence ¢> displaces the subgroup Diff0 (B) c Diff0 (M). 

Applying inequality (5) we get that 

v([f,g]):::; 4v(¢) = 4v(h) < 4c. 

Sending E to zero, we conclude that v([f, g]) = 0, a contradiction with 

the non-degeneracy of a norm. • 

Next, we apply Theorem 2.2 to proving that for a class of groups 

introduced in Section 1.2.4 existence of stably unbounded norms yields 

existence of quasi-morphisms. 

Proof of Propositions 1. 7 and 1.8: First of all note that every 

element h E G can be uniquely written in the following normal form: 

either h = (g1 ,g2) or h = (g1 ,g2 )t. This readily yields Proposition 

1.7. Second, we claim that it suffices to show that G has a non-trivial 

homogeneous quasi-morphism, say r. Indeed, put r(h) = r(g1 ) + r(g2), 
where h is in the normal form as above. A straightforward analysis 

shows that f is a (not necessarily homogeneous!) quasi-morphism on G. 
For instance, if h = (hr, h2)t and f = (fr, h) then hf = (hrh h2fr)t 
and hence 

lr(hf)- r(h)- r(f) I :::; lr(hrh)- r(hr)- r(h) I+ lr(h2Jr)- r(h2) -r(fr) I 

and hence is uniformly bounded. The other cases are considered simi

larly. Finally note that the stabilization rDO(h) := limn->DO r(hn)/n does 

not vanish on h = (g, 1) provided r(g) # 0. Since foo is a homogeneous 

quasi-morphism, the claim follows. 

Let v be a stably unbounded norm on G. Assume that v=(w) > 0 

for some wE G. 

CASE 1: w = (gr,g2). Put w1 = (g1 , 1) and w2 = (1,g2). We claim that 

either V=>J(wr) > 0 or v=(w2) > 0. Indeed, wk = w}w~ and hence 

which yields the claim. 

CASE 2: w = (gr,g2)t. Put wr = (grg2, 1) and w2 = (1,g2gr). We claim 

that either v= ( wr) > 0 or l/00 ( w2 ) > 0. Indeed, w2k = w}w~ and hence 

which yields the claim. 

Looking at elements w1 and tw2t above we conclude that there exists 

an element u = (g, 1) with v00 (u) > 0. Replacing, if necessary, u by its 
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power we can assume that g E G' (here we use that H 1 (G) is finite). De

note by H c G the subgroup consisting of all elements of the form (!, 1) 

where f E G. Clearly, His isomorphic toG and u E H'. Furthermore, 

t displaces H. Thus inequality (5) yields that 

v(z)::; 4v(t) · clH(z) Vz E H'. 

Substituting z = uk, dividing by k and passing to the limit as k --+ oo 

we get that 

0 < v00 (u)::; 4v(t) · sclH(u). 

Thus sclc(g) sclH(u) > 0. Therefore Bavard's theorem [5] yields 

existence of a non-trivial homogeneous quasi-morphism on G. • 

2.2. Inequalities with commutators 

Here we prove Theorem 2.2(i). For an element FE G, we say that 

g EGis an F-commutator if g = Conj1.[F,h] for some f,h E G. Note 

that the inverse of an F-commutator is again an F-commutator. 

Fix F E G such that the subgroups 

pair-wise commute. We shall show that every element x from the com

mutator subgroup H' with clH(x) = m can be represented as a product 

of seven F-commutators. Note that given a conjugation-invariant norm 

von G, for every F-commutator g we have v(g) ::; 2v(F). Thus we shall 

get that v(x)::; 14v(F), which yields inequality (3). 

We shall consider products TI~ Conjpi (g;), where g; E H, i = 

0, ... , m. Since Hi's pair-wise commute, the product of such elements 

TI~ Conjpi (h) and TI~ Conjpi (g;) can be computed component-wise: 

it equals TI~ Conjpi(f;g;). 

Lemma 2.4. Let a collection of g; E H, i = 0, 1, ... , m be such that 

TI~ g; = 1. Then the product g = TI~ Conjpi(g;) is an F-commutator. 

Proof. We will show that g = [ F, </> - 1] where </> = TI~- 1 Conj pi ( </>;), 

{ </>;}~ 0 1 is a collection of elements of H which will be defined later. We 

set <l>m = 1 for convenience of notation. 

