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ABSTRACT

Motivation: Mapping of remote evolutionary links is a classic
computational problem of much interest. Relating protein families
allows for functional and structural inference on uncharacterized
families. Since sequences have diverged beyond reliable alignment,
these are too remote to identify by conventional methods.
Approach: We present a method to systematically identify remote
evolutionary relations between protein families, leveraging a novel
evolutionary-driven tree of all protein sequences and families. A
global approach which considers the entire volume of similarities
while clustering sequences, leads to a robust tree that allows tracing
of very faint evolutionary links. The method systematically scans the
tree for clusters which partition exceptionally well into extant protein
families, thus suggesting an evolutionary breakpoint in a putative
ancient superfamily. Our method does not require family profiles (or
HMMs), or multiple alignment.
Results: Considering the entire Pfam database, we are able to
suggest 710 links between protein families, 125 of which are
confirmed by existence of Pfam clans. The quality of our predictions
is also validated by structural assignments. We further provide an
intrinsic characterization of the validity of our results and provide
examples for new biological findings, from our systematic scan. For
example, we are able to relate several bacterial pore-forming toxin
families, and then link them with a novel family of eukaryotic toxins
expressed in plants, fish venom and notably also uncharacterized
proteins from human pathogens.
Availability: A detailed list of putative homologous superfamilies,
including 210 families of unknown function, has been made available
online: http://www.protonet.cs.huji.ac.il/dots
Contact: lonshy@cs.huji.ac.il

1 INTRODUCTION
Homologous protein sequences (of common evolutionary ancestry)
assume similar 3D structure, and carry out related molecular
functions—this is the most fundamental premise of protein sequence
analysis. This understanding has facilitated the grouping of proteins
descending from clear common ancestry into homologous sequence
groups known as protein families. Functional and structural
relatedness allow alternative objectives for grouping of proteins
into so called protein families. These however are not necessarily
homologous, as in the case of the fold level in the SCOP structural
classification (Murzin et al., 1995), or the ENZYME (Bairoch, 2000)
hierarchy based on similar enzymatic functions—these may have
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evolved independently by seldom events of convergent evolution.
Convergent sequence evolution is extremely rare (Doolittle, 1994),
and we thus concentrate on homologous families in this manuscript.

Common ancestry (i.e. homology) can be statistically inferred
from sequence alignment. Ergo, the importance of pairwise and
multiple sequence alignment (MSA) methods for detection and
characterization of protein families, were appreciated already 30
years ago. BLAST (Altschul et al., 1997) is the most popular
method for detecting homologues for a query sequence. Based
on a fast pairwise alignment search, it reports a statistical score
(E-score) for the query and candidate sequences. BLAST and other
pairwise alignment methods alike, perform poorly for twilight-
zone homologous sequence pairs <30–35% sequence identity (Rost,
1999).

It is only in the last decade with the increase in genomics and
proteomics data, that systematic methods had been developed to
assign sequences to protein families in a genomic scale (Pearson
and Sierk, 2005). In Pfam (Finn et al., 2008), and resources alike,
a statistical profile (HMM) is built from a semi-manual multiple
alignment of seed homologous sequences. The model is then used
to scan protein sequences for additional family members. Pfam
families are domain based, while other resources like PIRSF (Wu
et al., 2006) focus on whole protein homology. SUPERFAMILY
(Wilson et al., 2007) scans all proteins for structural domains, using
HMMs built from structural alignments of SCOP superfamily level
representatives (homologous structures).

Homologous protein sequences diverge faster than structure. As
a result, structural superfamilies are often crumbled into distinct
protein families based on sequence similarities. These are embodied
in distinct sequence signatures (profiles). The extant families are
said to be homologous (i.e. evolutionary linked) if they have clear
common ancestry, which is manifested by significant structural
similarity, and most often also functional relatedness (Finn et al.,
2006). The average sequence identity within a Pfam family is often in
the twilight-zone. Homologous sequences from different families are
even more remote, and are usually neither alignable nor detectable
by pairwise alignment methods alone.

