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Conjunction of SOM-based feature extraction method and

hybrid wavelet-ANN approach for rainfall–runoff modeling

Vahid Nourani and Masoumeh Parhizkar
ABSTRACT
In rainfall–runoff modeling, the wavelet-ANN model, which includes a wavelet transform to capture

multi-scale features of the process, as well as an artificial neural network (ANN) to predict the runoff

discharge, is a beneficial approach. One of the essential steps in any ANN-based development

process is determination of dominant input variables. This paper presents a two-stage procedure to

model the rainfall–runoff process of the Delaney Creek and Payne Creek Basins, Florida, USA. The

two-stage procedure includes data pre-processing and model building stages. In the data pre-

processing stage, a wavelet transform is used to decompose the rainfall and runoff time series

into several sub-series at different scales. Subsequently, independent sub-series are chosen via a

self-organizing map (SOM). In the model building stage, selected sub-series are imposed as input

data to a feed-forward neural network (FFNN) to forecast runoff discharge. To make a better

interpretation of the model efficiency, the proposed model is compared with the Auto Regressive

Integrated Moving Average with eXogenous input (ARIMAX) and with the ad hoc FFNN methods,

without any data pre-processing. The results proved that the proposed model leads to better

outcome especially in term of determination coefficient for detecting peak points (DCpeak).
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INTRODUCTION
Accurate modeling of hydrological processes such as rain-

fall–runoff can be helpful in city planning, land uses, water

resources management and environmental engineering

and is of prime importance for hydrologists and environ-

mental engineers. Therefore, many hydrological models

have been developed in order to simulate such a complex

process and a comprehensive classification of these

models has been presented by Nourani et al. ().

Conventional time series models such as the Auto

Regressive Integrated Moving Average with eXogenous

input (ARIMAX) are used widely for hydrological time

series forecasting (Salas et al. ; Nourani et al. ).

These kinds of models, which are basically linear, lose

their merit toward modeling hydrological processes that

are embedded with high complexity, dynamism and nonli-

nearity in both spatial and temporal scales – but such
models still may be employed for comparison and to evalu-

ate the efficiency of the new developed models.

The artificial neural network (ANN), as a self-learning

and self-adaptive approximator, has shown great ability in

modeling and forecasting non-linear hydrologic time series.

The ability of ANN to relate input and output variables in

complex systems without any need for prior knowledge of

the physics of the process plus its sufficiency in representing

time-scale variability have led to a tremendous surge in use

of ANN for rainfall–runoff modeling (see e.g. ASCE b;

Maier & Dandy ; Dawson &Wilby ; Jain & Sriniva-

sulu ; Altunkaynak ; Iliadis & Maris ; Nourani

et al. a, ; Abrahart et al. ).

Despite the fact that ANN is a flexible tool for modeling

hydrological time series, it includes some drawbacks when

faced with a high non-stationary signal of a hydrologic
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process that involves seasonalities that operate in a large

range of scales that vary from 1 day to several decades.

Therefore, time and/or space pre-processing of data in

such a situation may be an effective approach to overcome

the deficiencies. Potency of the wavelet transform in decom-

posing non-stationary time series into sub-series at different

scales (levels) is helpful for better interpretation of the pro-

cess and it is applied widely to time series analysis of non-

stationary signals (Nason & Von Sachs ; Adamowski

; Kisi ; Mirbagheri et al. ). Therefore, the com-

bination of ANN with wavelet transform as a hybrid

wavelet-ANN (WANN) model that can explain simul-

taneously spectral and temporal information of the signal

creates an effective implement for prediction of hydrological

processes. The WANN model was firstly proposed by

Aussem et al. () for financial time series forecasting.

Cannas et al. () investigated the effect of data pre-pro-

cessing on the model performance using continuous and

discrete wavelet transforms and data partitioning. The

results showed that networks trained with pre-processed

data perform better than networks trained on un-decom-

posed, noisy, raw signals. Partal & Cigizoglu ()

applied WANN to forecast daily suspended sediment load.

The combination of ANN with wavelet transform has the

potential for forecasting groundwater levels. Adamowski

& Chan () proposed a method based on coupling dis-

crete wavelet transform and ANN for groundwater level

forecasting. There are several papers that describe the appli-

cation of WANN model to different fields of hydrology (see

e.g. Partal & Kisi ; Nourani et al. a, b, ). In the

field of rainfall–runoff modeling, Remesan et al. ()

applied the combination of wavelet transform with ANN

for runoff prediction. Nourani et al. (a) combined wave-

let analysis with the ANN concept to model the rainfall-

runoff process and investigate the effect of the mother wave-

let type on the model performance using four different

mother wavelets. The modeling results showed the high

merit of the Haar wavelet compared with the others (i.e.

sym3, db2 and coif1). Tiwari & Chatterjee () developed

a hybrid wavelet–bootstrap–ANN (WBANN) model to

explore the potential of wavelet and bootstrapping tech-

niques for the development of an accurate and reliable

ANN model for hourly flood forecasting. The results

showed that the WBANN forecasting model with
om http://iwaponline.com/jh/article-pdf/15/3/829/387064/829.pdf
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confidence intervals can improve the reliability of flood fore-

casting. Adamowski et al. () developed multivariate

adaptive regression spline, WANN and regular ANN

models for runoff forecasting in a mountainous watershed

with limited data. It was determined that the best WANN

and multivariate adaptive regression spline models were

comparable in terms of forecasting accuracy, and both

could provide accurate runoff forecasts with regard to the

ANN model.

In any ANN-based modeling, some of the input vari-

ables may be correlated, noisy or have no significant

relationship with output variables and are not equally infor-

mative. Therefore, one of the essential steps in the ANN

development process is to determine dominant input vari-

ables that are independent, informative and efficiently

cover the proposed input domain. Although much infor-

mation is included in the raw data, data pre-processing

magnifies dominant features of the data and consequently

the effect of data noise is diminished. More difficult learn-

ing, divergence, obscurity and poor model accuracy are

some shortcomings that appear with the application of

ANN without a proper data pre-processing method. In

addition, high dimensionality included in most rainfall-

runoff modeling slows the training and simulation of the

process via the ANN. Therefore, when prediction of a pro-

cess includes a long time series, the time required to

perform the modeling becomes expensive. As similar as

ANN, although WANNmethod can efficiently model hydro-

logical processes, selection of effective inputs for such model

is still a challengeable task, especially when several sub-series

at different levels are obtained via the wavelet analysis

and should be imposed to the ANN (Maheswaran &

Khosa ; Nourani et al. ). Numerous available

wavelet-based subsets as input variables forces us to exam-

ine several combinations of input variables (i.e. 2d–1 input

combinations can be selected from d input variables) and

causes us to look for a robust technique to extract a domi-

nant input combination. The clustering approach as a data

mining technique can be utilized for this purpose. In the

content of ANN-based hydrological modeling, clustering is

usually employed for classification of the data, stations,

zones, etc. into some homogeneous classes (see e.g. Wu

et al. ; Chang et al. ; Nourani & Kalantari ;

Tsai et al. ) and optimization of the model structure by
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selection of dominant and relevant inputs (Bowden et al.