Note that [F, ¢-1] = Conjp(¢- 1 )</>and Conjp(¢-1 ) equals the prod

uct n~- 1 Conjpi+l (</>i 1 ) = n;n Conjp•(¢;_\) whose terms lie in HI, ... , 

Hm. Hence 

m 

[F,¢- 1] = Conjp(¢- 1 )¢ = </>o ·IT Conjp•(¢i_:\¢;) 

1 
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and the equation [F, ¢- 1] = g is equivalent to the system 

¢o =go 

¢01¢1 = g1 

¢11¢2 = g2 

The solution of this system is ¢k = TI~ gi, k = 0, 1, ... , m. The equation 

¢m = 1 is satisfied by the assumption TI gi = 1. • 

Lemma 2.5. Let g1,g2 , ... ,gm be a collection of elements of H. 

Then g = TI~ gi equals an F -commutator times the product 

TI;" Conjp,(gi)· 

Proof. Introduce gb = g and g~ = g-; 1 . Note that TI~ g~ = 1. Then 

apply the previous lemma. • 

Lemma 2.6. Any commutator from H is a product of two 

F -commutators. 

Proof. Consider a commutator [f, g] with f, g E H. Then by 

Lemma 2.4, the elements 

(fg)Conjp(g- 1 )Conjp2 (f- 1) 

and 

(f- 1 g- 1 )Conjp(g)Conjp2 (f) 

are F-commutators. Their product is [f, g]. • 

End of the proof of Theorem 2.2(i): Consider h = IJ~[fi,gi] with 

j;,gi E H. By Lemma 2.5, h equals an F-commutator times a product 

e := TI;" Conjpi ([J;, gi]). The latter in its turn is equal to the commuta

tor of two products ¢ := TI;" Conjpi (fi) and 1/J := TI;" Conjpi (gi) since 

the subgroups Hi and Hj commute for i =/= j. This proves inequality ( 4). 

Applying again Lemma 2.5 we have that ¢ = fx and 1/J = gy where 

f = fm···h and g = gm···g1 and x, yare F-commutators. We write 

Since f, g E H, we have by Lemma 2.6 that [f, g] equals a product of 

two F-commutators. Hence e is a product of six F-commutators and 

therefore h is a product of seven F-commutators. As we explained in 

the beginning of this section, this completes the proof of the theorem.• 
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2.3. Packing and distortion of subgroups 

Let G be a group and H c G a subgroup. Consider the embedding 

of metric spaces (H', clH) f-+ (G', cla). Obviously cla(w) ::; clH(w) for 

all w E H'. It turns out that, after stabilization, this inequality can be 

refined provided H is m-displaceable in G: the larger m is, the stronger 

H' is distorted in G' with respect to the stable commutator lengths. 

Theorem 2. 7. 

1 
sclc(w)::; p(G, H) sclH(w) 'iw E H'. 

Example 2.8. Let G = Sp(2n, R) ~he universal cover of the 

linear symplectic group and let H = Sp(2, R) c G. Here we fix the 

splitting JR2n = JR2 EB JR2n-2 . The monomorphism Sp(2, JR) --+ Sp(2n, JR) 

which sends a matrix A to A EB 12n-2 induces the isomorphism of the 

fundamental groups 1r1 (Sp(2,1R)) = 1r1 (Sp(2n,JR)) = Z, and hence H 

naturally embeds into G. Let (p1 ,q1 , ... ,pn,Qn) be the standard sym

plectic coordinates on JR2n. Denote by 11 the symplectic transformation 

which permutes (p1 , q1 ) and (p1, q1 )-coordinates. Write J; for a lift of 

Ii to G. Then the subgroups Conji1 (H) pairwise commute, and hence 

p(G, H) 2 n. Denote bye E H the generator of the center of H. One 

can show (see Remark 2.11 below) that 

(6) sclH(e) = n · sclc(e) . 

Thus the inequality in Theorem 2.7 yields p(G, H) ::; n. We conclude 

that p( G, H) = n and the inequality is sharp. 

