Conjunctive grammars generate non-regular unary languages

Artur Jeż

August 21, 2007

Artur Jeż

Conjunctive grammars generate non-regular unary languages August 21, 2007

, 2007 1 / 21

• Conjunctive grammars introduced in 2001 by A. Okhotin.

3 × 4 3

- Conjunctive grammars introduced in 2001 by A. Okhotin.
- Extension of Context-free grammars by an intersection in a rule body.

- Conjunctive grammars introduced in 2001 by A. Okhotin.
- Extension of Context-free grammars by an intersection in a rule body.
- Productions of the form

$$A \to \alpha_1 \& \alpha_2 \& \dots \& \alpha_k$$
, for $\alpha_i \in (\Sigma \cup N)^*$.

- Conjunctive grammars introduced in 2001 by A. Okhotin.
- Extension of Context-free grammars by an intersection in a rule body.
- Productions of the form

$$A \to \alpha_1 \& \alpha_2 \& \dots \& \alpha_k$$
, for $\alpha_i \in (\Sigma \cup N)^*$.

Intuition of the semantics:

- Conjunctive grammars introduced in 2001 by A. Okhotin.
- Extension of Context-free grammars by an intersection in a rule body.
- Productions of the form

$$A \to \alpha_1 \& \alpha_2 \& \dots \& \alpha_k$$
, for $\alpha_i \in (\Sigma \cup N)^*$.

- Intuition of the semantics:
 - w is derived such production iff it is derived by each α_i

- Conjunctive grammars introduced in 2001 by A. Okhotin.
- Extension of Context-free grammars by an intersection in a rule body.
- Productions of the form

$$A \to \alpha_1 \& \alpha_2 \& \dots \& \alpha_k$$
, for $\alpha_i \in (\Sigma \cup N)^*$.

- Intuition of the semantics:
 - w is derived such production iff it is derived by each α_i
 - w is derived from α_i = N₁ · N₂ · ... · N_k iff w = w₁ w₂ ... w_k and w_j is derived from N_j for each j

Example

Example

$$\Sigma = \{a, b, c\},\$$

 $N = \{S, B, C, E, A\}$

- $S \rightarrow (AE)\&(BC)$
- $\textbf{A}
 ightarrow \textbf{aA} | \epsilon$
- $B
 ightarrow aBb|\epsilon$
- $\textbf{\textit{C}} \rightarrow \textbf{\textit{cC}}|\varepsilon$
- $E
 ightarrow \textit{bEc}|\varepsilon$

・ロト ・ 四ト ・ ヨト ・ ヨト

2

Example

Example

$$\Sigma = \{a, b, c\},\$$

 $N = \{S, B, C, E, A\}$

S ightarrow (AE)&(BC)	$\{a^nb^nc^n:n\in\mathbb{N}\}$
$oldsymbol{ extsf{A}} ightarrow oldsymbol{ extsf{a}} oldsymbol{ extsf{A}} ert \mathbf{ extsf{e}}$	a^*
$B ightarrow aBb \epsilon$	$\{a^nb^n:n\in\mathbb{N}\}$
$m{\mathcal{C}} ightarrow m{\mathcal{c}}m{\mathcal{C}} ert ec{\mathbf{c}}$	C *
$E ightarrow bEc \epsilon$	$\{b^n c^n : n \in \mathbb{N}\}$

<ロ> <四> <四> <三> <三> <三> <三</td>

natural extension of CFG

イロト イポト イヨト イヨト

э

- natural extension of CFG
- very close connection to language equations

< A

-

- natural extension of CFG
- very close connection to language equations
- from possible extensions of CFG this keeps the meaning of language equations

- natural extension of CFG
- very close connection to language equations
- from possible extensions of CFG this keeps the meaning of language equations
- good parsing properties