). The K-means clustering method is a simple clustering

algorithm that classifies the data into K mutually exclusive

clusters and has been applied to different fields of hydrology

(see Chang et al. ; Nourani & Kalantari ). The K-

means algorithm is linear inherent and requires the

number of clusters to be specified in advance. These short-

comings reduce the capability of K-means in dealing with

hydrological processes, which are usually involved with

non-linear relationships among the variables. The self-orga-

nizing map (SOM) is a kind of unsupervised ANN method

that has the authority to classify, cluster, estimate, predict

and mine the data (Kalteh et al. ). It is an effective

tool to convert the complex, non-linear, statistical relation-

ship between high-dimensional data items into a simple,

geometric relationship on a low-dimensional display in

which similar variables are closer to each other in the grid

than the more dissimilar variables. It also helps to a better

understanding of data relationships due to its capability for

visualization of data vectors. A main characteristic of the

SOM method is its non-linearity and topologically preser-

vation of the data structure through the algorithm (Corne

et al. ; ASCE a). Typical for a SOM is that the

desired solution or targets are not given and the network

intelligently learns to cluster the data by recognized different

patterns (Kalteh et al. ). The SOM method was orig-

inally proposed by Kohonen et al. () in speech

recognition. Since Chon et al. () firstly applied the

SOM to pattern benthic communities in streams; SOM

was used in water resources problems. Bowden et al.

() divided neural network data into training, testing

and validation subsets using a SOM. Lin & Chen ()

used SOM for the identification of homogeneous regions

in regional frequency analysis of rainfall data. They com-

pared efficiency of the SOM with regard to K-means and

Ward’s methods in accurately determining the clusters’

membership. The results showed that the SOM can identify

the homogeneous regions more accurately as compared

with the other two clustering methods. Lin & Wu ()

presented a SOM-based approach to estimate design hyeto-

graphs of un-gauged sites. They concluded that the approach

performs better than methods based on conventional clus-

tering techniques. Kalteh & Berndtsson () interpolated

monthly precipitation values by SOM and multi-layer
://iwaponline.com/jh/article-pdf/15/3/829/387064/829.pdf
perceptron (MLP) ANN and showed that the regionaliza-

tion based on SOM performs better than the MLP. Kalteh

et al. () reviewed the published applications of SOM

to different fields of water resources engineering and Cere-

ghino & Park () provided some additional inputs and

further perspective to their review.

As mentioned previously, an important issue regarding

the WANN application to hydrological simulation is how

to select the dominant wavelet-based sub-series as the

model inputs. For this purpose and as a classic methodology,

computed linear correlation coefficient between input and

output time series is usually employed (see e.g. Partal &

Kisi ; Maheswaran & Khosa ). However, as criti-

cized by Nourani et al. (, ), in spite of a weak

linear relationship, a strong non-linear relationship may

exist between two time series. In this paper, as an innovation

in WANN modeling, a robust-intelligent algorithm is pro-

posed by conjunction of the SOM concept with a WANN

model. For this purpose firstly, the wavelet transform is

used to decompose the main rainfall–runoff time series

into several sub-series. These sub-signals are then clustered

via a two-step SOM to choose independent and effective

sub-series as input data for the feed-forward neural network

(FFNN) model in order to forecast runoff value at 1 day

ahead as well as at multi-step ahead. The sensitivity analysis

is also applied on wavelet outputs to survey SOM accuracy

in selecting dominant sub-series. To evaluate the model

performance, the proposed wavelet-SOM-FFNN model

(WSNN) is compared with ad hoc FFNN approach (without

data pre-processing) and classic linear ARIMAX method.

In the next three sections, the concepts of wavelet trans-

form, SOM and FFNN are briefly reviewed, respectively. In

the two sections following those, the Efficiency Criteria and

the Study Areas are introduced. Next, the models perform-

ances are evaluated and discussed. Concluding Remarks

will be the final section of the paper.
WAVELET TRANSFORM

The wavelet transform has increased in usage and popularity

in recent years. A comprehensive literature survey of wavelet

in geosciences can be found in Foufoula-Georgiou & Kumar
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(), and the most recent contributions are cited by Labat

et al. ().

The time-scale wavelet transform of a continuous-time

signal, x(t), is defined as (Addison et al. ):

T a, bð Þ ¼ 1ffiffiffi
a

p
ðþ∞

�∞

g�
t� b
a

� �
x tð Þdt (1)

where * corresponds to the complex conjugate and g(t) is

called wavelet function or mother wavelet. The parameter

a acts as a dilation factor, while b corresponds to a temporal

translation of the function g(t), which allows the study of the

signal around b. The main property of wavelet transform is

to provide a time-scale localization of process, which derives

from the compact support of its basic function. This property

is opposed to the classical trigonometric function of Fourier

analysis. The wavelet transform searches for correlations

between the signal and wavelet function.

For practical applications, the hydrologists do not have

at their disposal a continuous-time signal process but

rather a discrete time signal. A discrete mother wavelet

has the form (Addison et al. ):

gm,n tð Þ ¼ 1ffiffiffiffiffiffi
am0

p g
t� nb0am0

am0

� �
(2)

where m and n are integers that control the wavelet dilation

and translation respectively; a0 is a specified fined dilation

step greater than 1; and b0 is the location parameter and

must be greater than zero. The most common and simplest

choice for parameters are a0¼ 2 and b0¼ 1.

This power-of-two logarithmic scaling of the translation

and dilation is known as the dyadic grid arrangement. The

dyadic wavelet can be written in more compact notation

as (Addison et al. ):

gm,n ¼ 2�m=2g 2�mi� nð Þ (3)

For a discrete time series, xi, the dyadic wavelet trans-

form becomes (Nourani ):

Tm,n ¼ 2�m=2
XN�1

i¼0

g 2�mi� nð Þxi (4)
om http://iwaponline.com/jh/article-pdf/15/3/829/387064/829.pdf

022
where Tm,n is wavelet coefficient for the discrete wavelet of

scale a¼ 2m and location b¼ 2mn. Equation (4) considers a

finite time series, xi, I¼ 0, 1, 2,… , N–1; and N is an integer

power of 2 so that N¼ 2M. This gives the ranges of m and n

as 0< n< 2M�m� 1 and 1<m<M, respectively.

The inverse discrete transform is given by (Nourani

):

xi ¼ T þ
XM
m¼1

X2M�m

n¼0

Tm,n2�m=2g 2�mi� nð Þ (5)

Or in a simple format as (Nourani ):

xi ¼ T þ
XM
m¼1

Wm tð Þ (6)

which T is called approximation sub-series at level M and

Wm(t) are details sub-series at levels m¼ 1, 2, … , M.