It is of great interest to detect relatedness of protein families
without requiring their costly experimental 3D-structure elucidation.
Hence, computational methods targeting detection of these faint
evolutionary links need to rely only on sequence. Recent advances
in the field are dominated by methods that include profile–profile
alignment (PPA) and profile–HMMs comparisons (Soding, 2005).
Profile methods outperform single sequence-based search. However,
they are significantly more computationally intensive (slow), and
gravely affected by the quality of the underlying MSA (Madera and
Gough, 2002; Sadreyev and Grishin, 2004).
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In Pfam, superfamilies, a grouping of homologous families, are
manually gathered into Pfam clans (Finn et al., 2006) based on
PPA methods, the literature and scarce structural data. Further to the
evolutionary insight per se, detection of homologous families allows
to safely transfer costly experimental knowledge from a well-studied
family to a large number of proteins in an uncharacterized family.

An alternative to profile-based methods is the ProtoNet database.
It offers a hierarchical classification of proteins based on a tree that
captures evolutionary relatedness among protein families (Kaplan
et al., 2004). It is based on agglomerative average-linkage clustering
of all protein sequences, based on BLAST E-scores from an
exhaustive all-against-all comparison. Clusters in the tree show high
correspondence with homologous sequence (i.e. Pfam and InterPro),
functional (i.e. EC classification) and structural (i.e. SCOP) families
(Kifer et al., 2005). It serves as a resource for discovery of
overlooked and new functional connections (Schueler-Furman et al.,
2006). The tree construction is fully automatic, and is based only on
the protein sequences. It provides protein groupings in continuous
evolutionary granularities—from closely related subfamilies (high
percent identity) to hardly alignable distant superfamilies, in contrast
to the limited granularity provided by standard resources (e.g. Pfam).

We have recently reported a new clustering algorithm (MC-
UPGMA), which can cluster millions of sequences with a
mathematical exactness guarantee (Loewenstein et al., 2008).
Using it, we constructed a hierarchical tree (ProtoNet5.1) for
1.8 million non-redundant (UniRef90, maximum 90% sequence
identity) proteins, that represent 2.5 million UniProtKB (Wu et al.,
2006) proteins. Clusters in the tree correspond to protein families
as defined by external resources including Pfam and InterPro
(Mulder and Apweiler, 2007). A total of 61% of the tree sequences
(UniRef90) are assigned to at least one family by Pfam (here, 8168
families).

Herein, we present a systematic approach to suggest undetected
relations between homologous protein families based on this tree.
We take a radically different approach for this task, which does not
require a family profile, nor the hard task of multiple alignment of
remote homologues. Instead, we rely on the varying tree granularity,
and on its ability to grasp homologous superfamilies from BLAST
similarities. We calibrate the tree for the granularity of each
inspected family, and then test for other families in the same putative
superfamily which is suggested by the tree.

We control for the possibility of false transitivity in the instance
of multi-domain proteins, by taking into account co-occurrence
patterns of the inspected domain families. The capacity of our
simple protocol to identify hundreds of overlooked protein family
connections is reported and exemplified by some new biological
findings.

2 APPROACH
Our method is based on a binary tree representing sequence
evolution by protein sets of varying evolutionary granularities. The
tree construction is fully automatic and requires only the protein
sequences and no external prior knowledge (Kaplan et al., 2004).

Our current effort is based on the robust tree stemming from
accurately clustering the mass of all pairwise similarities in an all-
against-all permissive BLAST comparison of all protein sequences
(Loewenstein et al., 2008).

We identify junctions (tree clusters) that represent an evolutionary
breakpoint in an ancestral protein family, into two sub-clusters
which correspond well with two different protein families, A and
B (Fig. 1). Such a cluster, an AB-pair, represents a sequence
superfamily—a super-set of two existing sets (protein families)
from which both have descended. Proteins in A and B are remote
homologues, most often in sequence alignment twilight zone (Rost,
1999), and are identified by distinct sequence signatures (here, Pfam
HMMs). However, A and B have homologous 3D structures, and are
often functionally related. We take advantage of this fact to propose
new functional and structural assignments.