Definition

A conjunctive grammar is a $\langle \Sigma, N, S, P \rangle$ where

Artur Jeż

Conjunctive grammars generate non-regular unary languages August 2

August 21, 2007 5 / 21

3 + 4 = +

Definition

A conjunctive grammar is a $\langle \Sigma, N, S, P \rangle$ where

Σ is a finite alphabet

3 + 4 = +

5/21

Definition

A conjunctive grammar is a $\langle \Sigma, N, S, P \rangle$ where

- Σ is a finite alphabet
- N—set of non-terminal symbols

A

- A - TH

Definition

A conjunctive grammar is a $\langle \Sigma, N, S, P \rangle$ where

- Σ is a finite alphabet
- N—set of non-terminal symbols
- S—starting symbol

< 6 b

3 1 4 3

5/21

Definition

A conjunctive grammar is a $\langle \Sigma, N, S, P \rangle$ where

- Σ is a finite alphabet
- N—set of non-terminal symbols
- S—starting symbol
- P-set of productions of a form

$$\boldsymbol{A} \to \alpha_1 \& \alpha_2 \& \dots \& \alpha_k, \quad \alpha_i \in (\Sigma \cup \boldsymbol{N})^*$$

Semantics By term rewriting.

3 1 4 3

æ

Semantics By term rewriting.

Generalizes the Chomsky rewriting.

Artur Jeż

Conjunctive grammars generate non-regular unary languages August 21, 2007 6 / 21

< A

-

Semantics By term rewriting.

Generalizes the Chomsky rewriting. Drawbacks

< E

Semantics

By term rewriting.

Generalizes the Chomsky rewriting. Drawbacks

• There are more generalizations.

Semantics

By term rewriting.

Generalizes the Chomsky rewriting. Drawbacks

- There are more generalizations.
- Slightly problematic to handle.

Semantics

With each nonterminal A we associate a language L_A .

Artur Jeż

Conjunctive grammars generate non-regular unary languages August 21, 2007 7 / 21

4 A N

3 × 4 3

Semantics

With each nonterminal A we associate a language L_A. The rule

 $A \rightarrow B\&CD|a$

is replaced by

$$L_{A} = (L_{B} \cap L_{A} \cdot L_{D}) \cup \{a\}$$

(B) (A) (B) (A)

Semantics

With each nonterminal A we associate a language L_A. The rule

 $A \rightarrow B\&CD|a|$

is replaced by

$$L_{A} = (L_{B} \cap L_{A} \cdot L_{D}) \cup \{a\}$$

The language corresponding to the component L_S in the least solution of the system is a language of the grammar.

A

Semantics

With each nonterminal A we associate a language L_A. The rule

 $A \rightarrow B\&CD|a|$

is replaced by

$$L_{A} = (L_{B} \cap L_{A} \cdot L_{D}) \cup \{a\}$$

The language corresponding to the component L_S in the least solution of the system is a language of the grammar.

Remark

In the CFG case the only allowed operations are \cup and $\cdot.$

4 6 1 1 4

3 + 4 = +

7/21

Example revisited

Example

$$\Sigma = \{a, b, c\},\$$

 $N = \{S, B, C, E, A\}$

- $\boldsymbol{S} \to (\boldsymbol{A}\boldsymbol{E}) \& (\boldsymbol{B}\boldsymbol{C})$
- $\textbf{A}
 ightarrow \textbf{aA} | \epsilon$
- $\textbf{B} \rightarrow \textbf{aBb}|\varepsilon$
- ${\it C}
 ightarrow {\it cC} | \epsilon$
- $E
 ightarrow bEc|\epsilon$

・ロト ・ 四ト ・ ヨト ・ ヨト

э

Example revisited

Example

$$\Sigma = \{a, b, c\},\$$

 $N = \{S, B, C, E, A\}$

$S \rightarrow (AE)\&(BC)$	
$oldsymbol{A} ightarrow oldsymbol{a} oldsymbol{A} \epsilon$	
$B ightarrow aBb \epsilon$	
$oldsymbol{\mathcal{C}} ightarrowoldsymbol{\mathcal{C}}oldsymbol{\mathcal{C}}arepsilon$	
$E ightarrow bEc \epsilon$	

$$L_{S} = (L_{A} \cdot L_{E}) \cap (L_{B} \cdot L_{C})$$
$$L_{A} = \{a\} \cdot L_{A} \cup \{\epsilon\}$$
$$L_{B} = \{a\} \cdot L_{B} \cdot \{b\} \cup \{\epsilon\}$$
$$L_{C} = \{C\} \cdot L_{C} \cup \{\epsilon\}$$
$$L_{E} = \{b\} \cdot L_{E} \cdot \{c\} \cup \{\epsilon\}$$

