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ABSTRACT

The state of the art of modelling, control, and optimisation is dis-
cussed for automated road vehicles that may utilise wireless vehicle-
to-everything (V2X) connectivity. The appropriate tools to address
safety and energy efficiency are described and the effects on traf-
fic dynamics are highlighted. Finally, the economical and societal
impacts of the deployment of connected and automated vehicles are
discussed.
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1. Introduction

Over the past several decades the auto industry has been moving toward greater degrees
of automation. Automated vehicles are able to monitor their state and their environment
using a plethora of sensors, and they may also communicate with each other and the traf-
�c infrastructure using wireless vehicle-to-everything (V2X) communication. Based on
the information collected they can make decisions, plan their motion, and follow the plan
utilising a set of sophisticated controllers.

While the prime objective of such enhanced autonomy is to maintain the safety of vehi-
cles, the implications of the decisions at the automation level are more far-reaching. On the
one hand, these decisions also in�uence the vehicle operation at the lower level (includ-
ing engine, transmission, brakes, air conditioning), which, if taken into account properly
at the automation level, may improve the vehicles’ energy e�ciency. On the other hand,
since automation allows vehicles to respond to tra�c stimuli with better control accuracy
and reduced reaction time compared to their human-driven counterparts, automated vehi-
cles may have a positive impact on the tra�c dynamics. These bene�ts can be enhanced
by utilising V2X connectivity, which enables vehicles to obtain tra�c information from
beyond the line of sight. For example, by mitigating stop-and-go tra�c jams, automated
vehicles may increase the tra�c �ux and decrease the energy consumption and emissions
at the system level. Finally, connected and automated vehicles shall in�uence the economy
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Table 1. Summary of SAE’s levels of driving autonomy for road vehicles [1].

SAE level Name
Execution of steering and
acceleration/deceleration

Monitoring
of driving

environment

Fallback
performance
of dynamic
driving task

System capability
(driving modes)

0 No automation Human driver Human driver Human driver N/A
1 Driver assistance Human driver and system Human driver Human driver Some driving modes
2 Partial automation System Human driver Human driver Some driving modes
3 Conditional automation System System Human driver Some driving modes
4 High automation System System System Some driving modes
5 Full automation System System System All drivingmodes

and the society in the long run, and by having the appropriate business models for their
deployment, the bene�ts may be signi�cantly increased.

This paper discusses some of the latest results on connected and automated vehicles.
Rather than aiming for a comprehensive review of the �eld, which would take much
more volume, we highlight some of the important concepts with references to related
literature. To help the reader to navigate further in this �eld, we include some review
papers in the reference list that focus on some speci�c aspects (like perception or energy
e�ciency).

In Section 2, we start with describing the modelling, analysis, and design tools for
controlling the dynamics of automated vehicles. Section 3 discusses safety veri�cation
of controllers for automated vehicles, while Section 4 focuses on powertrain control and
energy e�ciency of connected and automated vehicles. Section 5 is dedicated to tra�c
dynamics while assuming di�erent levels of penetrations of connectivity and automa-
tion, while Section 6 addresses the large-scale economical and societal impacts under
di�erent deployment strategies. Finally, in Section 7 we list some challenges that one
shall overcome in order to make connected and automated vehicles successful on future
roadways.

Before starting the technical description, herewe de�ne our nomenclature utilised in the
rest of the paper. When distinguishing between human-driven vehicles (HVs) and auto-
mated vehicles (AVs), we categorise levels 1–5 of AVs according to the SAE categorisation
given in Table 1. When referring to wireless V2X connectivity, we include vehicle-to-
vehicle (V2V), vehicle-to-infrastructure (V2I), and even vehicle-to-cloud (V2C) com-
munication. These communications may be executed using wi�-based technologies [2],
or cellular technologies [3], as long as they satisfy the low latency and low packet drop
requirements. If a human-driven vehicle is equipped with V2X connectivity, we call it a
connected human-driven vehicle (CHV), while automated vehicles with V2X connectivity
are referred to as connected automated vehicles (CAVs) –without ‘and’ between connected
and automated; see Figure 1.

2. Vehicle dynamics and control for automated vehicles

An automated vehicle builds up its situation awareness based on the data collected via
sensors; this process is often referred to as perception. Then it makes decisions regarding
its manoeuvres and executes those with high precision; see Figure 2. Such planning
and control are typically based on mathematical models. Indeed, automated vehicles are
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Figure 1. Categorisation of vehicles based on automation and connectivity.

Figure 2. Typical automated driving control architecture.

expected to outperform their human-driven counterparts, which demands models that
allow the design of high-performance controllers that can be veri�ed for safety. Note that
data-driven methods (e.g. machine and reinforcement learning approaches) can also be
combined with a priori available or learned online models. In this section, we list a few
models that can be used to describe the longitudinal and lateral motion of automated
vehicles, and we discuss motion planning and control design.

2.1. Perception and localisation for automated vehicles

Vehicle perception and localisation has gone through a tremendous development during
the last few decades and particularly accelerated since the last DARPA Grand Challenge
[4]. Utilising sensory data an automated vehicle can recognise objects in its neighbourhood
and localise itself and the other objects on digital maps while simultaneously updating the
maps. Typical sensors includeGPS, cameras, radars, and lidars. Perception and localisation
is a broad topic on its own and it is beyond the scope of this paper.We rather refer the reader
to a recent review paper on this topic [5]. Wemention, however, that V2X communication
may also be considered as a sensor that can reach beyond the line of sight of optical sensors
and may provide more accurate information especially when it comes to velocity, angular
velocity, acceleration, and angular acceleration [6].
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2.2. Vehicle dynamics for automated vehicles

Traditionally vehicle dynamics focuses on describing the velocity state of the vehicle and
the correspondingmodels are derived for the velocity of the centre of mass and the angular
velocity [7–10]. These vectors are typically resolved in a reference frame �xed to the car
body, that is, the velocity components are obtained by projecting the vectors to the axes of
this frame. These so-called longitudinal, lateral and vertical components can be obtained
fromwheel rotation sensors and inertial measurement units �xed to the vehicle. Moreover,
the models are typically linearised around the straight running, constant speed motion
assuming small speed variations and small steering angles. This allows for the separation of
the dynamics into three groups: (i) longitudinal dynamics; (ii) bounce and pitch dynamics;
and (iii) lateral, yaw and roll dynamics (often referred to as handling). Despite such simpli-
�cation, thesemodels are adequate to evaluate the vehicle dynamics for driver comfort and
safety and also allow the development of vehicle control functions like anti-lock braking
(ABS) and electronic stability control (ESC). Such functions have been developed during
the last few decades of the previous century and they are now standard options on every
production vehicle. In this paper, we focus on groups (i) and (iii), as these are primary
concerns for automated driving design.

As mentioned in Section 2.1 an automated vehicle shall localise itself (and other road
participants) in physical space and establish some contextual knowledge about the world
around it. Thus, the corresponding models shall include position and orientation coordi-
nates of the vehicle in an Earth-�xed frame. Moreover, for many manoeuvres the small
angle and constant speed approximations may not hold. Finally, in some situations, it is
necessary to control the lateral and the longitudinal dynamics of the vehicle in a coor-
dinated fashion, which may require integration of the corresponding dynamical models.
These requirements demand vehicle models that include nonlinearities while still having
low complexity so they can be used for control design. Here we review some modelling
approaches that can be used to achieve this goal.

From the perspective of mechanics, an automated vehicle, as any other vehicle, can be
modelled as multi-body system consisting of rigid bodies and �exible elements. Complex-
ity changes with the number of bodies and with the number of constraints considered in
the modelling process. When using the Newton–Euler approach, the constraints are man-
ifested as reaction forces. After eliminating these, one may derive di�erential equations
for the vehicle’s motion. When the constraints only depend on con�guration coordinates,
one may utilise the Lagrangian approach in order to eliminate these so-called geometrical
constraints and obtain di�erential equations immediately. However, in case of vehicles, the
constraints often include velocities resulting in so-called kinematic constraints. In order to
eliminate these and obtain di�erential equations straight away, one may use the Appellian
approach [11–13].