3 METHODS

3.1 Evolutionary-driven sequence clustering
ProtoNet provides an evolutionary-driven tree constructed using UPGMA—
an agglomerative hierarchical clustering average-linkage method (Sokal and
Michener, 1958). Here, the clustering includes the entire set of 1.8 million
non-redundant UniRef90 protein, for which an all-against-all permissive
BLAST comparison yields 1.5 billion unique sequence similarities as
reported in (Loewenstein et al., 2008). We have used the MC-UPGMA
algorithm which provides the mathematically correct UPGMA tree for very
large data, i.e. the tree that best captures the evolutionary process as reflected
by BLAST sequence similarities.

The clustering is able to trace very faint relations between homologous
families, which are otherwise not discernible from noise (e.g. on a
single sequence basis). The huge mass of similarities is embodied into a
comprehensive tree by the clustering, and allows for the identification of
hidden family connections as reported here. We are now able to leverage the
entire sample size of sequenced proteins in a family, which is translated in
turn to highly sensitive predictions.

The clustering process is unsupervised—it does not rely on any external
knowledge such as protein family assignments, but rather on sequence
similarities alone. Thus, sequences which are not assigned to any known
protein family may still provide valuable similarity data to guide the
clustering process (Figs 1 and 3).

Fig. 1. Superfamily tree search illustration. Pink and blue represent proteins
in homologous families A and B, while green and black denote other
families C and D. Reported BLAST similarities are depicted by curved
edges (bottom). A and C coincide on a multi-domain protein (pink and green
protein) which may induce false-transitivity—falsely clustering A with non-
homologous C due to local BLAST similarities of multi-domain protein (red
edges). Correct merging of A and B is aided by transitive similarities of an
unassigned protein (white).
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Fig. 2. Agreement of external family groupings with AB-pairs. Inner and outer circle represent 228 coinciding AB-pairs (A and B might occur on the same
protein) and 482 non-coinciding AB-pairs, respectively. Green and orange represent agreement (TP) and disagreement (FP) respectively. Grey and white
represent pairs for which agreement could not be tested due to either (A or B) or both missing external classifications, respectively. SCOP domains contain
additional black band for ambiguous Pfam to SCOP mappings in a classifiable pair (see text). Non-coinciding AB-pairs are consistently of higher agreement
with external classifications (see text).

3.2 Tree correspondence with protein families
3.2.1 Correspondence score In this report, identification of protein
families in the tree is based on a given external reference assignment of
keywords (here, Pfam) to proteins. A keyword corresponds to an external
protein family. A protein might contain several keywords, for instance in
the case of domain-based families and a multi-hetero domain protein. The
correspondence of a cluster c to a keyword k is given by the Jaccard score

J(c,k) = |c∩k|
|c∪k| = TP

TP+FP+FN
(1)

In cluster c, a protein having keyword k is a true positive (TP), and a
keyword having protein without k is a false positive (FP). A protein having
the keyword k, which is not in c, is a false negative (FN). This score (J)
ranges from 0 (no intersection) to 1 (perfect correspondence), and is a lower
bound on both specificity and sensitivity.

3.2.2 Best cluster The ‘best cluster’ for each keyword, is defined to be the
cluster with the highest correspondence score. The correspondence of the tree
to this keyword (J(k)) is measured by the best cluster, as described in Kaplan
et al. (2004). This criterion allows for (i) finding the cluster granularity that
best matches each external reference family; (ii) scoring the correspondence
quality. We have shown the biological relevance and the high quality of
functional inference based on this criterion in the past.

Keyword A (having a best cluster CA) with J(A) < JA
cut (implies that

specificity or sensitivity are <JA
cut) is not considered of high correspondence

with the tree, and is thus not further evaluated.

3.3 Homologous family search criterion
3.3.1 ‘Good’ sibling For each keyword A, having a high quality cluster
CA (i.e. passing the JA

cut filtration), we have inspected the sibling in the
binary clustering tree (Fig. 1)—the nearest cluster with whom it was merged.
In cases where the sibling cluster CB corresponds well (J � JB

cut) with
another protein family keyword B, keywords (protein families) A and B
are hypothesized to be evolutionary related (i.e. homologous).

Given the correct tree (assuming one exists), and protein family
assignments which fully agree with it, this procedure will trace all speciation
events which have diverged ancestral superfamilies into extant families, all
having clusters with perfect correspondence (J = 1). In practice however,
it is clear that huge root clusters are often meaningless artifacts of the
clustering, rather than homologous groups. Domain combinations introduce
further complications.