The wavelet coefficients,Wm(t) (m¼ 1, 2,…, M), provide

the detail signals, which can capture small features of inter-

pretational value in the data; the residual term, T(t),

represents the background information of data.
SELF-ORGANIZING MAP (SOM)

The SOM is an effective software tool for the visualization of

high-dimensional data. It implements an orderly mapping of

a high-dimensional distribution onto a regular low-

dimensional grid. Thereby, it is able to convert complex,

non-linear statistical relationships between high-dimen-

sional data items into simple geometric relationships on a

low-dimensional display while preserving the topology struc-

ture of the data (Bowden et al. ). The way SOMs go

about reducing dimensions is by producing a map of usually

one or two dimensions that plot the similarities of the data

by grouping similar data items together. Thus, SOMs accom-

plish two things; they reduce dimensions and display

similarities. The basic SOM network consists of two

layers, an input layer and a Kohonen layer, which in most

common applications is two dimensional. In the input

layer, one neuron is dedicated for each variable. The
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Kohonen layer neurons are related to every neuron of the

input layer via adjustable weights. A two-level SOM neural

network is a better approach to catch a preliminary over-

view on intricate data set. It augments the conventional

SOM network with an additional one-dimensional Kohonen

layer in which each neuron is connected to neurons in the

previous Kohonen layer. The schematic view of the two-

level SOM network is shown in Figure 1.

It is important for every variable to have equal impact as

compared with other variables. Therefore, normalization of

data is an important step in data clustering. Converting the

data to the range of, for example, 0–1 prevents a variable

being more important when compared with others.

The SOM is trained iteratively. It is recommended that the

number of iteration should be at least 500 times the

number of neurons in the Kohonen layer (Haykin ;

Kohonen ). Initially the weights are assigned randomly.

When the n-dimensional input vector x is sent through the

network, the distance between the weight w neurons of

SOM and the inputs is computed. The most common cri-

terion to compute the distance is Euclidean distance

(Bowden et al. ):

X�wk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
Xi �wið Þ2

q
(7)
Figure 1 | Architecture of the two-level self-organizing map (SOM) neural network (Hsu &

Li 2010).

://iwaponline.com/jh/article-pdf/15/3/829/387064/829.pdf
The weight with the closest match to the presented input

pattern is called winner neuron or best matching unit

(BMU). The BMU and its neighboring neurons are allowed

to learn by changing the weights at each training iteration

t, in a manner to further reduce the distance between the

weights and the input vector (Bowden et al. ):

w tþ 1ð Þ ¼ w tð Þ þ α tð Þhlm x�w tð Þð Þ (8)

where α is the learning rate, ranging in [0 1], l and m are the

positions of the winning neuron and its neighboring output

nodes and hlm is the neighborhood function. The most com-

monly used neighborhood function is the Gaussian

(Bowden et al. ):

hlm ¼ exp � 1�mk k2
2σ tð Þ2

 !
(9)

where hlm is the neighborhood function of the best matching

neuron l at iteration t; and l–m is the distance between neur-

ons l and m on the map grid; and σ is the width of the

topological neighborhood. The training steps are repeated

until convergence. After the SOM network is constructed,

the homogeneous regions, i.e. clusters, are defined on the

map.
FEED-FORWARD NEURAL NETWORK (FFNN)

The ANN is widely applied in hydrology and water resource

studies as a forecasting tool. In an ANN, feed-forward back-

propagation (FFBP) networks are common to engineers. It

has been proved that the FFBP network model with three

layers is satisfied for the forecasting and simulation of any

engineering problem (Hornik ; ASCE a; Nourani

et al. ).

As shown in Figure 2, three-layered FFNNs, which have

been usually used in forecasting hydrologic time series, pro-

vide a general framework for representing non-linear

functional mapping between a set of input and output vari-

ables. Three-layered FFNNs are based on a linear

combination of the input variables, which are transformed

by a non-linear activation function.



Figure 2 | A three-layered feed-forward neural network with the back propagation (BP)

training algorithm.
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In Figure 2, i, j and k denote input layer, hidden layer

and output layer neurons, respectively and w is the applied

weight by the neuron. The term ‘feed forward’ means that

a neuron connection only exists from a neuron in the

input layer to other neurons in the hidden layer or from a

neuron in the hidden layer to neurons in the output layer

and the neurons within a layer are not interconnected to

each other. The explicit expression for an output value of

a three-layered FFNN is given by (Nourani et al. ):

ŷk ¼ f0⌊
XMN

j¼1
wkj � fh

XNN

i¼1
wijxi þwjo

� �
þwko⌋ (10)

wherewji is a weight in the hidden layer that connects the ith

neuron in the input layer and the jth neuron in the hidden

layer, wjo is the bias for the jth hidden neuron, fh is the acti-

vation function of the hidden neuron, wkj is a weight in the

output layer that connects the jth neuron in the hidden

layer and the kth neuron in the output layer, wko is the bias

for the kth output neuron, fo is the activation function for

the output neuron, xi is ith input variable for input layer

and ŷk, y are computed and observed output variables,

respectively. NN and MN are the number of the neurons in

the input and hidden layers, respectively. The weights are

different in the hidden and output layers, and their values

can be changed during the process of the network training.
EFFICIENCY CRITERIA

To perform the FFNN model, the rainfall and runoff data

sets were split into calibration and verification subsets. To
om http://iwaponline.com/jh/article-pdf/15/3/829/387064/829.pdf
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achieve better performance it was tried to put time series

extreme values in a calibration data set. For this purpose,

the first 25% of total data were used as the verifying set

and the remaining 75% were used for training the proposed

model. The time series before going through the network

were normalized between 0 and 1. A proper model yields

comparatively good results in terms of determination coeffi-

cient and root mean squared error (RMSE) in training and

verification steps. Consequently, to assess model efficiency,

the following measurements were used to compare the per-

formance of various models (Nourani ):

DC ¼ 1�
PN

i¼1 Oobsi �Ocomi

� �2
PN

i¼1 Oobsi �Oobsi

� �2 (11)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 Oobsi �Ocomi

� �2
N

s
(12)

where DC, RMSE, N, Oobsi , Ocomi and Oobs are determi-

nation coefficient, root mean squared error, number of

observations, observed data, computed values and mean

value of observed data, respectively. DC evaluates model

accuracy by comparing observed data and predicted values

(Equation (11)). RMSE is used to measure the discrepancy

between observed data on which the model is developed

and predicted values that are created via the model

(Equation (12)). A high value for DC (up to one) and a

small value for RMSE in both training and validation steps

indicate high efficiency of the model. Legates & McCabe

() showed that a hydrological model can be evaluated

sufficiently using these two statistical values.

Also, due to the importance of extreme values of dis-

charge in the rainfall–runoff simulation for water resources

management and flood mitigation purposes, Equation (13)

can be used to compare the ability of different models to

capture the peak values of a runoff time series (Nourani

et al. ):

DCpeak ¼ 1�
Pn

i¼1 QPCi �QPOi

� �2
Pn

i¼1 QPOi �QPO

� �2 (13)

where, DCpeak is the determination coefficient for peak

values, n refers to number of peak values
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QPOi , QPCi andQPO are observed data, computed values and

mean of observed runoff peak values, respectively.
STUDY AREA AND DATA

In order to evaluate the performance of the proposed model,

two study areas (i.e. the Delaney Creek and Payne Creek

sub-basins) with various topological characteristics were

used in this study. The characteristics of the watersheds

are introduced in cases (1) and (2), comprehensively.