In the next three subsections, we present some details regarding the models describ-
ing the longitudinal, lateral and yaw dynamics of automobiles. These models will serve as
the base for the later discussions on vehicle control and safety veri�cation for automated
vehicles. We emphasise that, while some version of these models have been widely used
in the literature to evaluate the dynamics of human-driven vehicles, some extensions are
necessary when one wishes to apply them for motion planning and control of automated
vehicles. In case the reader is familiar with these models he/she may decide to skip these
subsections and continue with Section 2.3.
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2.2.1. Longitudinal dynamics

Consider the mechanical model shown in Figure 3(a). Omitting the �exibility of the
suspension and the longitudinal deformation of the tires, and assuming that the wheels
are rolling without slipping, one may eliminate the reaction forces acting between
the vehicle body and the axles and obtain di�erential equations for the longitudinal
motion:

ṡ = v,

v̇ = −g sinφ − gξ cosφ −
k

m
(v + vw)2 +

Tw

mR
,

(1)

where the dot represents the derivative with respect time t, while s and v denote the lon-
gitudinal position along the road and the longitudinal velocity. The mass of the vehicle is
denoted bym, the mass moment of inertia of the rotating elements is neglected, g denotes
the gravitational constant, ξ is the rolling resistance coe�cient, φ is the grade, k is the air
drag coe�cient (incorporating the air density and vehicle frontal area), and vw is the speed
of the headwind. The last term contains the wheel torque Tw and the wheel radius R. By
calculating the reaction forces this model also allows one to determine the weight transfer
between axles that can be included in the handling models.

To control the longitudinal vehicle motion, one can command the longitudinal acceler-
ation u based on the states (position and velocity) as well as the environmental information
collected by sensors and V2X connectivity (e.g. positions and velocities of other vehicles).
Then, the wheel torque can be assigned as

Tw(t)

mR
= sat

(

u(t − τ)
)

, (2)

where τ incorporates the sensory, communication and computation delays as well as the
powertrain dynamics. We remark that the latter is often approximated by a �rst-order lag
in the literature. The sat function saturates at amin corresponding to the torque limitations
of the brakes and at ãmax = min{amax,Pmax/(mv)} corresponding to the torque and power
limitations of the engine; see Figure 3(b,c).

In order to simplify the control design, the grade and the headwind are often
neglected and the model (1) is linearised about the constant longitudinal velocity v∗,
yielding

[

˙̃s
˙̃v

]

=

[

0 1
0 −2v∗ k

m

] [

s̃

ṽ

]

+

[

0
1

]

ũ(t − τ). (3)

We remark that the term−2v∗ k
m is typically very small, and thus, it may be omitted leading

to a second-order integrator with input delay.

2.2.2. Lateral and yaw dynamics

When modelling the lateral and yaw dynamics of automobiles, one may utilise a so-called
single track or bicycle model conceptualised in Figure 3(d). In this case, the front wheels
are represented by a single wheel and the same applies to the rear wheels. The wheelbase is
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Figure 3. (a) Longitudinal model of an automobile with elevation. (b,c) Saturation functions used to
model torque and power limitations. (d) Single-track lateral model of an automobile. (e) Kinematic
bicycle model. (f ) Dynamic bicycle model. (g) Lateral tyre force characteristics.

denoted by l, the distance between the centre ofmass G and the centre of the rear wheel R is
given by d, while the steering angle is denoted by γ . In order to describe the con�guration,
one may use the yaw angle ψ and the position of centre of mass (xG, yG), or the yaw angle
ψ the position of the centre of the rear wheel (xR, yR).

Assuming rigid massless wheels that are rolling without slipping, one may obtain the
kinematic constraints that require the velocity of the wheel centre points R and F to be
aligned with the vehicle planes; see Figure 3(e). When also assuming constant longitudinal
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speed v∗, one can derive the so-called kinematic bicycle model

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ψ̇ =
v∗

l
tan γ ,

ẋG = v∗
(

cosψ − d
l sinψ tan γ

)

,

ẏG = v∗
(

sinψ + d
l cosψ tan γ

)

,

⇔

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ψ̇ =
v∗

l
tan γ ,

ẋR = v∗ cosψ ,

ẏR = v∗ sinψ .

(4)

While being very simplistic, this model is often used for motion planning purposes. More-
over, utilising the Lagrangian equations one may calculate the lateral forces acting at the
wheel-ground contact points and provide some predictions about whether the friction is
able to keep the vehicle on track.

The lateral deformations of the tire (omitted by the kinematic model) may have signi�-
cant e�ects on the stability and performance of the vehicle. Due to these deformations the
velocities of the wheel centres do not align with the wheel planes but form tire slip angles
αR and αF; see Figure 3(f). Then, using the lateral velocity σ and the yaw rate ω as pseudo
velocities, the Appellian approach yields the di�erential equations

m(σ̇ + v∗ω) = FR + FF cos γ ,

JGω̇ = −dFR + cFF cos γ ,

ψ̇ = ω,

ẋG = v∗ cosψ − σ sinψ ,

ẏG = v∗ sinψ + σ cosψ ,

(5)

where JG represents the moment of inertia about the centre of mass and c = l−d. The
lateral forces FR and FF depend on the slip angles αR and αF according to the nonlin-
ear characteristics shown in Figure 3(g), while the aligning moments are neglected here
for simplicity. To complete the equations, the slip angles are derived from the velocity
components using kinematics

αR = − arctan
σ − dω

v∗
, αF = γ − arctan

σ + cω

v∗
. (6)

We remark that when investigating the handling dynamics of human-driven vehi-
cles, the last three equations in (5) are often dropped since the con�guration coordinates
ψ , xG, yG only appear here. That is, if the steering angle γ (t) is given one may solve the
�rst two equations without considering the last three and these two are often used to char-
acterise lateral stability of vehicles. This, however, is not the case for automated vehicles
which utilise feedback laws of the form γ (ψ , xG, yG, . . .) in order to avoid objects located
in physical space (represented by . . . in the feedback law). For motion planning, control,
and safety veri�cation of automated vehicles onemust consider the whole �ve-dimensional
state space (σ ,ω,ψ , xG, yG).

For the sake of control design, the model (5)–(6) is often linearised about the straight
running motion. In particular, linearising around the constant speed motion along the x
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axis, we obtain

⎡

⎢

⎢

⎣

σ̇

ω̇

ψ̇

ẏG

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

−(CR + CF)/(mv∗) (dCR − cCF)(mv∗) − v∗ 0 0
(dCR − cCF)/(JGv

∗) −(d2CR + c2CF)/(JGv
∗) 0 0

0 1 0 0
1 0 v∗ 0

⎤

⎥

⎥

⎦

×

⎡

⎢

⎢

⎣

σ

ω

ψ

yG

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

CF/m

cCF/JG
0
0

⎤

⎥

⎥

⎦

γ , (7)

where the so-called cornering sti�nesses are de�ned by Ci = dFi/dαi(0) and the equation
for xG is omitted, since the linear terms are all zeros.We remark that onemay try to linearise
(5)–(6) about othermotions, like circular motion with constant steering angle correspond-
ing to negotiating a curve of constant radius. The resulting equation is of similar formas (7),
but with more complicated coe�cient matrices.

2.2.3. Vehiclemodels of higher complexity

When controlling both lateral and longitudinalmotion of the vehicle, onemay try tomerge
the models (1) and (4), yielding four di�erential equations, or merge models (1) and (5),
leading to six di�erential equations. In the latter case, one may also take into account the
lateral deformation of the tires using so-called combined slip models. The development of
such nonlinear models is currently of interest to the vehicle dynamics community as these
are necessary for planning and control of automated vehicles to be able to execute a large
variety of manoeuvres with high accuracy.

2.3. Vehicle control for automated vehicles

As in the case of vehicle dynamics, automated driving techniques can be divided into three
categories depending upon the dynamic coupling between the describing equations. The
�rst and generally best-understood category is associated with the longitudinal dynam-
ics of the vehicle and corresponds to classical, adaptive, or connected cruise control. The
second category of automated driving is associated with the lateral dynamics of the vehi-
cles and corresponds to lane keeping. The �nal category of automated driving is associated
with a simultaneous description of the longitudinal and lateral dynamics and corresponds
to fully autonomous vehicle control. This section describes the state of the art in designing
controllers for each category. As explained below, the last category is more than a mere
merge of the �rst two categories and it is currently receiving a lot of attention in the vehicle
control research community.