Artur Jeż

2

Example revisited

Example

$$\Sigma = \{a, b, c\},\$$

 $N = \{S, B, C, E, A\}$

S ightarrow (AE)&(BC)	$L_{\mathcal{S}} = (L_{\mathcal{A}} \cdot L_{\mathcal{E}}) \cap (L_{\mathcal{B}} \cdot L_{\mathcal{C}})$	$\{a^nb^nc^n:n\in\mathbb{N}\}$
$oldsymbol{A} ightarrow oldsymbol{a} oldsymbol{A} ert \epsilon$	$L_{A} = \{a\} \cdot L_{A} \cup \{\epsilon\}$	a *
$B ightarrow aBb \epsilon$	$L_B = \{a\} \cdot L_B \cdot \{b\} \cup \{\epsilon\}$	$\{a^nb^n:n\in\mathbb{N}\}$
$m{\mathcal{C}} ightarrow m{\mathcal{C}} m{\mathcal{C}} egin{array}{c} \epsilon \end{array}$	$L_C = \{c\} \cdot L_C \cup \{\epsilon\}$	C *
$E ightarrow bEc \epsilon$	$L_{\mathcal{F}} = \{b\} \cdot L_{\mathcal{F}} \cdot \{c\} \cup \{\epsilon\}$	$\{b^n c^n : n \in \mathbb{N}\}$

æ

8/21

Positive results

• Resolved language equations with \cup , \cap and \cdot

< 6 b

- A - TH

Positive results

- Resolved language equations with \cup , \cap and \cdot
- Chomsky's normal form

ъ

Positive results

- Resolved language equations with \cup , \cap and \cdot
- Chomsky's normal form
- Efficient parsing by CYK

ъ

Positive results

- Resolved language equations with \cup, \cap and \cdot
- Chomsky's normal form
- Efficient parsing by CYK
- High expressive power

Example

```
{wcw : w \in \{a, b\}^*}
```

Positive results

- Resolved language equations with \cup , \cap and \cdot
- Chomsky's normal form
- Efficient parsing by CYK
- High expressive power

Example

```
\{wcw: w \in \{a, b\}^*\}
```

Negative results

Positive results

- Resolved language equations with \cup , \cap and \cdot
- Chomsky's normal form
- Efficient parsing by CYK
- High expressive power

Example

```
\{wcw: w \in \{a, b\}^*\}
```

Negative results

Mainly open questions

Problem

Do all conjunctive grammars over **unary** alphabet generate only **regular** languages?

A

Problem

Do all conjunctive grammars over unary alphabet generate only regular languages? (This is true for CFG.)

A

3 1 4 3

Problem

Do all conjunctive grammars over **unary** alphabet generate only **regular** languages? (This is true for CFG.)

Conjecture

Yes

Artur Jeż

Conjunctive grammars generate non-regular unary languages August 21, 2007 10 / 21

A

▶ ∢ ≣

Problem

Do all conjunctive grammars over **unary** alphabet generate only **regular** languages? (This is true for CFG.)

Conjecture

Yes

Intuition

This should be true since regular sets are closed under

concatenation

Artur Jeż

Conjunctive grammars generate non-regular unary languages August 21, 2007

< 6 b

3 + 4 = +

Problem

Do all conjunctive grammars over **unary** alphabet generate only **regular** languages? (This is true for CFG.)

Conjecture

Yes

Intuition

This should be true since regular sets are closed under

- concatenation
- intersection

Artur Jeż

< 6 b

3 + 4 = +

Problem

Do all conjunctive grammars over **unary** alphabet generate only **regular** languages? (This is true for CFG.)

Conjecture

Yes

Intuition

This should be true since regular sets are closed under

- concatenation
- intersection
- union

Artur Jeż

< 6 b

3 + 4 = +

Theorem (Disproving the conjecture)

Conjunctive grammars generate non-regular languages over unary alphabet.

A

The Sec. 74

Theorem (Disproving the conjecture)

Conjunctive grammars generate non-regular languages over unary alphabet.

$$\{a^{4^n}:n\in\mathbb{N}\}$$

A

16 N A 16

Theorem (Disproving the conjecture)

Conjunctive grammars generate non-regular languages over unary alphabet.

$$\{a^{4^n}:n\in\mathbb{N}\}$$

Theorem (Extension)

For every regular language $R \subseteq \{0, 1, \dots, k-1\}^*$ language

 $\{a^n : \exists w \in R w \text{ read as a number is } n\}$

is a unary conjunctive language.