Case study (1): Delaney Creek sub-basin

The Delaney Creek sub-basin in Tampa Bay Watershed was

selected as the first study area in the current research. The

basin is located at Florida State between 27W520 and 27W560

north latitude and 82W220 and 82W240 west longitude and its

drainage area is about 42 km2 of open water, which drains

to Tampa Bay on the Gulf of Mexico, including the area

draining from Gasparilla Pass and the watershed of Hills-

borough Bay. The city of Tampa and the southern portion

of the metropolitan Tampa Bay area are within the water-

shed (Figure 3).

The Tampa Bay Watershed contains some of the most

productive agricultural lands of the state. This watershed is

fairly flat and its elevation varies between 10 m above and

below sea level. The climate of the region is subtropical

and exhibits a transitional pattern from continental to
Figure 3 | Study area (Delany Creek sub-basin).

://iwaponline.com/jh/article-pdf/15/3/829/387064/829.pdf
tropical Caribbean. Long, warm and humid summers are

typical as well as mild, dry winters. The annual average

temperature and the total yearly rainfall are about 23 WC

and 1,350 mm, respectively. The observed daily stream

flow and rainfall time series of Delaney Creek Station,

where the outlet of the Delaney Creek Watershed is, were

retrieved via the United States Geological Survey (USGS)

website and used in this study. Time series included 6,403

daily data observations from August 1993 to December

2011. The observed data from August 1993 to December

1997 were used as the verification set and the remaining

data were employed for training the model.
Case study (2): Payne Creek sub-basin

The Payne Creek sub-basin located in the Peace Tampa Bay

watershed in Florida was selected as the second study area

in this research (Figure 4). The Peace Tampa Bay watershed

connects central Florida to the southwest coast and consists

of nine sub-basins. The Payne Creek sub-basin is the second

smallest basin in the watershed located at the northwest
Figure 4 | Study area (Payne Creek sub-basin).



836 V. Nourani & M. Parhizkar | Artificial intelligence tolls for rainfall–runoff modeling Journal of Hydroinformatics | 15.3 | 2013

Downloaded fr
by guest
on 20 August 2
portion of the Peace River watershed. The Payne Creek

Basin covers a 322 km2 area. The Payne Creek River flows

through the sub-basin with annual mean flow of 2 cm. The

climate of the area is generally subtropical with an annual

average temperature of about 23 WC. Annual average rainfall

over or around the Payne Creek sub-basin is 1,270–

1,420 mm. The developed models require discharge and

rainfall time series for training and testing purposes. The

observed daily stream flow values of Payne Creek station

and rainfall data of Bartow station were used in this study

(see Figure 4). Bartow station is located upstream of the

sub-basin. The location of discharge gauge is in the middle

part of the watershed. Changes in elevation are most con-

spicuous along the ridges and scarps. The elevation

variation between the upstream and middle part of the

watershed indicates the ‘sloppy’ situation (i.e. the watershed

includes steep slopes) of the study area.

The rainfall and runoff time series included 5,841 daily

data observations from July 1995 to July 2011. The observed

data from July 1995 to September 2008 were used for the

training set and the remaining data were employed as the

verification set. The statistics of the rainfall and runoff

time series for both study areas have been tabulated in

Table 1.
RESULTS AND DISCUSSION

The increase of wavelet-based sub-signals as WANN inputs

may lead to an essential deterioration in the model that is

usually reflected in the network overfitting. Hence, data

pre-processing (i.e. combination of wavelet and SOM in

this research) is a crucial step in the modeling. In order to

optimize the input layer and improve the efficiency of the

FFNN-based rainfall–runoff model of the watersheds,
Table 1 | Statistics of rainfall and runoff data for the study areas

Rainfall time series (mm)

Study area Data set Max. Min. Mean St

Delaney Creek Calibration 154.18 0 3.49 10
Verification 81.78 0 2.49 8

Payne Creek Calibration 158.8 0 3.60 11
Verification 94.00 0 2.80 8

om http://iwaponline.com/jh/article-pdf/15/3/829/387064/829.pdf
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temporal pre-processing of time series was performed

using a combination of wavelet transform and SOM cluster-

ing method. Schematic diagram of the proposed model is

shown by Figure 5. The details of the proposed methodology

and results are presented in the following sub-sections. The

methodology was initially explained for the Delany Creek

sub-basin. Subsequently, to have a better evaluation of the

proposed methodology, WSNN approach was also applied

on rainfall and runoff time series for the Payne Creek sub-

basin.
Results of proposed WSNN model

Elucidation of time series simultaneously in both spectral

and temporal terms helps FFNN for better interpretation

of the process. The wavelet transform was used to decom-

pose rainfall and runoff time series at level 5 into six sub-

series (one approximation and five details), the optimum

decomposition level obtained through trial–error procedure.

In order to have a comprehensive overview on decompo-

sition level, initially the following formula (which offers a

minimum level of decomposition) was employed (Aussem

et al. ; Nourani ):

L ¼ int log Nð Þ½ � (14)

where L and N are decomposition level and number of time

series data, respectively. For the first case study N¼ 6,403,

thus L¼ 3. This experimental equation was derived for

fully autoregressive signals, and only considering time

series length without paying attention to seasonal signatures

of a hydrologic process (Nourani et al. ). Hence, by

application of decomposition level 3, only a few seasonal-

ities in the main time series might be taken into account.

Decomposition level 3 yields three detailed sub-series
Runoff time series (m3/s)

andard deviation Max. Min. Mean Standard deviation

.78 16.46 0 0.27 0.53

.90 3.75 0 0.23 0.68

.2 77.84 0 3.80 6.06

.70 15.20 0 2.20 2.70



Figure 5 | Schematic diagram of the proposed methodology.
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(i.e., 21-day mode, 22-day mode, 23-day mode, which is

nearly a weekly mode), but according to the hydrological

base of the time series, there might be other dominant sea-

sonalities with longer periods. Therefore, two other

decomposition levels (i.e., 5 and 7) were also examined, in

which decomposition level 5 led to better results via the pre-

sented modeling and was selected as the optimum

decomposing level. Level 5 sub-series contains five details

as 21-day mode, 22-day mode, 23-day mode, which is

nearly weekly mode, 24-day mode and 25-day mode, which

is nearly monthly mode. Therefore, the seasonality of the

process up to 1 month could be handled by the model.

Due to proportional relationship between amount of rainfall

and runoff, these signals were supposed to have the same

seasonality level and both time series were decomposed at

same level (i.e. level 5). Daubechies-2 (db2), Meyer and

coif2 mother wavelets were applied to decompose both rain-

fall and runoff time series. To investigate the effect of form

similarity between mother wavelet and main time series,

another selection of mother wavelets were also examined.