2.3.1. Classical and adaptive cruise control

Cruise control was introduced to the market in the 1950s by �tting vehicles with �yball
governors, which were eventually replaced by electronic control units that measure the
wheel based velocity of the vehicle and control the throttle and brake torque. The primary
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purpose of cruise control algorithms is to maintain vehicle speed despite variations in road
grade, head wind, vehicle mass, or powertrain behaviour. By assuming that the desired
wheel torque can be obtained through powertrain and brakes and the tire friction is not
a limiting factor in the generation of traction force, one can use the nonlinear di�erential
equation (1) to describe the longitudinal vehicle dynamics. Linearising this equation about
a nominal speed yields the model (3) and one can apply a variety of classical linear con-
trol techniques to track a reference speed speci�ed by a driver. To account for variations of
parameters like mass, unmodelled powertrain dynamics and unknown disturbances due
to the grade and headwind, estimation algorithms often run in concert with the cruise
control system to identify relevant parameters. For instance, recursive least squares param-
eter estimation or adaptive control algorithms have been applied in cruise control systems
[14–16].

Cruise control has also been extended to respond to the motion of the vehicle in front
of the one being controlled. This extension of cruise control, which was developed in the
1990s, is entitled adaptive cruise control (ACC). Apart from measuring the longitudinal
velocity, ACC requires themeasurement of the distance h and the rate of change of this dis-
tance ḣ between the vehicle and the one in front of it; see Figure 4(a). This can be achieved
with the help of radar or cameras. To accommodate these new quantities, themodel (1)–(2)
is rewritten as

ḣ = v1 − v,

v̇ = −g sinφ − gξ cosφ −
k

m
(v + vw)2 + sat

(

u(t − τ)
)

,
(8)

where v1 denotes the velocity of the vehicle ahead. Often the resistance terms in the second
equation are neglected to simplify the control design. Moreover, the time delay τ is some-
times approximated by the �rst-order lag, resulting in sat(w) in the second equation and
the additional equation ẇ = (u − w)/τ . Finally, in some cases the system (8) is augmented
with v̇1 = a1 and the acceleration of the car ahead is used as an input.

The primary objective of ACC is to match the longitudinal velocity to that of the vehicle
ahead and to keep a distance speci�ed by the range policy h = H(v). There are numerous
possible range policies, the simplest being the constant distance range policy that is rarely
used in practice due to its poor performance in disturbancemitigation. Themost common
range policy is the constant time headway policy. This is depicted in Figure 4(b) using the
formof v = V(h), whereV = H−1 on the domainwhere the inverse exists [17]. This repre-
sentation highlights three separate regimes: for small headways the vehicle intends to stop
for safety reasons; for large headways it intends to travel with the velocity vset (i.e. it is run-
ning conventional cruise control); while for intermediate headways it tries to maintain the
time headway τset. By shaping the function for intermediate headways, more complicated
range policies may be created to improve driver comfort and/or safety; see Figure 4(c,d).
The control objectives may be achieved by car-following feedback laws that typically rely
on the range h, range rate ḣ, and the longitudinal velocity v. In addition, other strategies
(e.g. feedback linearisation, integral action or adaptive control) may be used to compensate
for the resistance terms in (8).

While ACC is primarily aimed at improving driver comfort, keeping the vehicle safe is of
utmost importance. Thus, the car-following feedback laws are often adjusted by a collision
avoidance algorithm. In practice, one can synthesise and in fact verify that the feedback
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Figure 4. (a) An automated vehicle following another vehicle using adaptive cruise control. (b–d) Range
policies.

laws that are applied while performing ACC are provably safe [18,47]. This process is dis-
cussed inmore detail in Section 3. Another interesting question is what the impact of ACC
driven vehicles is on themotion of other vehicles participating in the tra�c �ow. This leads
to the notion of string stability and more details are provided in Section 5.

2.3.2. Lane keeping

Another comfort feature that has been introduced during the past two decades is lane keep-
ing. To perform lane keeping, the vehicle must be able to detect the lane, which is typically
accomplished by using a vision-based system that may also be augmented by high preci-
sion GPS and high de�nitionmaps. For control design, typically the linearisedmodel (7) is
used and lane keeping is accomplished using a variety of classical linear control techniques
including PID control and linear quadratic optimal control [19]. The design becomesmore
challenging once the road curvature changes signi�cantly and longitudinal velocity of the
vehicle is high. In these cases, arclength parameterised representation of the centre line is
needed in an Earth-�xed frame and the nonlinear model (5) is utilised to keep the vehicle
on the road. Similar to the cruise control case, in practice one can synthesise and in fact
verify that the feedback laws that are applied while performing lane keeping are provably
safe [20–23]. Techniques have even emerged to verify the composition of controllers tasked
with simultaneous ACC and lane keeping [24,25]. Some of these veri�cation methods are
described in greater detail in Section 3.

2.3.3. Fully automated driving

The primary purpose of fully automated driving is to generate a control strategy for the
vehicle that avoids obstacles in the environmentwhile ensuring comfort and e�ciency. The
generation of this controller is typically formulated as amotion-planning problemwherein
a dynamically feasible trajectory from an initial state to some terminal state is computed
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while avoiding collisions with objects in the environment and satisfying tra�c rules. The
description of the initial and terminal states is usually left to some high-level planner.

Motionplanning algorithms can be cast as either path or trajectory generation problems.
In the path planning formulation, a path of given length is constructed in the con�gura-
tion space (x, y,ψ). The solution does not prescribe how fast the path should be followed,
instead the velocity is prescribed by a lower-level feedback controller. In contrast, the tra-
jectory generation problem constructs a trajectory in state space (parameterised by time)
along a given time horizon. This enables one to incorporate vehicle dynamics and handle
dynamic obstacles. We brie�y describe the various algorithms that have been proposed to
solve either the path or the trajectory generation problem; however, several recent papers
provide longer introductions to these topics [26,27].

Path planning formulations of the motion planning problem can be divided into incre-
mental search and variational methods. Incremental search methods such as rapidly
exploring random trees (RRTs) and lattice planners (LPs) generate a graph- or tree-based
representation of the con�guration space (x, y,ψ) and trace out edges to generate a path
between the initial and terminal con�gurations of the vehicle. RRTs, for instance, con-
struct a tree data structure that is expanded stochastically, until the terminal con�guration
is reached [28,29]. Then the desired path is obtained by tracing the edges that lead to that
terminal con�guration from the initial one. To generate a path corresponding to the di�er-
ent edges in the graph, RRTs typically utilise a kinematic model of the vehicle (cf. (4)). As
a result, these approaches often generate nonsmooth paths, which can be di�cult to track
well. In contrast, LPs discretise the con�guration space of the vehicle and represent it as a
graph [30–33]. Paths between the di�erent edges in this graph are usually pre-computed
while incorporating vehicle dynamics, which can enable one to pre-select dynamically
feasible paths. The desired path is found by performing a search for a minimum-cost
path on the graph. Since these methods require discretising the con�guration space, they
are usually restricted to working in speci�c scenarios, which can make transferring these
approaches to a novel context at run-time challenging.

The trajectory generation algorithms formulate motion planning as a nonlinear opti-
misation problem where the decision variable is usually the control input that is applied to
the vehicle [34–39]. Note that this optimisation problem can be formulated in a receding
horizon fashion. The constraints in this formulation typically correspond to the vehicle
dynamics, the initial and terminal states of the vehicle, and any environmental constraints
that may exist. Since the optimisation variable and constraints are in�nite dimensional,
one typically discretises time to solve the problem, which results in a nonlinear �nite
dimensional optimisation problem. Solving these problems globally, at run-time, is usually
infeasible. As a result, typically trajectories are pre-computed using environmental con-
straints that are �xed and known a priori (e.g. locations of sidewalks or the lane median).
However such trajectories are unable to incorporate environmental information that may
only be known at run-time (e.g. pedestrians on sidewalks).