4 A >

3 + 4 = +

Theorem (Disproving the conjecture)

Conjunctive grammars generate non-regular languages over unary alphabet.

$$\{a^{4^n}:n\in\mathbb{N}\}$$

Theorem (Extension)

For every regular language $R \subseteq \{0, 1, \dots, k-1\}^*$ language

 $\{a^n : \exists w \in R w \text{ read as a number is } n\}$

is a unary conjunctive language. Positional notation.

3 + 4 = +

Remark

We identify a^n with *n* and work with sets of integers.

< 17 ▶

4 3 > 4 3

Remark

We identify a^n with *n* and work with sets of integers.

Solution $\begin{array}{rcl} L_1 &=& \{1 \cdot 4^n : n \in \mathbb{N}\}, \\ L_2 &=& \{2 \cdot 4^n : n \in \mathbb{N}\}, \\ L_3 &=& \{3 \cdot 4^n : n \in \mathbb{N}\}, \\ L_{12} &=& \{6 \cdot 4^n : n \in \mathbb{N}\}. \end{array}$

< ∃ →

Remark

We identify a^n with *n* and work with sets of integers.

Solutio	on	
L ₁	=	$\{1\cdot4^n:n\in\mathbb{N}\}\ ,$
L ₂	=	$\{2\cdot4^n:n\in\mathbb{N}\}$,
L ₃	=	$\{3\cdot4^n:n\in\mathbb{N}\}$,
L ₁₂	=	$\{6\cdot4^n:n\in\mathbb{N}\}$.

Equations							
B_1	=	$\left(B_2B_2\cap B_1B_3\right)\cup\left\{1\right\},$					
<i>B</i> ₂	=	$(B_{12}B_2 \cap B_1B_1) \cup \{2\},\$					
B_3	=	$(B_{12}B_{12}\cap B_1B_2)\cup\{3\},$					
<i>B</i> ₁₂	=	$(B_3B_3\cap B_1B_2) \ .$					

A >

Remark

We identify a^n with n and work with sets of integers.

Solution	Equations
$L_1 = \{1 \cdot 4^n : n \in \mathbb{N}\},\$	$B_1 = (B_2 B_2 \cap B_1 B_3) \cup \{1\},$
$L_2 = \{2 \cdot 4^n : n \in \mathbb{N}\},\$	$B_2 = (B_{12}B_2 \cap B_1B_1) \cup \{2\},$
$L_3 = \{ 3 \cdot 4^n : n \in \mathbb{N} \}$,	$B_3 = (B_{12}B_{12} \cap B_1B_2) \cup \{3\},\$
$L_{12} = \{ 6 \cdot 4^n : n \in \mathbb{N} \} .$	$B_{12} = (B_3 B_3 \cap B_1 B_2)$.

This effectively manipulates the positional notation.

< 6 b

• By general knowledge there is a unique ϵ -free solution.

- By general knowledge there is a unique ϵ -free solution.
- Vector of sets (\ldots, L_i, \ldots) is ϵ -free.

- By general knowledge there is a unique ϵ -free solution.
- Vector of sets (\ldots, L_i, \ldots) is ϵ -free.
- We need to show that it is a solution.

- By general knowledge there is a unique ϵ -free solution.
- Vector of sets (\ldots, L_i, \ldots) is ϵ -free.
- We need to show that it is a solution.

Example

For example L_1 , the rule is

$$B_1 = (B_2 B_2 \cap B_1 B_3) \cup \{1\}$$

So we want to prove that

 $L_1 = (L_2 L_2 \cap L_1 L_3) \cup \{1\}$

Proof.

What are the possible non-zero symbols in B_2B_2 ?

Artur Jeż

Conjunctive grammars generate non-regular unary languages August 21, 2007 14 / 21

3 > 4 3

Proof.

What are the possible non-zero symbols in B_2B_2 ?