Example 2. 9. Let ( M, w) be a symplectic manifold, and let U c M 

be an open subset. Let G = Ham(M,w) and let H = Ham(U,w). In 

this case the algebraic packing number p( G, H) has a simple geometric 

meaning: It equals to the geometric packing number Pgeam ( M, U) which 

is defined as the maximal number of diffeomorphisms from G which take 

U to pairwise disjoint subsets of M. In the case when U is a standard 

symplectic ball the geometric packing number was intensively studied in 

the framework of the symplectic packing problem (see [6] for a survey). 

For instance, assume that M and U are 2n-dimensional symplectic balls. 

In the case n = 1 the geometric packing number is simply the integer 

part of the ratio of the areas. In the case n = 2 the situation is more 

complicated: For instance, if the ratio of volumes of A1 and U lies in the 
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interval (8; (1 + 1/288) · 8), the geometric packing number equals 7 (see 

[24]). It would be interesting to explore the sharpness of the inequality 

in Theorem 2.7 in these examples. 

The proof of Theorem 2.7 is based on the following observation (thanks 

to Sasha Furman for help). For a subgroup H c G write Q(H) for the 

set of homogeneous quasi-morphisms on H modulo morphisms, and for 

cp E Q(H) put 

II1>IIH = sup ¢([x, y]) . 
x,yEH 

Proposition 2.10. Let H 1 , ... , HN be subgroups ofG so that H; and 

Hj commute fori =1- j. Put K = H 1 · ... · HN. Then for every 1> E Q(K) 

N 

llc/JIIK = L llc/JIIHi . 
i=l 

Proof of Proposition 2.10: Take any x, y E K and write 

X= XI ..... XN, y = Yl ..... YN' 

where X;, y; E H;. Then 

Since the commutators in the right hand side pair-wise commute we get 

that for every quasi-morphism¢ E Q(K) 

N 

1>([x, y]) = L 1>([x;, y;]) . 
i=l 

Since pairs x;, y; can be chosen in an arbitrary way we get the desired 

equality. • 

Proof of Theorem 2.7: Suppose that p(G,H) ~ N. Then there 

exist elements 91 = 1, 92 , ... , 9N so that subgroups H; := 9;H9i 1 pair

wise commute. For every ¢ E Q(G) we have llc/JIIHi = llc/JIIH· Put 

K = H 1 · ... · HN. Applying Proposition 2.10 we have 

(7) llc/JIIc ~ II1>IIK = Nllc/JIIH. 

Denote by Q*(H) the set of non-trivial quasi-morphisms from Q(H), 

and by Q*(G, H) the set of quasi-morphisms from Q*(G) which restrict 
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to a non-trivial quasi-morphism on H. Apply now Bavard's theorem [5]: 

given wE H' we have 

1 ¢(w) 1 ¢(w) 
sclH(w) =- sup -- > - sup --

2 ¢EQ.(H) llc/JIIH - 2 ¢EQ.(G,H) llc/JIIH 

Using inequality (7) above and applying the same Bavard's theorem we 

have 

1 ¢(w) 
> N·- sup --

2 ¢EQ.(G,H) llc/JIIc 
(8) 

1 ¢(w) 
N ·- sup - 11 -~, 11 = Nsclc(w). 

2 ¢EQ.(G) '+' G 

The equality in the middle follows from the fact that for 

¢ E Q*(G) \ Q*(G, H) and wE H' one has ¢(w) = 0. Using inequality 

(8), we readily complete the proof. • 

Remark 2.11. Denote by Gn the universal cover of the group 

Sp(2n, JR.) and by en E Gn the generator of 7Tl (Sp(2n, JR.)) with Maslov 

index 2. The group Gn carries unique homogeneous quasi-morphism f.Ln 

with f.Ln(en) = 1 (see [4]). Put 

I ·- IIJ.Lnllcn 
n .- IIJ.L1IIc, . 

One can show that In = n. The only known to us proof of this innocently 

looking fact is surprisingly involved: it can be extracted from [8] (thanks 

to A. Iozzi and A. Wienhard for illuminating consultations). By the 

above-cited theorem due to Bavard 

sclc,(el) -I 
sclcn(en) - n' 

which proves equality (6) above. 

§3. Topological arguments 

3.1. Portable manifolds 

Let M be a portable manifold. We shall use notations of Definition 

1.16. 