The rational for the proposed selection criteria are manifold. First, since
the partition into CA and CB is supported by external expert knowledge

(J above threshold) it is considered solid. Furthermore, the suggested
relatedness of A and B stems mostly from true family members since
CA and CB are specific, and on the majority of family members since
they are sensitive as well, and is thus supported by entire uncontaminated
families. Notwithstanding, permitting some FPs in the process (cutoffs <1)
allows to sustain false family membership, e.g. proteins with missing family
assignments, or minor clustering errors which are expected to be negligible
due to the robustness of averaging over entire families at clustering time.
Here, we use JA

cut = JB
cut = 0.6. In effect, this requirement implies that most

good siblings are also best clusters.

3.4 Error-proneness due to multiple domains
The pitfalls of false transitivity while grouping multi-hetero-domain protein
domains have been long known (Portugaly et al., 2006). Seldom coincidence
of families A and B on the same protein sequences may cause them to cluster
together, for a reason other than homology (Fig. 1). Keyword coincidence is
thus a marker for relations which are more prone to have stemmed not from
homology. We thus mark these putative AB-pairs for more careful analysis.

3.5 Pfam protein families
The Pfam families were selected for this study, as it is one of the most
prominent high quality and high coverage sources of homologous protein
families. Unlike e.g. InterPro families, Pfam signatures are reconciled to
never overlap by definition, and are thus mutually exclusive. Hence, Pfam
does not contain trivial links between families and presents an extensive and
consistent test case for our method. However, our method is applicable to any
protein family resource. Previous studies for homologous family recognition
have been based on Pfam as well (Pandit et al., 2002).

Pfam assignments for UniProtKB sequences are fully automatic, and
are thus prone to have some (i) false family assignments and (ii) missing
family assignments. The evolutionary granularity of different Pfam families
is dependent for instance on manual selection of HMM seed sequences, and
overlap reconciliation considerations. Only about 40–45% of Pfam families
are currently represented by a solved structure, and about 2300 domains
belong to the ‘Domain of unknown function’ (DUFs) or ‘Uncharacterized
protein family’ category according to (Grabowski et al., 2007).

The tree corresponds with 1 791 417 non-redundant proteins (<90%
sequence identity) having some BLAST alignment (Loewenstein et al.,
2008). A total of 8168 Pfam families, were assigned to 61% of these
sequences, based on the UniProtKB data files (rel. 9.0). The average size of
Pfam families on the non-redundant tree sequences is 178 ± 567 and 6882
families contain at least 10 members.
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As our clustering process is not aware of Pfam assignments, it may
incorporate family members which have not been detected by Pfam (Figs 1
and 3).

3.6 Automatic validation
To quantify the quality of our results, we compare our predictions to external
resources. Pfam have recently introduced the concept of Pfam clans—a
partial grouping of putative homologous families. This grouping is still very
much in flux, and currently contains 283 clans (rel. 22.0) used for evaluation
herein. In SCOP however, there are currently 1777 structural superfamilies
(rel. 1.73) for the much smaller set of solved structures. Therefore, the
current coverage of superfamilies by existing clans seems to be far from
being complete. To bridge this gap, and to test our predictions by structural
references, we have carefully tailored two high quality custom reference sets
that provide structurally driven groupings of Pfam families.

First, we validate our predictions based on SCOP classifications. These
serve as a standard of truth based on manual classification of solved 3D
structures. Second, we test the agreement of our predictions with that of the
SUPERFAMILY predictions. Hereby, we elaborate the exact design of these
benchmarks.

3.6.1 Domain agreement The level of agreement of two domains on a
single sequence is measured by a standard agreement score (Portugaly et al.,
2006)

agreement(k1,k2)= |k1 ∩k2|
|k1 ∪k2| (2)

On the inspected sequence, this is the sequence length ratio of the two
domains overlap to the total coverage of both domains. This score, ranges
from 0 for no overlap, to 1 for full agreement on domain boundaries. It will
be low if the overlap between the two signatures does not cover the majority
of both.

