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Abstract

We consider a family of random graphs with a given expected degree
sequence. Each edge is chosen independently with probability propor-
tional to the product of the expected degrees of its two endpoints. We
examine the distribution of the sizes/volumes of the connected compo-
nents which turns out depending primarily on the average degree d and
the second-order average degree d̃. Here d̃ denotes the ratio of the sum
of squares of the expected degree and the sum of the expected degrees of
vertices. For example, we prove that the giant component exists if the
expected average degree d is at least 1, and there is no giant component
if the expected second-order average degree d̃ is at most 1. Examples are
given to illustrate that both bounds are best possible.

1 Introduction

The primary subject in the study of random graph theory is the classical ran-

dom graph G(n, p), as introduced by Erdős and Rényi in 1959 [19]. In G(n, p),

every pair of a set of n vertices is chosen to be an edge with probability p.

Such random graphs are fundamental and useful for modeling problems in

many applications. However, a random graph in G(n, p) has the same expected

degree at every vertex and therefore does not capture some of the main be-

haviors of numerous graphs arising from the real world. It is imperative to

consider a versatile and generalized version of random graphs. In this pa-

per, we consider random graphs with given expected degree sequences which

contains the classical random graphs as a special case and also include the

so-called “power-law” degree distributions occurred in various realistic graphs.
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It has been observed that many real graphs occurring in the Internet, social

sciences, computational biology and nature have degrees obeying a power law

[1, 2, 3, 7, 8, 12, 13, 20, 21, 25, 26, 36]. Namely, the fraction of vertices with

degree d is proportional to 1/dα for some constant α > 0. Although here we

consider random graphs with general expected degree distributions, special em-

phasis will be given to sparse graphs (with average degree a small constant)

and to power law graphs (see Section 9). The methods and results that we

derive in dealing with random graphs with given expected degree distribution

are useful not only for modeling and analyzing realistic graphs but also leading

to improvements for problems on classical random graphs [14, 29].

In this paper, we consider the following class of random graphs. We start

with a given degree sequence w = (w1, w2, . . . , wn). The vertex vi is assigned

vertex weight wi. The edges are chosen independently and randomly accord-

ing to the vertex weights as follows. The probability pij that there is an edge

between vi and vj is proportional to the product wiwj where i and j are not

required to be distinct. There are possible loops at vi with probability propor-

tional to w2
i . We have

pij =
wiwj

∑

k wk
. (1)

Throughout the paper we assume that maxi w2
i <

∑

k wk so that pij ≤ 1 for

all i and j. We remark that the assumption maxi w2
i <

∑

k wk implies that the

sequence wi is graphic (in the sense that it satisfies the necessary and sufficient

condition for a sequence to be realized by a graph [18]) except that we do not

require the wi’s to be integers.

We denote a random graph with a given expected degree sequence w by

G(w). For example, the typical random graph G(n, p) (see [19]) on n ver-

tices and edge density p is just a random graph with expected degree sequence

(pn, pn, . . . , pn). The random graph G(w) is different from the random graphs

with a prescribed degree sequence as considered by Molloy and Reed. In [31, 32],

Molloy and Reed obtained results on the sizes of connected components for ran-

dom graphs with prescribed degree sequences which satisfy certain “smoothing”
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conditions. There are also a number of evolution models for generating a power-

law degree random graphs as in Bollobás, Spencer et al. [11], Cooper and Freeze

[17] and Aiello, Chung and Lu [2]. In Section 8, we will describe and compare

these models and related results.

Here we give some definitions. The expected average degree d of a random

graph G in G(w) is defined to be

d =
1

n

n
∑

i=1

wi.

For a subset S of vertices, the volume of S, denoted by Vol(S), is the sum of

weights of vertices in S.

Vol(S) =
∑

vi∈S

wi

In particular, the volume Vol(G) of G(w) is just
∑

i wi. The edge probability

pij in (1) can be written as:

pij =
wiwj

Vol(G)
= wiwjρ

where

ρ :=
1

Vol(G)
=

1

nd
.

A connected component C is said to be ǫ-small for an ǫ < 1/2 if the volume of

C is at most ǫVol(G). We say that a component is c-giant if its volume is at

least cVol(G), for some small constant c > 0. A giant component, if exists, is

almost surely unique (to be proved later in Section 7).

For a subset S of vertices, a typical measure is the number of vertices in

S that we call the size of S. In the classical random graph G(n, p), a giant

component is a connected component having at least c1n vertices and at least

c2e(G) edges for some constants c1 and c2, where e(G) denote the total number

of edges in G. Our definition of the giant component involves the volume instead

of the size of the connected component. In fact, the definition for the giant

component using the size of the component simply does not work for random

graphs with general degree distributions, as illustrated by the following example.
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Example 1: We consider that the weight sequence w consisting of nα vertices

with weight 2 and the other vertices with weight 0. Here α is a constant satis-

fying 1
2 < α < 1. The random graph G(w) is the union of a classical random

graph G(nα, 2
nα ) and some isolated vertices. Therefore, the largest connected

component have Θ(nα) vertices and Θ(e(G)) edges.