Once amotion plan is generated, a feedback controller is constructed to follow the refer-
ence path or trajectory to ensure appropriate behaviour in the presence of modelling error.
To generate this feedback controller, model predictive control is usually applied [40–43].
Since this feedback controller must be constructed at run-time, the dynamics of the vehicle
are usually linearised about the referencemotion and themodel predictive control problem
is formulated as a convex, quadratic program. Environmental constraints that can only be
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measured at run-time (e.g. pedestrians and surrounding vehicles) are usually accommo-
dated at run-time by simplifying them into linear polytopic constraints that are validwithin
some appropriate region of the reference trajectory.

Three classes of approaches have also been developed to verify the safe operation of
controllers, which are synthesised for fully automated driving. The �rst class of veri�ca-
tion techniques focus on simply checking whether a pre-computed controller can be safely
applied during fully automated driving [44,45]. The second class of veri�cation techniques
tries to correct the control inputs at run-time using the so-called viability kernels [46]. The
�nal class of techniques synthesises controllers that are veri�ed to operate safely [18,47–53].
Some of these methods are described in greater detail in Section 3.

3. Safety verification for automated vehicles

As the autonomous driving features on passenger vehicles become prevalent, the risks asso-
ciatedwith potential failures of such algorithms also become amore serious concern.While
extensively testing these algorithms in diverse real-world scenarios has been the main vali-
dation approach to build trust in these algorithms, it is well-known that ‘correctness’ cannot
be guaranteed just by testing. As an alternative, tools from formal methods, in particu-
lar, formal veri�cation, falsi�cation, and correct-by-construction synthesis can be used to
provide formal guarantees on safety [54]. Formal veri�cation is the task of algorithmi-
cally computing a certi�cate that the system satis�es its speci�cation, while falsi�cation
is the task of algorithmically searching for initial conditions and external inputs within
the allowable set of inputs (disturbances) that will make the system fail the speci�cation.
As an alternative to these approaches, correct-by-construction control synthesis aims to
construct a controller together with a domain of validity under some assumptions on the
systemmodel and the implementation platform.When the system is initialised within this
domain, the synthesised controller guarantees that the closed-loop system remains safe.

The main safety speci�cation for automated vehicles is avoiding a crash. However, it is
unrealistic to expect that an automated vehicle can prevent a crash under all circumstances.
For instance, if a car suddenly cuts in front of an ACC equipped car on the highway and
slams on the brakes, it might not be possible to slow down in time to avoid a crash. One
advantage of safety veri�cation and synthesis approaches is that within the speci�cation,
the assumptions under which safety is satis�ed are explicitly speci�ed. This explicit charac-
terisation of assumptions provides a clear demarcation of the conditions fromwhich safety
is guaranteed; which in turn can be used for explaining potential failures/accidents and for
identifying corner cases [55].

While modelling and control design have attracted considerable attention in the vehi-
cle dynamics community, for safety veri�cation, in addition to a model, a formal safety
speci�cation that is amenable to mathematical reasoning is also crucial. Temporal logics,
including linear temporal logic (LTL) and signal temporal logic (STL), can be used in order
to formally capture requirements [18]. While speci�cations written in plain English can
have di�erent interpretations (e.g. di�erent people can interpret the meaning of ‘maintain
a distance’ slightly di�erently), the speci�cations written using logics have unambiguous
and mathematically precise meaning. This makes it easier within an engineering team to
have a uni�ed, common understanding of the requirements and assumptions. Moreover,
logics enable mathematical analysis of the speci�cation and algorithmic veri�cation of a
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system’s behaviour with respect to the satisfaction or violation of the speci�cation. In par-
ticular, LTL is commonly used, as it is arguably not too far from plain English and is more
favourable compared to real-time logics like STL in terms of computational perspectives.
There are also readily available tools for veri�cation, falsi�cation, and controller synthesis
from LTL speci�cations; see, for instance, [56–60].

LTL speci�cations are formulated with the help of temporal operators like � (always)
and♦ (eventually) and logic operators like∧ (and),∨ (or), and→ (implies). Some combi-
nation of the operators may be particularly useful, e.g.♦� (eventually always) can be used
to characterise stability like properties, in particular, reaching a target operating condition
and staying there inde�nitely. To exemplify how temporal logics can be used for capturing
the requirements relevant to automated driving functionality, we start with presenting a
speci�cation for the lane keeping controller [61,62]. Notice that in Equation (7) the quan-
tity yG de�nes the distance of the centre of mass G from the lane centre. That is, keeping
the vehicle within the lane at all times (always) can be expressed as �(|yG| ≤ δy), where
δy denotes the allowable deviation from the centre, which is a function of lane width and
the wheel track of the vehicle. This speci�cation, in general, is not enough, as it allows
the vehicle to yaw or to have excess lateral velocity, so further (point-wise in time) restric-
tions on the other states in (7) must also be enforced to ensure safety. We remark that such
speci�cations can also be established when the automated vehicle follows a more general
lane centre curve, in which case one needs to also specify the assumptions on maximum
allowable curvature of the roads that the vehicle is expected to operate on.

For the ACC example (8), the ISO speci�cation states ‘When the ACC is active, the vehi-
cle speed shall be controlled automatically either to maintain a time gap τset to a forward
vehicle, or to maintain the set speed vset, whichever speed is lower’. We express this in LTL
as

ψg = �(amin ≤ u ≤ amax)∧ (9a)

� [(�(vset ≤ h/τset) → ♦�(|v − vset| ≤ ε)) ∧ (9b)

(�(vset > h/τset) → ♦�(|v − h/τset| ≤ ε)) ∧ (9c)

((vset ≤ h/τset) → ((0 ≤ v ≤ vmax) ∧ (0 ≤ h))) ∧ (9d)

((vset > h/τset) → ((v ≤ h/τmin) ∧ (0 ≤ v ≤ vmax) ∧ (0 ≤ h)))] . (9e)

Here (9a) captures the input bounds, that is the maximal braking and acceleration torque
allocated to the ACC system that should be respected at all times (cf. Figure 3(c) with large
Pmax). In addition, (9b) states the preconditions and requirements for the case where the
set speed should be maintained and (9c) states the preconditions and the requirements
for the case where a desired time gap should be maintained (cf. Figure 4(b) with hst = 0).
The parameter ε represents the allowable tracking error, whilemaintaining the appropriate
speeds. Finally, (9d) and (9e) capture the domains where di�erent constraints are active
together with the speed limit vmax and aminimum time gap τmin that should bemaintained
in either situation. One reason the formula looks complicated is its precision in explicitly
specifying the conditions (assumptions) under which the speci�cation is expected to be
satis�ed.We can further include assumptions on the lead vehicle’s velocity and acceleration
captured as

ψa = �(v1,min ≤ v1 ≤ v1,max) ∧ �(a1,min ≤ a1 ≤ a1,max) (10)
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Figure 5. (a)Maximal invariant set (or validity domain) for the ACC example. From all of these states, the
ACC controller is guaranteed to prevent a crash and satisfy the specification in (9). (b) The set of states
from which there is a preceding car strategy that complies with the velocity and acceleration bounds
given in (10) for which no controller can prevent a crash.

and the overall speci�cation takes an assume-guarantee formψa → ψg. For this speci�ca-
tion to be satis�ed, the closed-loop system should satisfy its guarantees ψg whenever the
assumptions ψa on the lead car behaviour are satis�ed. On the other hand, when the lead
car drives in a way that violates ψa, we do not expect the system to adhere to ψg.

Once the speci�cations are converted to an LTL formula, controller synthesis involves
encoding the temporal logic formulae with an appropriate automaton that can be used to
de�ne a set of nested �xed-point operations on subsets of states that appear in the formula.
These operations essentially propagate subsets in state space in a way consistent with the
dynamics. This may be done either on the continuous state space or on a �nite abstraction
of it [59,60,63]. This can be seen as a generalisation of control invariant set computation
[64]. Iteratively applying the operations until a �xed point is reached results in the validity
domain of the controller. A control policy, which maps each state in the domain of valid-
ity to the set of all admissible control inputs, is also extracted during this process [18].
Figure 5(a) shows the validity domain (green region) for the ACC controller synthesised
based on (9). For all states inside the green region, there is a controller, consistent with the
speed and acceleration/braking constraints, that guarantees that a crash is avoided for all
possible behaviours of the lead car compliant with ψa.