For this purpose, two other mother wavelets (Haar and Dau-

bechies-4, db4) were chosen according to the formation of

main signals. As the Haar wavelet has a pulsed shape, it

could properly capture the signal features of rainfall time

series and may yield comparatively high efficiency (Nourani

). Conversely, there are many jumps in the runoff time
://iwaponline.com/jh/article-pdf/15/3/829/387064/829.pdf
series because of sudden start and cessation of rainfall

over the related watershed. Therefore, due to the formation

of adb4 wavelet that is similar to the runoff signal, it could

capture the signal features, especially peak points, efficiently

and led to comparatively good results. Thus, Haar and db4

mother wavelets were also used to decompose rainfall and

runoff time series, respectively. Mallat () can be referred

to for more information on mathematical concepts of the

mother wavelets. For instance, Figure 6 shows approxi-

mation and details sub-series of rainfall time series

decomposed by the Haar mother wavelet at level 5. For

application of discrete wavelet transform, a code was devel-

oped in the MATLAB environment (MathWorks a).

Boundary (edge) effect is one of the deficiencies in the appli-

cation of wavelet transform that happens due to application

of the wavelet to the beginning and end of the time series

(signals) at which point there are no data before and after.

As a solution, the Zero Padding method was used (Addison

et al. ). Therefore, as the time series were long enough

for two case studies, suitable amounts of data were neg-

lected from the beginning and end parts of time series

after wavelet application.

The increase of sub-series as inputs of FFNNmay lead to

network overfitting, divergence, obscurity and poor accu-

racy. Therefore, to optimize the number of input and

improve the model training rate and efficiency, we tried to



Figure 6 | Approximation and details sub-signals of rainfall time series decomposed at level 5 for the Delaney Creek sub-basin.
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choose a dominant sub-series from the decomposed rainfall

and runoff time series prior to imposition into the FFNN

model. In conventional trial and error methodology, for 10

details as potential inputs, 210� 1 input combinations (for

d inputs, 2d� 1 combinations can be assigned) should be

examined. In a complex hydrological system with large

value of d, an efficient algorithm, instead of a conventional

trial and error method, is needed to select dominant input

variables. The problem further intensifies in time series, in

which appropriate lags must also be considered. As SOM

compresses information while preserving the most impor-

tant topological and metric relationships of the primary

data items on the display, it can be an effective tool to

extract dominant features of a process. Therefore, sub-

series obtained by wavelet transform were imposed to

SOM to be clustered into several groups, as similar sub-

series were stood in the same cluster. Centers of clusters

that well represented the cluster patterns were imposed to

the FFNN as model inputs. For this purpose, a two-step

SOM clustering method was employed to select the effective

sub-series and reduce the dimensionality of the input space.

At the first step, a two-dimensional SOM was applied to

have an overview on signals patterns and approximate
om http://iwaponline.com/jh/article-pdf/15/3/829/387064/829.pdf
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number of clusters to be assigned, regarding the SOM top-

ology. Subsequently, in the second step, in order to be

ensured of the highlighted clusters, a one-dimensional

SOM was applied to classify the signals with specific num-

bers of groups determined at the first step. Afterwards, the

Euclidean distance criterion was utilized to select the cen-

troid signal of each cluster that was the best representative

of the data pattern within the cluster. For application of a

SOM on a data set, the SOM Toolbox from MATLAB was

used to cluster the data (MathWorks b). Detailed sub-

series were imposed to the SOM in order to extract domi-

nant details that can have a significant role in attaining

accurate model results. After decomposition of the Delany

Creek time series at level 5 and in order to apply the pro-

posed two-step SOM, the size of Kohonen layer was

considered to be 4 × 4 for the first step. As the number of

detailed sub-series was 10 (five rainfall detailed sub-series

in addition to five runoff detailed sub-series), the mentioned

size was large enough to ensure that a suitable number of

clusters are formed from the training data. Figure 7 presents

the resulted neighbor weighted distances of the output layer

size 4 × 4 which contains detailed sub-series obtained by

decomposing through Haar-db4 mother wavelets. The



Figure 7 | Neighbor weighted distances obtained by two-dimensional (2D) self-organizing

map (SOM) for data from the Delaney Creek sub-basin.
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neighbor weight distances’ plan presents output neurons

and their direct neighbor relationship. The regular hexago-

nals display the SOM output neurons while the stretched

hexagonals indicate the distances between neurons. The

darker colors demonstrate larger distances, and lighter

colors refer to smaller distances. Figure 8 shows the hits

plan of the output layer size of 4 × 4 that contains detailed

sub-series obtained by decomposing through Haar-db4

mother wavelets. The hits plan is an illustration of a SOM

output layer, with each neuron showing the number of

classified input vectors. The relative number of vectors for

each neuron is shown via the size of a colored patch.

According to obtained neighbor weighted distances

(Figure 7), darker hexagonals divided the Kohonen layer
Figure 8 | Hits plan obtained by two-dimensional (2D) self-organizing map (SOM) for data

from the Delaney Creek sub-basin.

://iwaponline.com/jh/article-pdf/15/3/829/387064/829.pdf
approximately into four parts, in the two-dimensional

SOM. To be assured of the optimized clustering result, the

one-dimensional SOM was also examined in the second

step (i.e., 1 × 3, 1 × 4, 1 × 5 and 1 × 6 Kohonen layers).

Obtained results via the FFNN models in the next stage

proved that output layer of size 1 × 4 could lead to better

results and four clusters was considered as the optimum

number of clusters.

The centroid of each cluster was selected using the

Euclidean distance criterion and assigned as the representa-

tive of the cluster. Table 2 presents clustering patterns and

selected sub-series for each of applied mother wavelets.

Detailed sub-series of rainfall at levels 1 and 2 were usually

grouped in a same cluster with runoff detailed sub-series at

same seasonalities (i.e., scales of 21 days and 22 days of rain-

fall and runoff time series are related). Detailed sub-series of

runoff are more effective than rainfall sub-series in runoff

prediction, which were truly selected by SOM in this

study. In order to highlight the dynamic entities in time

series via wavelet continuous wavelet transform (CWT)

was applied on a data set using the MATLAB toolbox. The

scalogram of runoff for last 600 days, extracted by the db4

mother wavelet, is shown in Figure 9. A scalogram is a

visual method to display a wavelet transform. There are

three axes: x represents time, y represents seasonalities,

and z represents coefficient value. The z axis is often

shown by varying the color or brightness. CWT results con-

firmed the consequences obtained via the proposed

methodology. For instance, 16-day mode was interpreted

as an initial seasonality in the scalogram, which is in agree-

ment with d4q obtained using a DWT (detailed sub-series)

and selected via a SOM (see Table 2).

Consequently, two approximation sub-signals and four

details, as the centroids of the classes, obtained by SOM

might efficiently constitute dominant inputs of FFNN

model for the study case of the Delaney Creek sub-basin.