Lemma 3.1. There exists a neighborhood U of the core M 0 of M 

and a diffeomorphism ¢ E Diff0 (M) so that the sets ¢i(U), i 2: 1 are 

pair-wise disjoint. 
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Proof. Choose a sufficiently small neighbourhood U of the core so 

that O(U) n Closure(U) = 0. Put V = O(U) and consider the vector field 

Y = O*X on M. Note that V is an attractor of Y. In particular there 

exists T > 0 large enough so that the closure of Y" (U U V) is contained 

in V. Cutting off Y" outside a sufficiently large compact set, we get 

that there exists a diffeomorphism ¢ E Diff0 (M) so that 

Closure cp(U U V) C V. 

Observe that ¢i(U) c ¢i-1(V) \ ¢i(V). Thus the sets qi(U), i ~ 1 are 

pair-wise disjoint. • 

Proof of Theorem 1.17: Let v be any conjugation-invariant norm on 

Diffo(M). It suffices to show that v is bounded. 

We shall use notations of Definition 1.16 of a portable manifold. 

Look at the neighborhood U of the core and at the diffeomorphism ¢ 

from Lemma 3.1. Note that¢ m-displaces the subgroup Diff0 (U) for any 

m. Take any diffeomorphism h E Diff0 (U). Since the group Diff0 (U) is 

perfect, it follows from inequality (3) that v(h) :::; 14v(¢). 

Further, take any diffeomorphism f E Diff0 (M). The first item of the 

Definition 1.16 guarantees that forT > 0 large enough X" (support f) C U. 

Applying the ambient isotopy theorem, we can find a diffeomorphism 

'ljJ E Diff0 (M) with 'lj;(supportf) CU. Thus '1/Jf'lj;- 1 lies in Diff0 (U). We 

conclude that 

v(f) = v('lj;f'lj;-1):::; 14v(¢) 

which implies that v is bounded. This completes the proof. • 

Proof of Theorem 1.18: The proof above shows that the diffeomor

phism ¢ m-displaces the subgroup H := Diff0 (U) for any m. Corol

lary 2.3 above implies that cla(h) :::; 2 for all h E Diff0 (U), where 

G = Diff0 (M). But every element f E G is conjugate to an element 

from H. Thus cld(M):::; 2. • 

Remark 3.2. Theorem 1.17 admits the following straightforward 

generalization. Let G be any group acting by homeomorphisms on a 

topological space X. Assume that there exist two disjoint open subsets 

U, V C X and an. element ¢ E G which satisfy the following two easily 

verifiable properties: 

(i) Closure cp(U U V) C V ; 

(ii) For every finite collection of elements 'I/J1, ... , '1/Jk c G there ex

ists h E G so that 

k 

h( U support('I/Ji)) CU. 
i=1 
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Then any invariant norm on G is bounded on the commutator subgroup 

G'. 

3.2. Spheres 

Lemma 3.3. Every diffeomorphism f E Diff0 (Sn) can be written 

as f = gh where g E Diff0 (Sn \ {z}) and hE Diff0 (Sn \ {w}) for some 

points z, wE sn. 

Since sn \{point} = ffi.n is a portable manifold, Theorem l.ll(ii) follows 

from Theorem 1.17 and Theorem 1.13(i) follows from Theorem 1.18. 

Proof of Lemma 3.3: This fact is standard: Let {ft}, t E [0; 1] be 

a path in Diff0 (Sn) with fo = 1 and h = f. Choose a sufficiently 

small closed disc D c sn so that X : = Ut ft (D) =I- sn. Pick a point 

z ¢:_ X. Since sn \ { z} is diffeomorphic to ffi.n, there exists a path {gt} 

of diffeomorphisms from Diff0 (Sn \ {z}) such that go= 1,gtiD =!tiD· 
Pick a point win the interior of D. Note the path {g;- 1 ft} is compactly 

supported in sn \ { w }. Thus the diffeomorphisms g := g1 and h := g- 1 f 
are as required in the lemma. • 

3.3. Three-manifolds 

Here we prove Theorem l.ll(iii). By a graph in a manifold we mean 

a piecewise smoothly embedded graph. By a smooth isotopy of a graph 

we mean an isotopy which extends to a smooth isotopy of its tubular 

neighborhood. We shall use without a special mentioning the following 

fact (see e.g. [20]): any smooth compactly supported diffeomorphism ¢> 

of an open handlebody U is isotopic to the identity through compactly 

supported diffeomorphisms, that is f E Diff0 (U). 