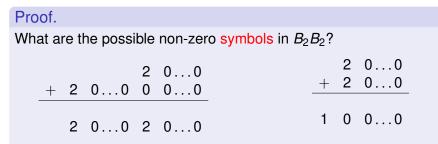
2 0...0 2 0...0

Artur Jeż

Conjunctive grammars generate non-regular unary languages August 21, 2007 14 / 21

< 6 k

∃ ► < ∃ ►</p>

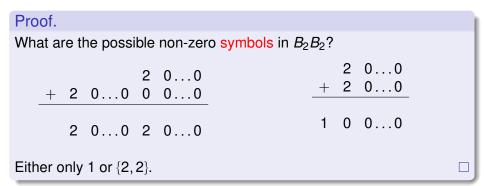


Artur Jeż

Conjunctive grammars generate non-regular unary languages August 21, 2007 14 / 21

< 6 b

∃ ► < ∃ ►</p>



< 6 k

3 + 4 = +

Proof.

What are the possible non-zero symbols in B_1B_3 ?

< 6 b

3 1 4 3

Proof.

What are the possible non-zero symbols in B_1B_3 ?

1 0...0 3 0...0

Artur Jeż

Conjunctive grammars generate non-regular unary languages August 21, 2007 15 / 21

< 6 b

∃ ► < ∃ ►</p>

Proof.

What are the possible non-zero symbols in B_1B_3 ?

+	1	00	-	00 00	+	-	00
	1	00	3	00	1	0	00

Artur Jeż

Conjunctive grammars generate non-regular unary languages August 21, 2007 15 / 21

< 6 b

3 1 4 3

Proof.

What are the possible non-zero symbols in B_1B_3 ?

	+ 1	00		00 00
	1	00	3	00
Fith	er only	v 1 or {1.	3}	

Proof.

What are the possible non-zero symbols in B_1B_3 ?

+	1	00		00 00	+		00
	1	00	3	00	1	0	00

Either only 1 or $\{1, 3\}$. We compare this with 1 or $\{2, 2\}$ from B_2B_2 .

< 6 b

3 > 4 3

Proof.

What are the possible non-zero symbols in B_1B_3 ?

	+	1	00		00 00	 +	-	00
		1	00	3	00	1	0	00
th	or c	nlu	1 or [1	ว า				

Either only 1 or $\{1, 3\}$. We compare this with 1 or $\{2, 2\}$ from B_2B_2 . The only possibility is only 1.

A

The Sec. 74

Theorem

For every k and 0 < i, j < k languages

 $\{a^n : \exists w \in i0^* w \text{ read as a number is } n\}$ $\{a^n : \exists w \in ij0^* w \text{ read as a number is } n\}$

are unary conjunctive languages.

Idea

Done in the same way.

Theorem

For every k and 0 < i, j < k languages

 $\{a^n : \exists w \in i0^* w \text{ read as a number is } n\}$ $\{a^n : \exists w \in ij0^* w \text{ read as a number is } n\}$

are unary conjunctive languages.

Idea

Done in the same way.

• Nonterminal B_{i,j} for each language.

Theorem

For every k and 0 < i, j < k languages

 $\{a^n : \exists w \in i0^* w \text{ read as a number is } n\}$ $\{a^n : \exists w \in ij0^* w \text{ read as a number is } n\}$

are unary conjunctive languages.

Idea

Done in the same way.

- Nonterminal B_{i,j} for each language.
- We focus on the leading symbols—the only non-zero symbols in ij0*, that is i and j.

Theorem

For every k and 0 < i, j < k languages

 $\{a^n : \exists w \in i0^* w \text{ read as a number is } n\}$ $\{a^n : \exists w \in ij0^* w \text{ read as a number is } n\}$

are unary conjunctive languages.

Idea

Done in the same way.

- Nonterminal B_{i,j} for each language.
- We focus on the leading symbols—the only non-zero symbols in ij0*, that is i and j.
- Intersections of concatenations filter out wrong combination of leading symbols.

Theorem

For every k and $R \subset \{0, \ldots, k-1\}^*$

 $\{a^n : \exists w \in R w \text{ read as a number is } n\}$

is a unary conjunctive language.

< 6 b

Theorem

For every k and $R \subset \{0, \ldots, k-1\}^*$

 $\{a^n : \exists w \in R w \text{ read as a number is } n\}$

is a unary conjunctive language.

Idea

Let $\langle \{0, \ldots, k-1\}, Q, q_0, F, \delta \rangle$ recognizes R.