The proposed hybrid model contains numerous par-

ameters such as number of hidden neurons, training

iteration number (epoch), number of SOM clusters,

decomposition levels and mother wavelet type; their appro-

priate determination and selection may lead to improvement

of the model efficiency.

Assigned inputs were then imposed to a FFNN model to

forecast 1-day-ahead runoff value. Selected input variables



Table 2 | SOM clustering for the Delaney Creek sub-basin

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Mother wavelet Data Center Data Center Data Center Data Center

Haar-db4 d1p, d2p, d3p, d4p, d1q, d2q d2q d3q, d5q d3q d4q d4q d5p d5p

coif2 d1p, d2p, d3p, d1q, d2q, d3q d3q d4p, d4q d4q d5q d5q d5p d5p

db2 d3p, d4p, d1q, d4q d4q d2q, d3q, d5q d3q d1p, d2p d1p d5p d5p

Meyer d3p, d2q, d3q, d4q d3p d1p, d2p, d1q d1q d5p, d5q d5q d4p d4p

dip: detail sub-series of rainfall in level i.

diq: detail sub-series of runoff in level i.

Figure 9 | Scalogram of runoff time series extracted via db4 mother wavelet for the Delaney Creek sub-basin.
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via a SOM, best models structures and obtained perform-

ance criteria (i.e. DC and RMSE) of the proposed

modeling according to the applied mother wavelets are

shown in Table 3. Input variables d1, d2, d3, d4, d5 included

wavelet details of the rainfall and runoff time series that indi-

cate; 21-day mode, 22-day mode, 23-day mode, which is

nearly weekly mode, 24-day mode and 25-day mode, which

is nearly monthly mode, respectively. The output variable
om http://iwaponline.com/jh/article-pdf/15/3/829/387064/829.pdf
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in Table 3 is 1-day-ahead runoff values. Network structure

respectively indicates number of input variables, hidden

neurons and output variable of the selected structure. The

optimal hidden neuron numbers were obtained through

trial and error procedure. In this way, 6–25 hidden neurons

were examined in a single hidden layer for each FFNN struc-

ture and the optimal number of hidden neurons was

determined. Decomposition of the time series by Haar-db4



Table 3 | Results of proposed WSNN model for the Delaney Creek sub-basin

Calibration Verification

Mother wavelet type Selected details as input variablesa FFNN structureb Epoch no. DC RMSE (normalized) DC RMSE (normalized)

Haar-db4 d2q, d3q, d4q, d5p (6-9-1) 300 0.94 0.008 0.86 0.015

coif2 d3q, d4q, d5q, d5p (6-9-1) 180 0.92 0.009 0.82 0.017

db2 d4q, d3q, d1p, d5p (6-9-1) 110 0.86 0.011 0.67 0.023

Meyer d3p, d1q, d5q, d4p (6-9-1) 110 0.86 0.012 0.70 0.022

aApproximation of sub-series of rainfall and runoff were imposed to the FFNN in addition to detailed sub-series.
bThe results for the best structure have been presented.

DC, determination coefficient; RSME, root mean squared error.
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mother wavelets, which matches patterns of main time

series, led to a better performance. The results reconfirmed

previous recommendations about similarity of mother wave-

lets formation with main time series (Nourani ). The

high stochastic feature of precipitation makes its effects

unpredictable; therefore rainfall sub-series may not be a

good regressor to predict the runoff values, individually.

On the other hand, runoff time series, according to its Mar-

kovian inherent, shows strong regression with some of its

constitutive seasonalities. Hence, runoff sub-series are

more effective in runoff prediction than rainfall sub-series.

Accordingly, more runoff sub-series were truly selected

than rainfall sub-series by the SOM of the applied method-

ology. In data pre-processed via db2 and Meyer mother

wavelets, two detailed sub-series of rainfall time series par-

ticipated in the modeling which decreased DC to 0.67 and

0.7, whereas in data pre-processed by coif2 and Haar-db4

mother wavelets, only one of the detailed sub-series of rain-

fall fell separately in the modeling. Therefore, higher DC (i.e.

0.82 and 0.86 for coif2 and Haar-db4 mother wavelets,

respectively) was obtained by using the two mentioned

mother wavelets. For all mother wavelets, same ANN
Table 4 | WSNN results in different decomposition levels using haar-db4 mother wavelets for

Calibration

Decomposition level FFNN structurea DC

3 (4-7-1) 0.91

5 (6-9-1) 0.94

7 (6-10-1) 0.62

aIn this table the best result for each model has been presented.

DC, determination coefficient; RSME, root mean squared error.
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structure (i.e., six input variables, nine hidden neurons and

one output variable) led to better results, which may be

due to the same numbers of inputs in all structures. To con-

sider the effect of decomposition level on the model

performance, two other decomposition levels of wavelet

transformation (i.e. levels 3 and 7) were also examined

using Haar-db4 mother wavelets in this research. Decompo-

sition at level 3 yields three detailed sub-series (i.e., 21-day

mode, 22-day mode, 23-day mode, which is nearly weekly

mode) and decomposition at level 7 that contains four

more details (i.e., 24-day mode, 25-day mode, which is

nearly monthly mode, 26-day mode and 27-day mode).

Table 4 includes results obtained by WSNN according to

different decomposition levels using Haar-db4 mother wave-

lets for the Delaney Creek sub-basin. The employed SOM

output layer for decomposing at levels 3 and 7 were 1 × 2

and 1 × 4, respectively. The level 5 decomposition showed

better results among other examined decomposition levels.

When using decomposition level 3, few seasonalities from

main time series were taken into account. Therefore, an inef-

ficient number of time scales decreased the model

performance. Model performance was greatly reduced by
the Delaney Creek sub-basin

Verification

RMSE (normalized) DC RMSE (normalized)

0.011 0.85 0.009

0.008 0.86 0.015

0.020 0.54 0.028
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increasing the decomposition level up to level 7. Level 7 of

decomposition included 16 sub-series (i.e. 14 detailed and

two approximation sub-series of rainfall and runoff time

series) which seemed to be excessive for SOM to handle

the clustering well. Figure 10 compares observed and com-

puted data of calibration and verification time series

obtained by the proposed methodology through decompos-

ing at level 5, using Haar-db4 mother wavelets and

reconstructed via the trained FFNN for the Delaney Creek

sub-basin.

One of the important concerns regarding the forecasting

models is the capability of the model to provide a useful hor-

izon of forecasts. In this way, a multi-step-ahead approach in

FFNN was also applied on decomposed time series obtained

by Haar-db4 mother wavelets. In order to explore predic-

tions several time steps ahead, the lead times of runoff

time series (i.e. 2, 4, 5, 8 days of lead time) were considered

as output neurons and subsequently the relevant FFNN

models were trained and verified. The lead time of 5 days

led to better performance in term of DC compared with
Figure 10 | Results of the wavelet–SOM–FFNN model (WSNN) model for decomposing by Haar

Delaney Creek sub-basin.

om http://iwaponline.com/jh/article-pdf/15/3/829/387064/829.pdf

022
other lead times. Multi-step-ahead forecasting performance

poorly compared with 1-day-ahead forecasting. Obtained

results have been tabulated in Table 5 for multi-step-ahead

forecasting.