3.6.2 Assessment by SCOP A mapping of 3624 Pfam families to the
sequences (and domain boundaries) of all PDB structures and of PDB to
SCOP domains were downloaded from the Pfam (rel. 22.0) and SCOP
(rel. 1.73) websites, respectively. SCOP domain assignments are derived
from 3D structural proximities and thus occasionally incident on multiple
PDB chains (different polypeptides) or on non-consecutive sub-sequences.
Only the former cases were not considered for our analysis. The following
SCOP classes i, j and k (low resolution structures, peptides and designed
respectively) were not used in our analysis.

A Pfam is mapped to a SCOP code, if their agreement score (including
non-continuous domains) exceeded 0.75, or if the SCOP domain covered the
entire respective PDB chain. This resulted with a total of 1489 Pfam to SCOP
one-to-many mappings. The number of mappings was not sensitive to the
agreement threshold parameter (1543 and 1345 for 0.5 and 0.9 agreement).
However, 34 (26, 35) mappings contained more than one SCOP fold (class,
superfamily). These Pfam mappings (2.3%) are ambiguous and inconsistent
with the SCOP structural classification. We note that this might be an
underestimate of Pfam inconsistency with structural classification due to the
low structural coverage of protein sequences which are classified by Pfam,
even though the issue of structural coverage by Pfam has been recently
addressed (Finn et al., 2008).

Assessment is only possible whenever each Pfam family (A and B) in a
predicted AB-pair are mapped to exactly a single SCOP fold. The prediction
is correct if both are mapped to the same fold, false otherwise.

3.6.3 Assessment by SUPERFAMILY The SUPERFAMILY method
applies HMMs built from SCOP superfamily-level representatives
(homologous structures) to scan all protein sequences for putative structural
domains. This allows for high-quality structural prediction for protein
sequences having no structural representative. Generally, SUPERFAMILY

(SSF) domains are of coarser evolutionary granularity than Pfam. They can
thus be leveraged to structurally relate several Pfam families from sequence.

The mapping of Pfam domains to SSF domains is based on InterPro scan
(rel. 12.6, from InterPro’s ftp) for Pfam and SSF assignments on the full
UniProtKB data. Since the volume of SSF predicted domains (sequence
space) is orders of magnitude larger than SCOP, a more quantitative mapping
policy was appropriate. Whenever a SSF and a Pfam domain coincided on the
same protein, the domains’boundary agreement was recorded [Equation (2)].
We required that (i) the average agreement between the matched signatures
is at least 0.5 (implying that at least half of each is covered by the other), (ii)
the SSF signature appears at least at 50% of the Pfam occurrences (prevents
spurious SSF-Pfam co-occurrences). Here, we have used a lower agreement
threshold, to accommodate for (i) fuzzier domain boundaries due to two local
HMM searches (as opposed to structural determination), and (ii) improved
stability since, unlike SCOP mappings, SSF is typically assigned to a large
sample of sequences.

Out of 1563 mappings (average agreement ≥0.5), only 97 covered <50%
of the Pfam occurrences. The high quality of this mapping is further
demonstrated by the fact that no Pfam signature is mapped to more than one
SSF signature. Whenever both A and B are mapped to some SSF signature
(here, 59 pairs), we say that a predicted homologous pair by our method is
correct if it is the same SSF signature, false otherwise.

4 RESULTS AND DISCUSSION

4.1 Pfam tree correspondence and AB-pairs
Pfam families were very well captured by our new tree. For
8095 (out of 8158) non-trivial families (at least two members
with <90% sequence identity) the tree achieved an average Pfam
correspondence score (J) 0.89 ± 0.17, specificity 0.96 ± 0.09 and
sensitivity 0.92 ± 0.16. Single domain or fixed domain architectures,
comprise the majority of the data, and are captured better by the
tree, compared to a handful of domain families which appear in
promiscuous domain architectures. The latter are more prone to
clustering mistakes (Fig. 1).

From this set, our method predicts a total of 710 unique AB-
pairs (i.e. AB = BA) linking putative homologous families. For this
subset of Pfam families, the tree achieves average correspondence of
0.93 ± 0.09 (specificity 0.98 ± 0.05, sensitivity 0.95 ± 0.08) for the
best clusters (A) and 0.88 ± 0.12 (specificity 0.93 ± 0.10, sensitivity
0.94 ± 0.09) for the siblings (B).