Now consider a scenario where a car that is initially driving with velocity v1 cuts in front
of the ego vehicle in a way that the initial headway becomes hwhile the initial velocity is v.
If v1 and h are small and v is large enough, then the state (h, v, v1)may fall outside the green
region. In this case there exists a future behaviour for the preceding vehicle (e.g. maximal
braking within ψa), for which there exists no control policy for the ego vehicle that can
prevent a crash. For this problem, it can be shown that the green validity domain is indeed
the best possible validity domain, i.e. any other controller’s validity domain is a subset of
this one. Contrarily, for any state in the blue region in Figure 5(b), the preceding vehicle, if
driven adversarially yet within the assumptionsψa, can enforce a crash. Ability to compute
validity domains is not only useful for comparing how safe di�erent controllers are, but also
useful in understanding the limits of safety and explaining the run-time behaviour.
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Safety veri�cation and control synthesis provide principled techniques for the design
and analysis of automated vehicles, beyond simple driving functionality. Other relevant
applications include powertrain control systems [65,66], semi-autonomous driving with
human in the loop [67,68], and tra�c �ow control in a network of signalised intersec-
tions [69,70]. Recently similar techniques are also applied for verifying automated vehicle
control that involves machine learning or perception modules within the control loop
[71]. These techniques hold the promise of reducing the required testing time signi�cantly
before system deployment by bringing more formal analysis in earlier stages of the design
process.

4. Powertrain control for connected and automated vehicles

Powertrain control has undergone a signi�cant evolution since the introduction of auto-
mated fuel injection in the 1980s. Modern human-driven vehicles are equipped with
sensors and on-board computers that can monitor and regulate the state of the powertrain
in order to lower fuel/energy consumption and emissions and to improve vehicle driveabil-
ity and comfort. Further improvements are possible by integrating V2X communication
and exploiting automated driving [72]. Recent survey manuscripts [73–75] highlight the
emerging opportunities in this domain and provide a comprehensive account of the exist-
ing literature. In what follows we highlight a few additional examples and approaches
that exploits vehicle connectivity and automated driving technologies to improve engine
and powertrain control. Note that the engine and powertrain control are downstream of
automated driving decisions; see Figure 2.

The wheel torque Tw = Td + Tb in (1)–(2) is given by the driving torque Td put on
the driven axle by the powertrain and the torque Tb applied by the vehicle brakes. These
depend on the type of powertrain, engine and transmission. For instance, for a conven-
tional gasoline or a diesel powertrain without a torque converter, disregarding �exibility of
the shafts, the engine dynamics can be modelled as

Je ω̇e = Te − Tc, (11a)

Tc =
Td

itifηtηf
. (11b)

Here Je is the rotational inertia of the engine, ωe is the engine speed, Te is the torque pro-
vided by the engine, Tc is the clutch torque (torque applied by clutch to the driveline), it
and if are the transmission and �nal drive gear ratios, respectively, and ηt and ηf are the
corresponding e�ciencies. When the clutch is engaged and the wheels are rolling with-
out slipping, we have ωe = itifv/R, where v is the longitudinal velocity and R is the wheel
radius; cf. (1). Then combining (1) and (11) we obtain

v̇ = −
mg

me�
sinφ −

mg

me�
ξ cosφ −

k

me�
(v + vw)2 +

itifηtηfTe + Tb

me�R
, (12a)

me� = m +
i2t i

2
f ηtηf Je

R2
. (12b)

Note that one may additionally include the rotational inertia Jw of the wheels and axles by
adding Jw/R2 to the e�ective massme� .
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Figure 6. A typical engine map showing the contours of the brake specific fuel consumption (BSFC) as
a function of engine speed and engine torque. BSFC is ameasure of engine fuel efficiency, defined as the
ratio of fuel rate in g/sec to engine power in kW and then multiplied by 3600.

We also note that the engine torque Te is a function of engine control inputs (fueling
rate, air-to-fuel ratio, spark timing, valve timing, residual gas fraction, cylinder deactiva-
tion, etc.) and engine dynamics (e.g. manifold �lling dynamics, turbocharger dynamics,
etc.); see [76] for details. For the powertrains of electric vehicles or hybrid electric vehi-
cles, the battery dynamics, the e�ciency characteristics of motor-generators and planetary
transmission, and regenerative braking need to be taken into account.

4.1. Powertrain control strategies at a single-vehicle scale

Eco-driving exploits the interplay between traction losses at the wheels and e�ciency
characteristics of the powertrain and vehicle components to maximise the tank-to-wheel
e�ciency as measured in miles-per-gallon (MPG) for conventional vehicles or in miles-
per-gallon equivalent (MPGe) for electri�ed vehicles. Smoother driving which avoids
unnecessary use of friction brakes, transmission downshifts and torque converter unlocks
generally lowers fuel/energy consumption. At the same time, engine e�ciencymay change
signi�cantly depending on the engine speed and torque; see Figure 6. This has motivated
research on control of the vehicle’s longitudinal motion together with its powertrain. For
instance, pulse-and-glide driving strategies were proposed where the engine operates at a
medium to high load for a shorter duration followed by operation at a low load for a longer
duration [77,78]. Such unconventional strategies can lower fuel consumption of vehi-
cles equipped with conventional and hybrid electric powertrains without compromising
average travel speed but not of battery electric vehicles.

V2X communications can be used to inform a preview of road topography and a fore-
cast of tra�c conditions. Such a preview can be exploited by optimisation-based controllers
to reduce fuel/energy consumption. Information on grade, speed limit and tra�c for the
anticipated route ahead is utilised for a vehicle equipped with an internal combustion
engine in [79] and for a hybrid electric vehicle in [80]. In the latter case, optimal set-points
for battery state of charge (SoC) are computed for each segment of the anticipated route. To
simplify the computations, a virtual route is used, consisting of a few initial route segments
and a virtual terminal segment. Virtual terminal segment represents average properties of
the part of the route beyond the receding horizon. The �rst SoC set-point in the optimised
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SoC set-point sequence is applied for the current segment. Once the vehicle reaches the
next segment, information is updated and optimisation is repeated. Compared to the same
SoC for all route segments, dynamic programming showed a bene�t of 10.8% while reced-
ing horizon with virtual terminal segment demonstrated 8.1% bene�t over an urban route
in Cambridge, MA.

In [81] an approach to ambient condition sensing through wireless communications
with a weather station is proposed and experimental vehicle implementation results are
reported. The ambient humidity information can be exploited for improved engine spark
timing control to achieve lower fuel consumption, to improve the accuracy of the air-to-fuel
ratio (UEGO) sensor, and for heating, ventilation, and air conditioning (HVAC) control.
The ambient pressure information can be used for diagnostics of barometric pressure sen-
sor. A relatively unexplored aspect concerns the integration of the information about wind
speed and direction into the route and vehicle speed planning. The cloud cover informa-
tion can be used to improve the e�ciency of HVAC control and enhance thermal comfort
perception by the customers by adjusting HVAC operation in response to an estimate of
solar radiation absorbed by the vehicle.

References [82,83] illustrate the bene�ts of coordinated control of engine actuators
(spark timing, valve timing, waste gate) and dual clutch transmission while exploiting pre-
view/communication with a tra�c light. Assuming a preview of a launch event is available
about 1 second before vehicle launch, engine speed is increased within preview time win-
dow to prepare for launch. With this approach, terminal vehicle speed at the end of the
launch phase is improved 25% and 38% at standard and high altitude conditions, respec-
tively, if trajectories of all actuators and pre-launch engine speed set-point are optimised
versus if only the clutch torque is optimised. Including pre-launch speed set-point into
the optimisation leads to 11% incremental improvement in terminal vehicle speed at the
standard condition in case all other actuators are included in the optimisation.

A signi�cant aspect of powertrain control and calibration in the automotive industry is
ensuring acceptable vehicle driveability. According to [84], the ‘term driveability describes
the driver’s complex subjective perception of the interactions between driver and vehicle
’. For human-driven vehicles driveability metrics and requirements have been established
through extensive past development e�orts; see, e.g. [84]. For Level 4 and 5 automated
vehicles, on the other hand, metrics and requirements need to address rideability, i.e. the
perception of the interactions between a passenger riding an automated vehicle, rather than
driveability, and their development represents an opportunity for continuing research [85].