Sensitivity analysis

To survey the efficiency of SOM in extracting dominant

inputs for the FFNN model, the classic sensitivity analysis

was applied on sub-series of the Delaney Creek sub-basin

obtained by wavelet transform. To apply sensitivity analysis

on sub-series obtained by decomposing the time series at

level 5, 212� 1 subsets of wavelet outputs should be exam-

ined. Table 6 shows samples of analyzed data obtained by

decomposing via Haar-db4 mother wavelets. Input combi-

nations of sub-series that included rainfall sub-series

performed poorly in the modeling process. It appears that

an approximation of sub-series of rainfall did not have a

considerable effect on the model performance in the

studied watershed. Thus, the supposed hypothesis of the
-db4. (a) Computed and observed runoff. (b) Detail of a hydrograph. (c) Scatter plot for the



Table 5 | Results of multi-step ahead forecasting using Haar-db4 mother wavelets for the Delaney Creek sub-basin

Calibration Verification

Input variablesa Output variable FFNN structureb Epoch no. DC RMSE (Normalized) DC RMSE (Normalized)

d2q, d3q, d4q, d5p Qtþ2 (6-9-1) 270 0.87 0.011 0.68 0.023

d2q, d3q, d4q, d5p Qtþ4 (6-8-1) 290 0.81 0.014 0.65 0.024

d2q, d3q, d4q, d5p Qtþ5 (6-8-1) 100 0.81 0.014 0.74 0.022

d2q, d3q, d4q, d5p Qtþ8 (6-7-1) 130 0.66 0.019 0.27 0.035

aApproximation sub-series of rainfall and runoff were imposed to FFNN in addition to detail sub-series.
bThe results for the best structure have been presented.

DC, determination coefficient; RSME, root mean squared error.

Table 6 | Results of sensitivity analysis by FFNN for the Delaney Creek sub-basin

Determination coefficient (DC)

ANN structurea Input variables Calibration Verification

(1, 3, 1) apq 0.50 0.30

(2, 6, 1) apq, app
b 0.54 0.36

(2,9,1) apq, d1p 0.70 0.60

(2, 6, 1) apq, d2p 0.64 0.64

(2, 8, 1) apq, d3p 0.7 0.67

(2, 10, 1) apq, d4p 0.57 0.57

(2, 4, 1) apq, d5p 0.57 0.38

(2, 10, 1) apq, d1q 0.79 0.78

(2, 9, 1) apq, d2q 0.73 0.78

(2, 5, 1) apq, d3q 0.71 0.71

(2, 6, 1) apq, d4q 0.45 0.34

(2, 10, 1) apq, d5q 0.74 0.6

(3, 8, 1) apq, dq1, d2q 0.83 0.78

(4, 6, 1) apq, d1q, d3q, d4q 0.89 0.87

(4, 7, 1) apq, d2q, d3q, d5q 0.89 0.85

(4, 5, 1) apq, d1q, d2q, d3q 0.87 0.85

(4, 6, 1) apq, d3q, d4q, d5q 0.91 0.86

aThe results for the best structure have been presented.
bapq: approximation sub-series of runoff, app: approximation sub-series of rainfall.
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effect of both approximations seems illogical in the case

study. This situation may be due to the high stochastic fea-

ture, the precipitation event, which makes its effects

unpredictable – but runoff time series according to its Mar-

kovian inherent is related to some of its constitutive

seasonalities. By comparing results with the SOM output,

it is seen that the SOM truly neglected the rainfall
://iwaponline.com/jh/article-pdf/15/3/829/387064/829.pdf
sub-series and mostly involved the runoff sub-series in the

modeling. As there are five detailed sub-series for runoff,

25� 1 components of runoff details are analyzed to

survey the correctness of the components selected by the

SOM. Components of the runoff sub-series that performed

better are shown in Table 6. The approximation sub-series

of runoff, individually, covered 30% of the resultant DC.

By comparing the results tabulated in Tables 3 and 6, it is

clear that the runoff component selected via SOM (i.e.

the component involved detailed the sub-series of levels

2, 3 and 4) is more efficient than the other components.

The tabulated results show that although a few of selected

inputs by SOM did not have a significant effect on FFNN

modeling, the performance of the SOM is still reliable

and acceptable. As the SOM clusters data according to its

similarity and does not pay attention to importance of

data in modeling the process, it is possible for a cluster to

contain thoroughly unimportant data. For example in this

study, in using Haar-db4 mother wavelets, clusters 3 and

4 contain members that have a low effect on the model effi-

ciency. Thus, the SOM may be considered as a pre-screen

tool for the complete sensitivity analysis, and can reduce

the trial-error steps from 212� 1 to 25� 1 for the first

case study. Therefore, not only does the application of sen-

sitivity analysis on SOM outputs reveal important data, but

it also eliminates the need to examine all 2d� 1 subsets of

the initial sub-series obtained by the wavelet transform.

Comparison of the models

To truly evaluate the efficiency of the proposed hybrid

WSNN model, the methodology was similarly applied to
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the data of case study 2 (i.e. the Payne Creek sub-basin). The

obtained results were also compared with the results of an

ad hoc FFNN (without data pre-processing) and ARIMAX

models.

An ad hoc multi-layer FFNN without any data pre-pro-

cessing was developed as a benchmark to evaluate the

proposed model performance for each case study. In this

way, four structures were tested for an ad hoc FFNN

model. First, 3–25 hidden neurons in a single hidden layer

were examined for training each FFNN structure using the

Levenberg-Marquardt training algorithm (Haykin ) to

determine the best structure. To ensure that the network

did not overfit the training data, the training was terminated

when the error in the validation data set began to rise. For

instance, the best result for each model has been tabulated

in Table 7 for the Delaney Creek sub-basin. The results

showed the low performance of the model even when
Table 7 | Results and structure of the ad hoc FFNN model for the Delaney Creek sub-

basin

Determination coefficient (DC)

Network
structurea Input variablesb Calibration Verification

(4, 4, 1) Qt, Qt�1, It, It�1 0.89 0.73

(4, 9, 1) Qt, Qt�1, Qt�2, It 0.88 0.85

(5, 14, 1) Qt, Qt�1, Qt�2, Qt�3, It 0.90 0.81

(6, 19, 1) Qt, Qt�1, Qt�2, Qt�3,
Qt�4, It

0.87 0.68

aThe results for the best structure have been presented.
bQtþ1: output variable.

Table 8 | Comparison of results obtained in two study areas

Calibration

Study area Model typea DC RMSE (normalize

Delany Creek ARIMAX 0.78 0.0170
WSNNb 0.94 0.008
FFNN 0.90 0.012

Payne Creek ARIMAX 0.72 0.019
WSNN 0.87 0.027
FFNN 0.94 0.015

aIn this table, the best result for each model has been presented.
bCombination of wavelet, SOM and FFNN methods.