BLAST similarities between sequences in the same Pfam family
are sparse, i.e. only some of the pairs are reported (Loewenstein et
al., 2008). At the Pfam clan level, connections are extremely sparse,
yet they are reliably picked up by the clustering. For example, 80%
of the best clusters for 283 Pfam clans had <10% BLAST linkage
(proportion of reported pairs) even at a very permissive threshold
(E = 100). For the reported 710 AB-pairs there was 14% linkage on
average. For comparison, the average BLAST linkage is 64% in
Pfam families’ best clusters (12% have <10% linkage).

4.2 Validation—clans, SCOP and SUPERFAM
Pfam clans have provided the most extensive validation for
our predictions—154 of 710 predictions could be automatically
evaluated by existence of a clan for both A and B. The number
of AB-pairs that could be automatically validated by SCOP and
SUPERFAMILY but not existence of a clan is rather limited due
to (i) low coverage and (ii) significant overlap with existing clan
groupings. Out of 710 pairs, 125 were confirmed by existence
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Table 1. AB-pair predictions containing obsolete (‘dead’) Pfam families

A B New family Comments

PF00252 PF00826 PF00252
PF01598 PF03897 PF04116
PF01892 PF04608 PF04068 DUF correctly classified
PF02502 PF06562 PF02502 DUF correctly classified
PF03240 PF06981 PF08666
PF03692 PF05779 PF03692 DUF correctly classified
PF04000 PF07493 PF04000
PF04032 PF08296 PF04032
PF04132 PF04157 PF04157
PF04956 PF06921 PF04956
PF04965 PF07025 PF07025 DUF correctly classified

Obsolete families (bold italics) were merged into existing or new families by the Pfam
curators. All 11 cases were correctly classified by our method as being homologous,
including 4 DUF containing pairs.

of a clan, but only 15 extra non-clan pairs were added by
SUPERFAMILY and SCOP altogether.

On this set, the clans seem to extract most, but not all, of
the information which could be derived from structure—12 of
33 SUPERFAMILY (3 of 19 SCOP) validated homologies were
not incorporated into a clan. The mapping of Pfam to PDB still
seems to not fully agree with SCOP. Considering the high overlap
of correct predictions by all three methods, and the fact that the
larger clan assessment has yielded notably more favorable error
estimates than SCOP and SUPERFAMILY, we deduce that these
automatically constructed benchmarks are of possible lower quality
than the manual clans. This finding is also supported by ambiguities
in SCOP to Pfam mappings. Our analysis indicates that Pfam
clans are currently the most extensive resource for homologous
sequence families, yet they are still far from being complete. The
majority of our predictions are indeed novel, since they could not be
automatically validated by any of the inspected existing resources.

We note that the mapping of Pfam to SUPERFAMILY offers
a powerful way to propose structurally driven evolutionary links
between protein families from sequence.

4.3 Validation—Pfam re-annotations
The Pfam set of families is constantly updated. For instance, Pfam
families are occasionally merged by Pfam curators, as they are
identified in retrospect as two sub-families of a single common
family. As a result, some family signatures are pronounced as
obsolete (‘dead’). We have inspected all AB-pairs containing a Pfam
that ‘died’in the time frame from our analysis to present time. Table 1
shows that our fully automatic predictions were all judged as correct
by manual re-definitions occurring at Pfam.

4.4 Biological example—pore-forming toxins
We demonstrate an application of our method to reveal new
biological findings, which are not captured by Pfam clans. The
clustering suggested that the following families are related.

Fig. 3. Subtree of AB-cluster for aerolysin-ETX-MTX2. subclusters are
color coded by Pfam correspondences. Cluster CA (red) is best for (A) the
Aerolysin toxin family (PF01117) and is merged with CB (pink and green),
corresponding with (B) ETX_MTX2 family of Clostridium epsilon toxin
and Bacillus mosquitocidal toxins (PF03318). Pfam annotated sequences are
marked by darkened leafs (red and pink, for A and B, respectively). Multiple
family-less proteins are included in the clusters due to sequence similarities.
Both families assume homologous 3D structures (right)—SCOP superfamily
f.8.1. The green cluster contains no significant Pfam correspondence, and
is a newly discovered putative eukaryotic family (C) in this superfamily. A
solved structure (fungal LSL toxin) (right) and 9 SUPERFAMILY predictions
(E � 1) for this SCOP superfamily in the green cluster support our findings.
Other cluster members, share significant sequence similarity with predicted
pore-forming proteins. Outer ring depicts domain architectures for Pfam (red
and pink ovals denote A and B domains) and SSF predictions for f.8.1 (E �1
green ovals).