Theorem

For every k and $R \subset \{0, \ldots, k-1\}^*$

 $\{a^n : \exists w \in R w \text{ read as a number is } n\}$

is a unary conjunctive language.

Idea

Let $\langle \{0, \ldots, k-1\}, Q, q_0, F, \delta \rangle$ recognizes R. We introduce nonterminal $B_{i,j,q}$ for language

 $\{ijw:\delta(q_0,w)=q\}$

Theorem

For every k and $R \subset \{0, \ldots, k-1\}^*$

 $\{a^n : \exists w \in R w \text{ read as a number is } n\}$

is a unary conjunctive language.

Idea

Let $\langle \{0, \ldots, k-1\}, Q, q_0, F, \delta \rangle$ recognizes R. We introduce nonterminal $B_{i,j,q}$ for language

 $\{ijw:\delta(q_0,w)=q\}$

Information the indices carry:

- Ieading symbol i
- second leading symbol j
- *q*—the computation of *M* on the rest of the word

Artur Jeż

Conjunctive grammars generate non-regular unary languages

Productions for $B_{i,j,q}$

Example

$$B_{i,j,q} \rightarrow \left(\&_{n=1}^4 B_{i-1,j+n} B_{k-n,x,q'} \right)$$

where x, q' such that $q \in \delta(q', x)$

э

Productions for $B_{i,j,q}$

Example

$$B_{i,j,q} \rightarrow \left(\&_{n=1}^4 B_{i-1,j+n} B_{k-n,x,q'} \right)$$

where x, q' such that $q \in \delta(q', x)$

$$\begin{array}{cccc} k-n & x & \overbrace{ \\ k-n & x & \overbrace{ \\ \\ \hline \end{array}} \\ + & i-1 & j+n & 00 \dots 0 \\ i & j & \underbrace{ x \dots }_{\text{state } q} \end{array}$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

э

Definition

Conjunctive grammar is a CFG extended by intersection in the body of the rules.

Definition

Conjunctive grammar is a CFG extended by intersection in the body of the rules.

Theorem

For every regular language $R \subseteq \{0, 1, \dots, k-1\}$ language

 $\{a^n: \exists w \in R \text{ wread as a number is } n\}$

is a unary conjunctive language.

Definition

Conjunctive grammar is a CFG extended by intersection in the body of the rules.

Theorem

For every regular language $R \subseteq \{0, 1, \dots, k-1\}$ language

 $\{a^n: \exists w \in R \text{ wread as a number is } n\}$

is a unary conjunctive language.

In particular it generates non-regular languages.

Definition

Conjunctive grammar is a CFG extended by intersection in the body of the rules.

Theorem

For every regular language $R \subseteq \{0, 1, \dots, k-1\}$ language

 $\{a^n: \exists w \in R \text{ wread as a number is } n\}$

is a unary conjunctive language.

In particular it generates non-regular languages. We effectively manipulate positional notation. Related topics and following work

 Unambiguity of the language. The construction for R = ij0* can be made unambiguous. What happens in general?

Related topics and following work

- Unambiguity of the language. The construction for R = ij0* can be made unambiguous. What happens in general?
- The result can be extended to a larger class of languages [A. Jez, A. Okhotin, CSR 2007].

Related topics and following work

- Unambiguity of the language. The construction for R = ij0* can be made unambiguous. What happens in general?
- The result can be extended to a larger class of languages [A. Jez, A. Okhotin, CSR 2007].
- Instead of grammars we can focus on sets of integers. Equations on sets of integers using ∩, ∪ and + defined as

$$A+B = \{a+b: a \in A, b \in B\}.$$

[A. Jez, A. Okhotin, TALE 2007].

• General properties of conjunctive grammars

- General properties of conjunctive grammars
 - closure under complementation

- General properties of conjunctive grammars
 - closure under complementation
 - better recognition (space/time)

- General properties of conjunctive grammars
 - closure under complementation
 - better recognition (space/time)
 - inherent ambiguity

- General properties of conjunctive grammars
 - closure under complementation
 - better recognition (space/time)
 - inherent ambiguity
- Unambiguity of the constructed unary languages

- General properties of conjunctive grammars
 - closure under complementation
 - better recognition (space/time)
 - inherent ambiguity
- Unambiguity of the constructed unary languages
- Closure under complementation in the unary case.