Lemma 3.4 (Fundamental Lemma). Let r and K be two disjoint 

graphs and M. Let ft : r ----+ M, t E [0; 1] be a smooth isotopy with 

fair= 1 and fl(r) nK = 0. Then there exist a diffeomorphism h of M 

supported in a ball and a diffeomorphism ¢> E Diff0 (M \ K) so that 

hlr = hocf>lr · 

Let us prove the theorem assuming the lemma. 

Proof of Theorem l.ll(iii): Take any norm von Diff0 (M). A graph 

is called the H eegard graph if its complement is diffeomorphic to an 

open handlebody. Every three-manifold contains a Heegard graph (for 

instance, a neighborhood of the 1-skeleton of a triangulation of M). 

Choose a pair of disjoint Heegard graphs L and K in M. Fix a suffi

ciently small tubular neighborhood U of L. Since U, M \ K and M \ L 
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are open handlebodies and therefore are portable, Theorem 1.17 implies 

that the norm v, when restricted to Diff0 of these submanifolds, does 

not exceed some constant C > 0. We shall assume also that the same 

inequality holds for the restriction of v to Diff0 of any ball in M (we use 

here that all balls are pair-wise isotopic and portable). 

We shall show that 

(9) v(f) :s; 5C 

for every f E Diffo(M) with f(U)nK = 0. Note that this yields the same 

inequality for every f. Indeed, perturbing K to K' by a small ambient 

isotopy of M and shrinking U to U' by an ambient isotopy of M we can 

always achieve that f(U') n K' = 0. But the subgroups Diff0 (U') and 

Diffo(M \ K') are conjugate in Diffo(M) to Diff0 (U) and Diff0 (M \ K) 

respectively, and hence the restriction of the norm v to these subgroups 

is bounded by the same constant C which yields inequality (9). From 

now on we assume that f(U) n K = 0. 
Let N C U \ L be any embedded graph so that the induced homo

morphism 1r1 (N) ----+ 1r1 (U \ L) is a surjection. Put r = L UN, and apply 

the Fundamental Lemma. We get a diffeomorphism h supported in a 

ball, and a diffeomorphism ¢ E Diff0 (M \ K) so that fir = h o ¢1r . 
Denote 7/J = (h¢ )- 1 f and observe that 7/Jir = 1. 

In particular, 7/J fixes L. We wish to correct 7/J and get a diffeomor

phism fixing a neighborhood of L. This is the point where the graph 

N enters the play. More precisely, we claim that there exist diffeomor

phisms ~, (J E Diffo ( U) and rJ E Diffo ( M \ L) so that 7/J = ~ ry(J. Indeed, 

since 7/J fixes L, there exists a sufficiently small tubular neighborhood 

V c U of L and a diffeomorphism (J E Diff0 (U) so that 7/J0- 1 (V) = V. 

Put T := 7/J0- 1 . Since u \ L retracts to av and 7/J fixes N we conclude 

that T induces the identity isomorphism of 'lrl ( 3V). It is well known (see 

e.g. [36, 19, 20]) that therefore riv : V ----+ V is isotopic to the identity. 

Hence there exists a diffeomorphism ~ E Diff0 (U) which coincides with 

Ton V, and so ry := ~- 1 T is supported in M \ L. The claim follows. 

Finally, write 

f = h¢7/J = h¢~ry(J . 

Note that h E Diff0 (B) where B is a ball, and hence v(h) :s; C where 

the constant C was chosen in the beginning of the proof. Furthermore, 

¢ E Diffo(M\K), ~' (J E Diff0 (U) and ryE Diff0 (M\L). Thus v(f) :s; 5C 

which proves inequality (9). This completes the proof. • 

Proof of Theorem 1.13(ii): In the proof above we represented every 

diffeomorphism from Diff0 of a closed connected three-manifold M as a 
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product of 5 diffeomorphisms from Diff0 of portable manifolds. Applying 

Theorem 1.18 we get the desired estimate cld(M) ::; 10. • 

Proof of Lemma 3.4: The proof is divided into several steps. 