4.2. Powertrain control strategies withmultiple vehicles

Many opportunities exist for improved energy e�ciency and enhanced powertrain con-
trol in vehicle platooning scenarios and from cloud-based services that do not require
dense penetration but bene�t from integrating information from a few vehicles. In vehicle
platooning scenarios, the energy e�ciency can be gained through speed control and gap
control (aerodynamic drag reduction/slipstreaming). More details about the structure of
such controllers are provided in Section 5. Vehicle-to-cloud connectivity o�ers new oppor-
tunities in diagnostics, prognostics and condition-based maintenance. Data frommultiple
vehicles can be fused on the cloud to estimate parameters, predict degradation trends and
optimally schedule maintenance of powertrain and vehicle components; see, e.g. [86,87].
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Currently, real-world bene�ts of speed trajectory optimisation for connected auto-
mated vehicles are limited by tra�c unpredictability. For instance, a human-driven vehicle
may cut-in in front of a CAV which follows an optimised speed pro�le, forcing the
eco-driving CAV to brake aggressively, thereby degrading the fuel/energy e�ciency. At
dense penetration levels of CAVs, such occurrences could be reduced through distributed
control and vehicle-to-vehicle coordination. Furthermore, much is to be gained by co-
optimisation of vehicle speed pro�le and powertrain operation. For instance, in [88]
simulation results for a real-world corridor of six intersections over Plymouth Road in
Ann Arbor, Michigan, revealed that the eco-driving speed trajectory planning can reduce
the energy consumption of CAVs by up to 29.8%, with an average saving of 13.1%,
compared to a baseline hybrid electric vehicle with non-optimised rule-based power-
train controller. Additionally, for one selected vehicle, while up to 11.9% energy saving
is observed from speed optimisation, further energy savings of up to 14.2% and 18.8%
can be achieved after applying the HVAC thermal load and power split optimisations,
respectively.

Powertrain control strategy, architecture and calibration can be greatly simpli�ed, if
all vehicles are automated and centrally coordinated. In particular, the control system
of a slower accelerating and decelerating vehicle can rely to a larger extent on feedback
and adaptation rather than calibration-intensive feedforward control. Smaller and more
reliably predicted driveline side disturbances for vehicles with continuously variable trans-
mission (CVT) can permit lowering belt clamping pressure and improved fuel economy.
Vehicleswith turbocharged gasoline enginesmayno longer need a compressor bypass valve
(CBV) if aggressive decelerations that can cause compressor surge are eliminated (or may
not need to open CBV as frequently, which degrades fuel economy). However, it is likely
that at high penetration levels, where the vehicle speed can be reliably controlled, the design
of engine and powertrain for CAVs can drastically change.

With ubiquitous penetration of connected and automated vehicles, it is conceivable that
computations of vehicle manoeuvres will be greatly simpli�ed and moved o�-board to the
cloud, in particular, if cyber-security concerns can be appropriately addressed. Further-
more, advanced sensors, which are currently expected to be integrated with the vehicles to
provide information about the surrounding tra�c, can be moved o�-board to the infras-
tructure with information wirelessly communicated to the individual vehicles. This has
a signi�cant potential to lower the power draw from and cooling requirements (yielding
5kW estimated power loss in the current systems) of advanced electronics and comput-
ers, which perform automated driving functions and are currently located on-board of the
individual vehicles.

4.3. Connected powertrain testbeds to facilitate the development of connected

vehicles

As the above-mentioned algorithms are developed, evaluating them experimentally with
high-�delity becomes an important challenge, especially when fuel economy and emis-
sion improvements due to these algorithms need to be assessed with high accuracy under
dynamic drive cycles. On the one hand, computer simulations are in general attractive
as a controllable, repeatable, and scalable means for evaluating CAV algorithms. How-
ever, when it comes to predicting fuel consumption and emissions in highly transient
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drive cycles, simulation models available for fast, system-level evaluations typically lack
the required accuracy. As an example, estimates from purely simulation-based studies can
be o� by as much as 27% in terms of fuel economy and 350% in terms of emissions [89].
On the other hand, full-scale experiments with physical vehicles on actual roads o�er the
highest �delity. However, they are expensive and di�cult to orchestrate, control, repeat,
and scale.

The connected testbed paradigm can help address this challenge. The connected
testbeds concept refers to a cyber-physical experimentation paradigm that enables remote
closed-loop access to engineering testbeds such as powertrain test cells. For example, a new
CAV engine control algorithm developed in one location could be validated remotely on
an engine testbed in another location. The concept is not limited to remotely accessing only
one testbed; multiple geographically dispersed testbeds could be integrated to scale up the
existing experimental capabilities or even create new ones. For instance, multiple engine
testbeds could be integrated to emulate a platoon of CAVs, or an engine testbed could
be remotely connected to a battery testbed to create a cyber-integrated hybrid powertrain
experimentation capability.

The realisation of this paradigm brings about a new challenge, namely, the challenge
of enabling such integration despite the delays introduced by the networks that are used
to connect the testbeds. This challenge is important, because a connected testbed forms
a closed-loop system, in which even small delays can signi�cantly deteriorate the perfor-
mance of the system, and even destabilise it. Thus, the high �delity that is expected due
to the inclusion of the physical powertrain elements in the loop can be lost because of the
distortions in the closed-loop system dynamics due to the delays. Nevertheless, the litera-
ture has already demonstrated successful applications of connected testbeds [89–93].With
leveraging and further development of the connected testbed design strategies [94] and
delay compensation techniques [95–97], connected testbeds can present a cost-e�ective,
scalable, repeatable, and high-�delity solution to evaluating engine scale CAV algorithms
at various penetration levels.

5. Improving traffic dynamics with connectivity and automation

Asdescribed above, adaptive cruise control can improve the safety, fuel economy anddriver
comfort when responding to the motion of the vehicle ahead and these algorithms may be
used for vehicles of di�erent levels of automation. An important question is how these auto-
mated vehicles impact tra�c dynamics. In order to qualitatively and quantitatively evaluate
this impact, the notion of string stability is often used: a vehicle is said to be string stable
if it attenuates the velocity perturbations arising from the vehicle ahead. There exist many
di�erent de�nitions of string stability based on what type of perturbations are applied and
how theirmagnitudes are calculated [98,99]. The linearised version of themodel (8) is often
used to evaluate the string stability of controllers. In particular, by calculating the transfer
function T(s) between the velocity perturbation ṽ of the ego vehicle and the velocity per-
turbation ṽ1 of the preceding vehicle, one can evaluate the size of ampli�cation/attenuation
and ensure string stability by requiring

|T(jω)| < 1, ∀ω > 0, (13)

where j2 = −1; see [17] for more details.
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Human drivers often exhibit string unstable behaviour due to their reaction time, and
perturbations are ampli�ed as they propagate backward along the chains of human-driven
vehicles, often leading to the formation of stop-and-go tra�c jams. In contrast, the ACC
algorithm may be tuned to be string stable, and thus, mitigate tra�c waves [100]. We
remark that perturbations may arise at �xed spatial locations due to tra�c incidents or
changes in elevation. These may be compensated, however, by selecting appropriate range
policies [101]. Indeed, if the longitudinal motion of all vehicles in the �ow can be designed,
string stability may be ensured for the overall vehicle string, while for partial penetration
of vehicles the impact may be less prominent [102,103]. More precisely, when considering
a mixed chain of human-driven and automated vehicles (see Figure 7(a)) one may de�ne
string stability between any two pairs of vehicles in the chain. Indeed, it is possible that
the system shows string stability between two vehicles (say i and j) and in the meantime
shows string instability between two other vehicles (say k and l). At the linear level, string
stability between any two vehicles can still be evaluated using transfer functions. In partic-
ular, if the link transfer function between the velocity perturbations of vehicle i and vehicle
i+ 1 ahead is denoted by Ti,i+1(s), then the j-to-i transfer function linking the velocity
perturbations of vehicles i and j can be expressed as

Gi,j(s) = Ti,i+1(s) . . .Tj−1,j(s). (14)

Then, the so-called j-to-i string stability can be ensured by

|Gi,j(jω)| < 1, ∀ω > 0, (15)

which can be used to investigate how automated vehicles can compensate for the detri-
mental e�ects of human-driven vehicles and what penetrations of AVs is needed to make
a mixed vehicle chains string stable [104].