A—Aerolysin (Pfam PF01117) is a family of toxins from Gram-
negative bacteria which oligomerize to form pores in membranes
leading to host cell lysis. It is involved in diarrhoeal diseases and
deep wound infections.

B—The Pfam ETX_MTX2 (PF03318) family encompasses
epsilon toxins originating from the Gram-positive bacteria
Clostridium perfringens, and related insecticidal toxins from the
Gram-positive bacteria Bacillus thuringiensis, which have been
expressed in a variety of genetically modified crops (e.g. Bt-corn)
for pest control.

This AB-pair is picked up at 3.6% BLAST linkage. Our finding
is supported by solved structures from both families, which are
classified into the same SCOP superfamily (Fig. 1). This example
also illustrates how unannotated proteins (i.e. that do not belong in
any Pfam family) are still instrumental in the clustering process—
these are putative undetected family members proposed by the
clustering.

Interestingly, before B is merged with A, it is merged with
a cluster (Fig. 3, green cluster) of a new putative family (C)
in this superfamily. This cluster contains (i) the natterin and
hydralysin eukaryotic toxin families from venomous fish and hydra,
(ii) the homologous plant gene Hfr-2 which has been shown to
be up-regulated on larvae feeding, (iii) fungal LSL hemolytic
toxins and (iv) uncharacterized proteins from the human pathogens
Schistosoma japonicum and Legionella pneumophila which are
causes of schistosomiasis and the legionnaires disease. We have
thus shown the evolutionary relatedness of these families, including
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possible virulent factors of major health concerns. SUPERFAMILY
predictions and a solved structure also support this finding—A, B
and C are homologous. SUPERFAMILY predictions also support
the inclusion of some Pfam unannotated proteins in the ETX_MTX2
cluster (Fig. 3, pink cluster).

4.5 False-transitivity—coinciding families
We note that the non-coinciding AB-pairs produced very high
accuracy for the hard task of clan prediction—104 correct
predictions versus only 12 wrong predictions (366 novel predictions
could not be automatically validated by Pfam clans). Furthermore,
through all three automatic validation sets, non-coinciding pairs
have had fewer errors (Fig. 2). Hence, our results show that
coincidence of keywords is a good proxy to automatically warn
against false implications from sequence clustering due to false-
transitivity (Fig. 1). We note however that coinciding families,
albeit of lower quality in general, still reveal otherwise overlooked
meaningful connections.

4.6 Characterization of a high quality subset
We have inspected several features to further separate correct from
wrong hypotheses. Requiring that the average correspondence (of
A and B) is at least 0.95, in addition to no-coincidence of A and
B, has yielded an almost perfect assignment of clans—only one
false assignment out of 48 instances that could be validated by clan
assignments for both A and B. This set still includes 254 of the
original 710 predictions, including 82 DUF containing pairs, and is
further inspected throughout this section as a higher quality subset.

We have manually inspected the top and bottom ranked
predictions for this set which could not be automatically verified
by a clan, SSF signature or SCOP mapping in order to qualitatively
characterize our best and worst predictions of clear novelty in this
manageable set.

We tested if our predictions are supported by profile comparison
methods, known related functions, literature scan, conservation
patterns of functional signatures, intrinsic clustering features,
structure prediction and more. This effort is summarized in Table 2,
for 20 AB-pairs. We have assigned a prediction as true (Table 2)
only when there was enough independent support for the prediction.
Probably true connections, which could not be supported with
high confidence, were assigned as ‘possible’ (P), and the rest were
assigned as ‘false’ (F).