STEP 1: Let r, L c M be disjoint embedded graphs, and ft : r -+ M 

be a smooth isotopy. Put ft := ft(f). We say that the crossing point 

y = f T (X) E r T n L is generic if the points X and y lie in smooth interior 

parts of r and L respectively and 

Introduce two modifications of the isotopy ft at a generic crossing point. 

TYPE I MODIFICATION (REMOVING THE CROSSING POINT): Here we 

assume that Lis a segment with the endpoints A and Bandy= r rnL 

is a generic crossing point. Choose E > 0 small enough so that y is the 

only crossing point on the time interval I := [T - E; T + E]. Choose 

a sufficiently small neighborhood U of L. Let h 8 , s E I be a path in 

Diffo(U)sothaths = loutsideasmallneighborhoodofs = T,h 8 (L) C L 

and hs(B) = B for all s, and h7 shrinks L so that y rf:. h 7 (L). Replace 

the piece {ft}tEI of the original isotopy by {f~}tEI where f~ = ht" 1ft. 

Note that ft n ht(L) = 0, and hence r~ n L = 0, for all t E I. 

TYPE II MODIFICATION (DECOMPOSITION): Here f and L are arbitrary 

graphs, andy = fr(x) E r T n Lis a generic crossing point. Choose E > 0 

small enough so that y is the only crossing point on the time interval 

I:= [T- 2E; T + 2E]. There exists a neighborhood E of y diffeomorphic 

to a Euclidean cube 

Q = {(u, v, w) E lR3
1 lui, lvl, lwl < 2E} 

so that L n Q is the vertical segment { u = v = 0, w E [ -2E; 2E]} and 

ft n Q is the segment Ct-T := { u = t- T, v E [-2E; 2E], w = 0} fortE I. 

Thus the isotopy r t inside Q is given by the motion of the segment C-2E 

in the ( u, v )-plane in the direction of the u-axis. In this picture, the 

crossing point y is the origin. 

Let us agree on the following wording: Suppose that two curves a 0 

and a 1 in the ( u, v )-plane are given by the graphs { u = F0 ( v)} and 

{u = F1(v)} of smooth functions F0 ,F1 : [-2E;2E]-+ JR. The linear 

isotopy between a 0 and a1 is formed by graphs of (1 - s )Fo + sF1, 

s E [0; 1]. 

The modification we are going to describe is local. Fix a smooth cut

off function p: [-2E; 2E] -+ [0; 3E/2] which is supported in a very small 
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neighborhood of 0 and which satisfies p(O) = 3E/2. Denote {3± = C±E· 

Consider the curve 

a= {u = -E + p(v),v E [-2E; 2E],w = 0}. 

Modify the original isotopy on the time interval I' := [T - E; T + E] as 

follows: first make a linear isotopy from {3- to a, and then a linear 

isotopy from a to (3+. We extend the curves appearing in the process of 

this isotopy outside Q by appropriate r t 's and make an obvious change 

of time in order to fit into the time interval I'. 

The following features of the modified isotopy are crucial for our 

further purposes. The isotopy from {3- to a can be realized by an isotopy 

of diffeomorphisms of M supported in a ball B C Q. The isotopy from 

a to (3+ does not hit L and hence can be extended to an ambient isotopy 

of M which is fixed near L. 

STEP 2: After these preliminaries, we pass to the situation described 

in the formulation of the lemma: Let r, K be two disjoint graphs in M 

and let ft : r--+ M, t E [0; 1] be a smooth isotopy with ft(r) n K = 0. 
After a small perturbation of the isotopy with fixed end points we can 

assume that the following conditions hold: 

(C1) The set 

{(x, t) E r X [0; 1]1 ft(x) E K} 

consists of N pairs (xi, ti), i = 1, ... , N so that {xi} are distinct points 

of r, 0 < h < ... < t N < 1 and Yi = it; ( x) are distinct generic crossing 

points. 

(C2) The curves 'Yi := Ut(Xi)}tE[O;l] are pairwise disjoint embedded 

segments. 

(C3) For each i, the isotopy ft : r \{xi}--+ M crosses 'Yi generically. 