In order to improve the performance of automated vehicles, one may utilise V2V con-
nectivity. On the one hand, a connected automated vehicle may obtainmotion signals (like
acceleration, yaw rate) from vehicles within the line of sight, which may be challenging to
obtain by sensors (lidar, radar, cameras). For example, having access to the longitudinal
acceleration of the vehicle ahead allows one to improve the performance of the longitudi-
nal controller of a CAV [105]. We emphasise that this does not require the vehicle ahead to
be automated; it can be a human-driven vehicle equipped with V2V communication that
we refer to as a connected human-driven vehicle (CHV). This is the simplest realisation of
a concept called connected cruise control (CCC), where a CAV utilises motion informa-
tion from human-driven vehicles ahead; see Figure 7(b). Indeed, when available, a CAV
may utilise motion information from multiple CHVs within and beyond the line of sight
(Figure 7(c,d)) in order to improve its safety and fuel economy [106,107]. This strategy
can also have a positive impact on the overall tra�c �ow. In particular, one may design
CCC algorithms so that CAV i attenuates the velocity �uctuations of the furthest CHV j

it receives motion information from, that is, ensure j-to-i string stability (often referred
to as head-to-tail string stability). This can be evaluated using the j-to-i transfer function
Gi,j(s) (also called head-to-tail transfer function), which can be calculated from link trans-
fer functionsTk,l(s) for k, l ∈ i, . . . , j representing the dynamical interactionwhen vehicle k
utilises motion information from vehicle l (obtained by the human driver, sensors, or V2V
connectivity). This calculation can be made very e�cient for unidirectional information
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Figure 7. Controlling vehicle chains using (a) adaptive cruise control, (b,c,d) connected cruise control,
and (e) cooperative adaptive cruise control.

�ows, i.e. when the CAV only uses information from vehicles ahead; see [108,109]. Again,
such design does not require the other vehicles to be automated and one may ensure that
the performance of the network keeps improving with increasing penetration of CHVs and
CAVs.

For higher levels of penetration of CAVs it may occur that multiple CAVs follow each
other consecutively within the vehicle chain; see Figure 7(e). This provides these vehicles
with the opportunity to cooperate and control theirmotion in a coordinated fashion, which
is often referred to as cooperative adaptive cruise control (CACC) [110–118]. While cal-
culating the head-to-tail transfer function is more demanding due to the bidirectional
connections, these systems may show high level of performance for multiple reasons.
Cooperative control may allow vehicles to travel at smaller time headway, which may help
them to reduce air drag and increase their energy e�ciency. Moreover, as each connected
automated vehicle runs its own path planning algorithm, it can share it with other CAVs
via V2V communication. This allows CAVs to utilise feedforward actions beside feedback
and optimise their performance in a rolling horizon fashion. Challenges of CACC include
the fact that multiple vehicles need to move in tra�c while either keeping the formation
(which may be di�cult when performing manoeuvres like lane changes) or realigning the
formation (that may be necessary when human-driven vehicles cut into the automated
platoon).

If all vehicles become connected automated, many opportunities may arise for improv-
ing safety, energy e�ciency and mobility [119,120]. Since such scenarios may take many
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decades to realise, there is signi�cant interest on the �eld regarding the impact of connected
and automated vehicles on the formation of large-scale tra�c patterns such as congestion
waves. Results in [121–124] indicate that these waves can bemitigated by CAVs even under
partial penetration of automation and connectivity. In particular, V2X connectivitymay be
utilised by CAVs in order to obtain information regarding the large-scale tra�c behaviour
to which they may not have access using sensory information. This opens an avenue to
Lagrangian tra�c control, where CAVs are utilised for controlling the large-scale tra�c
dynamics leading to increased tra�c �ux and reduced travel time. This, in turn,may reduce
the energy consumption and emissions at the system level in transportation systems and
lead to tremendous societal bene�ts.How to incentivizeCAVs tomodify theirmotion from
their local optimum toward system optimum remains a challenging open question at the
moment.

6. Economical and societal impacts of connected and automated vehicles

The degree to which the economical and societal bene�ts of CAVs can be realised at the
system level highly depends on their deployment strategy. CAVs will change the utility of
travel, a�ecting multiple-choice facets including mode choice, destination choice, activity-
chaining, and even choice of residence locations in the long run. As such, behavioural
studies need to be conducted to capture the impact of the arising technologies on the sup-
ply and demand sides of the transportation networks, and the resulting equilibria. These
can be formulated as large-scale optimisation problems, where individuals can schedule
their daily activities, and their corresponding trips, by maximising their total daily utilities
(i.e. utility of engaging in an activity plus the disutility associated with travel). The cor-
responding mathematical formulations allow for comparing activity and travel patterns
under legacy vehicles and CAVs.

Despite the many anticipated bene�ts of CAVs at the vehicle and platoon level, in the
absence of the right policies and solutions, CAVs could create a number of undesirable
consequences at the system level, one of which is the potential increase in the system-
wide vehicle miles travelled (VMT). A study in the San Diego County [125] demonstrated
that, not accounting for induced activities and trips, having households replace their legacy
vehicles with the optimal number of CAVs (the minimum number of vehicles required to
satisfy household travel needs) will lead to a two-fold increase in the system-wide VMT,
mainly due to the introduction of empty-haul trips.

Another way CAVs could increase the total VMT is by changing the trip-chaining
behaviour of travellers. Trip chaining refers to forming tours of activities to be completed
sequentially, in order to reduce the total time and VMT spent on travelling. For example,
instead of making three separate trips from home to dry cleaning and back, from home to
work and back, and from home to the grocery store and back, one might form a tour of
home-dry cleaning-work-grocery store-home, substantially reducing the total VMT.With
CAVs, over time it would be possible to send the vehicles to perform a portion of these daily
tasks, e.g. picking up groceries. As such, trip chaining would not be used as often, leading
to higher VMTs. Another potential source of increase in VMT is the expected change in
residential patterns. It is envisioned that CAVs would allow for travellers to engage in pro-
ductive activities while travelling, essentially reducing the time-cost of trips. This could
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lead to a change in residential patterns in the long run, with people moving to more sub-
urban areas looking for more a�ordable housing, and opting for longer work-based trips,
thereby adding to system-level VMT. As such, when viewed from a system-level lens, it
becomes clear that it is important for policy makers to anticipate the potential conse-
quences of adopting a CAV system, and put in place the right policies, incentives, and
solutions so as to curb some the potential negative consequences to the extent possible.

One solution to reduce the increase in VMT in a CAV system is using ridesharing. It
is expected that CAVs initially will be mostly deployed by ridesharing providers for both
economic and practical reasons. The economic aspects mostly stem from CAVs’ higher
price tags. The added cost of sensory and control systems in CAVs will likely prevent
high levels of private CAV ownership at the onset. On the other hand, ridesharing systems
are well-positioned to bene�t from deployment of CAV �eets. Since driver compensation
accounts for a large portion of �eets’ operational costs, ridesharing providers can o�set
the large capital cost of forming CAV �eets by the resulting reduction in their operational
costs. Additionally, CAV�eets prevent scheduling complications posed by crew scheduling
requirements (e.g. number of working hours, sequence of working hours, etc.), which can
be especially limiting in long-haul trips.

System-level implications of a CAV�eet deployed in a ridesharing systemhighly depend
on its implementation strategy. Speci�cally, a ridesharing provider can follow one of the
two implementation strategies of private ridership or shared ridership of the �eet. In the
private ridership implementation, a central ridesharing provider uses its �eet to serve one
customer at a time. It is easy to see that the empty-haul trips between the drop-o� location
of a customer and the pick-up location of the next would cause an increase in total VMT,
compared to the case where each customer uses her own privately owned vehicle. However,
as the penetration rate of CAVs increases, the empty-haul trips will become shorter. Studies
have shown that shared ridership of CAV �eet can substantially help to o�set the increase
in total VMT, rendering CAV deployment a more sustainable option [126,127].

6.1. Peer-to-peer transactions

Collaborative consumption of goods and services, also known as the sharing economy,
underwent a substantial rise with the widespread availability of internet [128]. Facilitated
by the sharing economy, V2X connectivity in transportation systems can enable real-time
exchange of resources (e.g. trades) as well as real-time service o�erings. Sharing economy
has already shown to improve sustainability [129,130] and boost performance [131,132] in
transportation systems.