We have identified a handful of new overlooked connections. For
some of these cases, a significant MSA could not be deduced from
profile and secondary structure comparison, but border-line cases
of short well-conserved signatures were identified as candidates for
carrying out shared function (e.g. ligand binding).

Notably, the two groups (top and bottom 10 test cases) are
of very different character. The top predictions are enriched with
viral families and often contain small clusters. The bottom ranked
predictions are characterized by large family clusters (50% with at
least 100 proteins). Furthermore, the fraction of DUFs is much lower
while the BLAST percent linkage is generally higher, indicating
different conservation patterns for the two distinctive groups.

Many of the putative partners of viral families lead to interesting
evolutionary suggestions on virus–host co-evolution. For instance,
mammalian and viral families of interferon-γ receptors (PF04903
and PF07140) are matched. The vaccinia virus interferon-γ receptor

Table 2. Top and bottom 10 ranked AB-pairs in manual inspection of the
high quality subset (see text)—homology predictions are assigned as true,
possible (P) or false (F)

Predictions are ranked by average correspondence score (J) of A and B. Each category is
marked by three grey levels, indicating low, medium and high levels for each category:
linkage (<5%, 5–15%, >15%), number (cluster size <30, 30–100, >100) and profile
(HHalign/PRC profile comparison E-score >1e-2,1e-2 – 1e-5, <1e-5). Similarly, grey
levels indicate the appearance of a category in none (white), one (grey) or both A and B
(dark grey) for viral, PDB structure and DUF. The manual column indicates the support
level of further evidence (dark grey indicates more than one independent evidence) such
as protein and family descriptions, literature scan, active site comparison, phylogenetic
distributions and fold prediction when available.

is secreted from infected cells. The viral protein efficiently inhibits
the interferon-dependent immune response, and leads to increased
infectivity. The common evolutionary source of the two families
suggests that the viral family has originated from the host proteins.
This novel connection is not indicated by any of Pfam’s profile
comparison tools. Interesting biology is revealed by analyzing AB-
pairs involving DUFs as well.

4.7 Clustering versus profile methods
The stronghold of our method is also its most prevalent
shortcoming—it is reliant on the underlying tree. It is thus not
suitable for families which are not well captured by the tree. For
instance, domains of promiscuous architectures are especially prone
for bad clustering due to false application of transitivity rather than
true homology. Occasionally, these may not be captured by a tree
at all.

So, why does sequence clustering reveal relations undetectable
by seemingly stronger and more complex profile methods? We mark
several profound differences between the two regimes.

Profile methods represent families as a single statistical object
while the clustering is based on pairwise comparison of individual
family members. Hence, the clustering is able to detect similarities
which are expressed by only a few cluster members (supported by
the low linkage of our clusters). These scarce similarities may be
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out-weighted in the process of constructing and comparing profile
representations. Furthermore, the clustering is aided by putative
family members picked up in the clustering agglomeration process,
which are not included in the profiles (Figs 1 and 3). Third, we
note that profile methods are largely dependable on the quality
of the underlying MSA. Automatic inference in genomic analysis
is crucially dependent on the MSA quality (Wong et al., 2008).
However, MSA is a significantly harder task than pairwise alignment
from both theoretical and practical standpoints.

To summarize, we point out that the clustering process considers
the entire sequence similarity space as a whole. The global nature of
competing agglomeration forces at clustering time, leads to coherent
families and superfamilies of thereof, which may be overlooked on
a per-family (profile)-based approach.

5 CONCLUSIONS
We presented a straight-forward and intuitively appealing method
to induce evolutionary hypotheses from large-scale sequence
clustering data. Remarkably, our method is able to detect very
hard cases of remote homologous families from a clustering of
simple BLAST searches. Most of the suggested connections were
overlooked by state of the art more complex methods. Nevertheless,
we are able to confirm many of the suggested relations, and
characterize markers for prediction accuracy of others. Our results
await curation, and incorporation into resources such as Pfam clans.

Our method is automatic and computationally scalable to any
size of data. The method is expected to produce more hypotheses,
as sequence and annotation data continue to accumulate.

Further to evolutionary insight per se, we have shown how
our method can produce practical contributions as well. Exposed
evolutionary links could be translated into functional and structural
predictions for hard cases of uncharacterized families.
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