We shall remove the latter crossings using the Type I modification (see 

Step 1): Note that each such crossing occurs in the subsegment of 'Yi 

which is either of the form [xi; k-8Xi] or [it;Hxi; ftxi], where 8 > 0 is 

small enough. We apply Type I modification to these segments keeping 

the end point it;±Oxi fixed (such an end point is denoted by B in the 

local description of a Type I modification above). Note that each such 

modification is localized near some 'Yi and hence does not create new 

crossings, so the process stops after ·a finite number of modifications. 

Thus we replace assumption (C3) above by a stronger one: 

(C3') For each i, the isotopy ft: r \{xi}--+ M does not hit 'Yi· 
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STEP 3: It would be convenient to make a change of time in our isotopy 

as follows. We assume that ft is defined on the time interval t E [0; N + 1] 

and the crossings times are consecutive integers ti = i, i = 1, ... , N. 

Assumptions (C1) and (C2) of the previous step yield existence of em

bedded pair-wise disjoint parallelepipeds Pi C M, i = 1, ... , N (each 

parallelepiped Pi is a neighborhood of the segment "fi) equipped with 

local coordinates u E [-1;N+2],v E [-1;1],w E [-1;1] so that the 

following holds: 

"fi = {(u,O,O) I u E [O;N + 1]}, 

KnPi={(i,O,w)l wE[-1;1]}, rnPi={(O,v,o)l vE[-1;1]}, 

and 

ft(O, v, 0) = (t, v, 0) 'it E [0; N + 1], v E [-1; 1] . 

In addition, assumption (C3') of the previous step guarantees that Pi's 

can be chosen so thin that 

(10) 

STEP 4: Let Qi C Pi be a sufficiently small cube centered at the crossing 

(i, 0, 0) whose edges have the length 4E and are parallel to the coordinate 

axes. Perform a Type II modification of our isotopy inside Qi: We keep 

notations ai, (Jf (with the extra sub-index i) for special curves appearing 

in the description of the modification presented in Step 1. The reader 

should have in mind that the current u-coordinate is shifted by i in 

comparison to the one of Step 1, and the crossing time T equals i. 

Thus we assume that 

f3t' = {(i±E,v,O) I v E [-2E,2E]}. 

Set 

ri = fi_,(r) and rt = (Ji_,(r) \ f3i) u ai , i = 1, ... , N. 

Note that rt = hi(ri), where hiE Diffo(Qi)· 

It will be convenient to put rt =rand r.zv+1 = !l(r). Recall that 

we write rt = ft(r). 

STEP 5: Fix i E {0; ... ; N}. Let us focus on the following isotopy taking 

rt to rUl : we proceed according to the description of the Type II mod

ification (see Step 1) until we reach the graph ri+< which extends f3t 
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(this move is empty when i = 0), and then move on with the original iso

topy ft until r;+1 . Note that this isotopy does not hit K. Furthermore, 

the (time-dependent) vector field di) of this isotopy, which is defined 

along the image of rt at the time moment t, is parallel to the u-axis 

in each of the parallelepipeds Pj, j = 1, ... , N. Now we shall use prop

erty (10) of the original isotopy: It guarantees that one can cut off di) 
near K and extend it to the whole M so that it remains parallel to the 

u-axis in all Pj 's. After such an extension we get an isotopy supported 

in M \ K so that its time-1-map ¢i sends rt to r;+l. 
The following property of maps ¢i, which readily follows from the 

above discussion on vector fields di), is crucial for the final step of the 

proof: 

(11) ¢No ... o¢i(Qi)CPi Vi=1, ... ,N. 

STEP 6: We have 

(12) 

where the diffeomorphisms h; E Diff0 ( Q;) and the cubes Q; appear in 

Step 4, and the diffeomorphisms ¢; E Diff0 (M \ K) are constructed in 

the previous step. Put 

9i = (¢N 0 ... 0 ¢;)hi(¢N 0 ... 0 ¢i)-l ' i = 1, ... , N. 

Note that 9i E Diff0 (Q;) where Q~ =¢No ... o ¢i(Q;). By (11), the sets 

Q~ are pair-wise disjoint. Since each of Q~ is diffeomorphic to an open 

ball, the diffeomorphism h := 9N o ... o g1 is supported in a ball. Finally, 

put 

¢=¢No ... o ¢0 E Diff0(M \ K) 

and observe that in view of equation (12) h lr = h¢1r- This finishes off 

the proof of the lemma. • 
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