Requests to use the transportation system are typically served on a �rst-come, �rst-
served (FCFS) order. The FCFS order of serving requests originates from two considera-
tions. First, since the transportation network is a public good, fairness considerations call
for requests to be served in the order they arrive. Note that this general rule would preclude
purpose-built, priority-access facilities, such as high-occupancy vehicle (HOV) and high-
occupancy toll (HOT) lanes, expressways, etc. The second consideration is a practical one;
since all requests arrive in real-time and no information on future requests exist at the time
of resource allocation, the practical allocation strategy is to serve requests as they arrive.
This, to some extent, can be remedied by using a forecast of arrivals. Forecasts obtained
from historical data (often coupled with data collected by sensors in real-time) can be
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used to enhance system-level performance. An example of incorporating demand fore-
casts into the decision-making process is adaptive tra�c signal control, in which signal
phasing and green times are allocated to opposing approaches based on a combination of
historical travel patterns and real-time information. It should be noted that the degree to
which demand forecasts can improve system performance depends on the quality of such
forecasts – low-quality forecasts can generate solutions that are inferior to following an
FCFS queuing discipline.

CAV technologies can help to increase system performance by addressing concerns
about both fairness and future demand uncertainty. Let us consider the example of a
ridesharing provider, in which requests for rides arrive in real-time and the demand is
scheduled to be served based on an FCFS queuing discipline. Once a request is received,
the system operator provides an itinerary for the ride and its corresponding price to the
rider. Let us denote the perceived utility of rider r from the proposed option as

ur
(

vr(θ), pr(θ)
)

= vr(x, θ) − pr(x, θ), (16)

where vr and pr are the valuation of rider r from the proposed option and the price charged
to this rider, respectively. A rider’s valuation of an option and the price charged are func-
tions of his/her itinerary, denoted by x, as well as his/her private information (such as value
of time/distance, penalty for detour from the shortest path, valuation of the activity to
be completed at the end of the trip, etc.), denoted by θ . Such private information can be
directly solicited from riders and incorporated into incentive-compatible mechanisms to
ensure participants cannot game the system. Once a rider is served, the resources allocated
to her will be removed from the pool of available resources, that is, the itinerary of the
vehicle dedicated to serving the rider will be partially �xed, and the available capacity of
this vehicle will be reduced. This indicates less resources are available for the next request.
That is, if the request of rider r′ arrives after r, it cannot be served due to lack of resources.
However, if the resources were not previously allocated to r, they could have been utilised
to serve r′ instead of r, or even both requests. Figure 8(a) displays an example of such a
scenario.

Peer-to-peer (P2P) exchange, enabled by V2X connectivity among agents, provides an
opportunity to increase the performance of the system, since it enables rider r′ to free vehi-
cle v′ from its previous assignment to r by engaging in a negotiation with rider r; see in
Figure 8(b). This negotiation determines the monetary compensation that r′ o�ers r for
vehicle v′. The amount of this compensation can be determined based on the private types
of agents, by maximising the social welfare function

W =

¨

(v′ − c) ξ(c, v′)dv′dc, (17)

where v′ and c denote the valuation of r′ from the new option (with the valuation of an
outside option for r′ normalised to zero) and the opportunity cost of r due to exchange,
respectively. Function ξ denotes the joint distribution of the private parameters of the two
participants in the exchange, while the bounds of the integral identify the range of pri-
vate parameters, for which the trade would generate positive social welfare (otherwise the
trade will not take place). It can be shown that such bi-lateral trade mechanisms are indi-
vidually rational (i.e. individuals would bene�t from participating in the system, and thus,
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Figure 8. An example of two requests, r and r′, arriving at the system (r′ arriving after r) engaging in an
exchange. Panel (a) displays the scenario where rider r occupies the resource v′, leaving no resource left
for serving r′. Panel (b) shows the result obtained after the exchange, where r′ purchases v′ from r, and r
is served by v through an inferior itinerary compared to her original itinerary.

will voluntarily do so) and dominant-strategy incentive-compatible (i.e. individuals would
maximise their utilities by being truthful in reporting their private parameters, such as
value of time) [133].

Similar exchangemechanisms have been proposed for a wide range of systems and facil-
ities, e.g. at signalised intersections to allow one tra�c approach to collectively purchase
‘green time’ from the opposing approach [131], in freeways and facilities with parallel
queues [134], among connected vehicles forming platoons [135], and in trading right-
of-way [136]. These case studies demonstrate the increase in level-of-service and system
performance obtained through P2P transactions.

7. Future challenges

Modelling vehicle dynamics and interactions in the age of automated vehicles contains
many new challenges due to the large number of di�erent scenarios that need to be covered
and the high level of �delity expected.While physics-basedmodels will likely dominate the
�eld during the next few years/decades, there are clear signs that these can be augmented
by data-based models. This opens a door for bringing tools from machine learning (e.g.
neural networks) to vehicles dynamics. However, one not only needs to ensure that these
hybrid models outperform the physics-based counterparts, but also make sure that they
generalise well for di�erent environmental conditions.

Though techniques for controller design are well understood for automated vehicle
systems when they can be modelled well as a linear system, much work needs to be com-
pleted before these methods can be suitably extended to arbitrary situations. In particular,
numerical control synthesis techniques that are able to make guarantees about the discov-
ery of approximately optimal or even feasible solutions in real-world environments, under
real-time operation constraints are still being developed. Techniques for numerical control
design also need to better accommodate uncertainties that may arise from the lack of accu-
rate environmental models and the limitations of perception algorithms. Again, to be fully
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applicable, any method for numerical control design that can accommodate uncertain-
ties should make guarantees about the discovery of approximately optimal or even feasible
solutions under real-time operation constraints.

Formal veri�cation and correct-by-construction controller/supervisor synthesis hold
great promise to build trust in the decision-making algorithms in connected and auto-
mated vehicles, from powertrain control-loops to autonomous driving functionality. There
are several technical and usability challenges to take full advantage of these formal tech-
niques. On the technical side, while veri�cation of simple communication protocols for
connectivity is somewhat studied, the veri�cation of a large V2X system will require
new modelling formalism to enable scalability. Another challenge is the veri�cation of
learning-based components (e.g. neural networks), which are already widely used in per-
ception algorithms. In particular, how these components a�ect the overall system-level
safety properties or how to pose veri�cation questions with respect to datasets used in
training these algorithms are open problems. On the usability side, not all automotive engi-
neers are trained in formal veri�cation, hence user-friendly software tools are needed to
enable broad adoption in industry. Moreover, writing ‘correct’ speci�cations that fully cap-
ture the user’s intent can be challenging even for expert users. Therefore more research
is needed also in usability and speci�cation validation/testing. For example, domain-
speci�c languages for intent capture can be useful for this purpose. Overall, we envision
that initial adoption will require a combination of formal veri�cation/synthesis and ver-
i�cation/synthesis guided validation and testing to reduce the potential test space while
ensuring a high-coverage of safety critical scenarios.

In the area of improved powertrain control, many opportunities to exploit connectivity
and take advantage of automated driving exist. The future challenges involve ensuring high
reliability and low cost and complexity of the proposed solutions tomake them realistic for
implementation. In particular, resilience against sensor and actuator failures, communica-
tion dropouts, and cyber attacks need to be ensured. In order to further improve the safety
and e�ciency connected and automated vehicles cooperative driving algorithms may be
utilised by exploiting V2X connectivity. Going beyond the simple ‘quasi-one-dimensional’
con�gurations of vehicle chains would require one to reformulate the trajectory planning
problems for cooperative driving. Furthermore, cooperative control of CAVs may require
one to redesign the V2X communication protocols andmessage sets which were originally
established for human-driven vehicles.

Finally, there is a lot of uncertainty regarding the deployment of CAVs in terms of
what levels of automation will be introduced to public roads and when. It is also an
important question what type of new physical and cyber infrastructure these vehicles will
demand in order to ensure safety and e�ciency of themselves and other road partici-
pants. Evaluating the socioeconomic impacts under such uncertainties remains a huge
challenge. Still the authors of this paper remain positive that connectivity and automa-
tion will be utilised to answer many of the transportation challenges of the twenty-�rst
century.
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