DC, determination coefficient; RSME, root mean squared error.

om http://iwaponline.com/jh/article-pdf/15/3/829/387064/829.pdf
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previous days rainfall–runoff data constituted input data.

This finding was probably because of significant signal fluc-

tuations around the mean value that reduced the short-term

regression between data. By increasing the number of input

variables, the number of hidden neurons also was grown.

Model efficiency was reduced when rainfall and runoff

data from the previous 4 days was involved in the modeling.

This situation might be due to the hydrological regime of the

study area in that the precipitation over the watershed

usually takes up to 3 days and rarely continues to a fourth

day. Therefore, the fourth neuron in the input layer usually

received a zero value, which acted as the network noise

and reduced the model efficiency.

To have a better interpretation of the model perform-

ance, the linear ARIMAX model was also employed for

both case studies. In this research, the ARIMAX(p,d,q)I(t)

model was applied in which p, q and d refer to orders of

autoregressive and moving average components and the

number of differencing operations, respectively (Salas

et al. ). The best ARIMAX structure for Delaney

Creek sub-basin belongs to ARIMAX (3, 0, 1) I(t). For this

model, firstly an ARIMAX model was fitted to the cali-

bration data to calibrate the model. The calibrated model

was then used to find the values for the verification data,

day by day. Table 8 presents the best results obtained by

ARIMAX, ad hoc FFNN (without data pre-processing) and

the proposed WSNN models for both case studies. Tabu-

lated results indicate that the ARIMAX model, due to its

linear inherence is unable to completely handle the complex

non-linear rainfall–runoff process. Although the ad hoc

FFNN model is more efficient than the ARIMAX model, it
Verification

d) DC RMSE (normalized) DCpeak verification

0.65 0.0181 0.82
0.86 0.015 0.95
0.81 0.016 0.84

0.64 0.025 0.76
0.79 0.016 0.90
0.77 0.016 0.81
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only considered short-term autoregressive features of the

process and could not capture long-term seasonality. There-

fore, it performed worse compared with when it was linked

to wavelet and SOM concepts. Another criterion for com-

paring performance of different models is the capability of

the model to estimate peak values of runoff, a key task in

any flood mitigation program (Equation (13)). According

to the results presented in Table 8, the proposed hybrid

model, which considered seasonal patterns, was more effi-

cient in detecting peak discharges than the two other

models. It is evident that extreme or peak values in the rain-

fall and runoff time series, which occur in a periodic pattern,

can be detected accurately by the seasonal models. For

example, Figure 11 compares results obtained via FFNN

and WSNN models with the observed runoff data for the

Delaney Creek sub-basin.

By comparing the data (i.e. maximum and standard

deviation values; Table 1) and topologic characteristics

(i.e. slope and area, see section on Study Area and Data)

of both watersheds, it can be emphasized that the Payne

Creek sub-basin, with a vaster area and spatially different

topological features, may show more complex dynamic be-

havior than the Delaney Creek sub-basin. Therefore, in
Figure 11 | Comparison of the results of FFNN and wavelet–SOM–FFNN model (WSNN) mode

://iwaponline.com/jh/article-pdf/15/3/829/387064/829.pdf
spite of the acceptable performance of the WSNN model

for both watersheds, the proposed WSNN model, as well

as the ad hoc FFNN and ARIMAX models, led to a lower

performance for the Payne Creek sub-basin with respect to

the Delaney Creek sub-basin (see Table 8).
CONCLUDING REMARKS

The use of wavelet-ANN-based modeling of the rainfall-

runoff process that detects non-linear relationships simul-

taneously in various time scales, has grown greatly in

recent years. Although several seasonalities can be found

in a process, not all of them are informative or have a con-

siderable effect on the model performance. Application of

a model, such as the FFNN, without proper data pre-proces-

sing can lead to deterioration in modeling that usually

becomes manifested as network overfitting. In this paper,

a combination of two methodologies was applied to pre-pro-

cess available rainfall–runoff time series data, before

imposing them to a FFNN. Wavelet transform was used to

capture multi-scale features of the signals by decomposing

the main time series into several sub-series. A SOM was
ls for decomposing by Haar-db4 mother wavelets for the Delaney Creek sub-basin.
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then applied to classify the decomposed sub-series into sev-

eral clusters. The center of the clusters as the representative

of these clusters were determined and imposed to a FFNN

to forecast 1-day-ahead and multi-step-ahead values of

runoff discharge. The observed rainfall and runoff data

from two study areas with different topological features

were used in this study. Three decomposition levels were

examined in the modeling (i.e. levels 3, 5 and 7). Decompos-

ing the main time series at level 5, which includes monthly

seasonality, led to better performance. Model performance

was greatly reduced by increasing the decomposition level

up to 7. This change might be due to an increase in the

sub-series number that the SOM could not cluster properly.

Four types of mother wavelets (i.e. db2, coif2 and Meyer

mother wavelets in first three transformations and a combi-

nation of Haar and db4 mother wavelets in the fourth

transformation for rainfall and runoff time series, respect-

ively) were applied in this research. The results proved

that the application of mother wavelets according to simi-

larity of mother wavelets shape with main time series

formations may lead to better results. Runoff sub-series,

according to its Markovian inherence, had more effect com-

pared with rainfall sub-series for rainfall–runoff modeling of

the studied watershed. Multi-step-ahead forecasting showed

a poor performance compared with 1-day-ahead forecasting.

To evaluate model performance, the proposed methodology

was also compared with two conventional models (i.e. the

ARIMAX method as a linear model and the ad hoc FFNN

without any data pre-processing as a non-linear model).

The results show that the ARIMAX model due to its linear

inherent nature could not detect non-linear relationship

between the studied parameters. Although the ad hoc

FFNN yielded a better performance, it only considered

short-term autoregressive features of the process and could

not capture long-term seasonalities. The sensitivity analysis

showed that as the SOMmethod classifies sub-series accord-

ing to similarity and does not pay attention to their

importance on the model performance, it is possible for a

cluster to contain unimportant sub-series. Therefore, a

post-sensitivity analysis of the SOM results seems to be the

logical way to ensure the dominance of the sub-series.

To complete the current study, it can be helpful to

involve other effective parameters such as evaporation in

runoff prediction. If a proper and longer data set is available,
om http://iwaponline.com/jh/article-pdf/15/3/829/387064/829.pdf
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we suggest that the phenomenon is also surveyed for longer

periods in seasonal and annual scales. The examination of

other artificial intelligence approaches to forecast runoff

values in the hydrological processes is also suggested. For

instance, according to the capability of the Fuzzy Set

theory, the conjunction of the Fuzzy and ANN concepts

as the Adaptive Neural-Fuzzy Inference System (ANFIS)

may led to a promising tool to handle the uncertainty of

the hydrological process as well as the hysteretic property.
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