We remark that for the case of expected degrees within a constant factor of

each other, the size and the volume of S are of the same order. Also, an upper

bound for the volume of a connected component serves as an upper bound of

the size of a connected component.

If the average degree d ≥ 1 + δ, where δ is a positive constant, we will show

that almost surely any ǫ-small connected component has size at most O(log n)

(detailed in Theorems 1-2) and we will call them small components. A general

upper bound for the size of the small components will be derived in terms of the

average degree d. We will show that this upper bound is asymptotically best

possible for certain ranges of d.

Here we state the main results which will be proved in subsequent sections.

Theorem 1 For any positive ǫ < 1 and d > 4
e(1−ǫ)2 ≈ (1 + 2ǫ)1.4715 . . . ,

in a random graph with a given expected degree sequence, almost surely ev-

ery connected component either has volume at least ǫn or has size at most

log n
1+log d−log 4+2 log(1−ǫ) . where d is the expected average degree. The upper bound

log n
1+log d−log 4 for small components is asymptotically best possible for large d.

Theorem 2 For any positive ǫ < 1 and d satisfying 1
1−ǫ < d < 2

1−ǫ , in a

random graph with a given expected degree sequence, every connected component

almost surely either has volume at least ǫn or has at most log n
d−1−log d−ǫd vertices,

where d is expected average degree. This upper bound log n
d−1−log d is asymptotically

best possible.

We consider the second-order average degree d̃ which is the weighted average

of the squares of the vertex weights. Namely,

d̃ =
∑

w2
i ρ.
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Clearly,

d̃ =

∑

w2
i

∑

wi
≥

∑

wi

n
= d.

For the classical random graphs G(n, p), we have d̃ = d = np. It was shown in

the seminal paper of Erdős and Rényi [19] that there is a giant component when

np ≥ 1 + ǫ, while there is no giant component when np ≤ 1 − ǫ. Furthermore,

there is a double jump around np = 1, where the largest component have

size of Θ(n2/3) if |np − 1| = o(n−1/3). For random graphs G(w) of general

degree distribution, the evolution is more complicated. We will show that all

components are small if d̃ < 1 − ǫ and there is a giant component if d > 1 + ǫ.

Theorem 3 For a random graph G with a given expected degree sequence, al-

most surely G has a unique giant component, if the average degree satisfies

d ≥ 1 + δ, where δ is a positive constant. Moreover, we have

(i). If d ≥ e, the volume of the unique giant component is at least

(1 − 2√
de

+ o(1))Vol(G).

(ii). If 1 + δ ≤ d ≤ e, the volume of the unique giant component is at least

(1 − 1 + log d

d
+ o(1))Vol(G).

If the second-order average degree d̃ ≤ 1 − δ, then almost surely, there is no

giant component.

The proof of Theorem 3 can be found in Section 7. It is natural to question

the relationship of the degrees to the emergence of the giant component for

the range of d̃ > 1 > d. The examples in Section 3 show that either case

can occur for a general degree distribution when d̃ > 1 > d. Therefore the

general problems about phase transitions or double jumps for an arbitrary degree

sequence becomes mute. It would be interesting, for example, to identify or

characterize degree distributions for which the phase transition occurs.
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2 Basic facts and examples

We will use the following inequality which is a weighted generalization of the

Chernoff inequalities for binomial distribution:

Lemma 1 Let X1, . . . , Xn be independent random variables with

Pr(Xi = 1) = pi, P r(Xi = 0) = 1 − pi

For X =
∑n

i=1 aiXi, we have E(X) =
∑n

i=1 aipi and we define ν =
∑n

i=1 a2
i pi.

Then we have

Pr(X < E(X) − λ) ≤ e−λ2/2ν (2)

Pr(X > E(X) + λ) ≤ e−
λ2

2(ν+aλ/3) (3)

where a = max{a1, a2, . . . , an}.

Inequality (3) is a corollary of a general concentration inequality ( see Theo-

rem 2.7 in the survey paper by McDiarmid [30]). Inequality (2) which is a slight

improvement of the inequality in [30] can be proved as follows.

Proof: For any 0 ≤ p ≤ 1, and x ≥ 0, we denote f(x) = px+ln(1−p+pe−x)

and g(x) = px2/2. Then we have f(0) = g(0) = 0, and f ′(0) = g′(0) = 0. Also,

f ′′(x) =
p(1 − p)e−x

(1 − p + pe−x)2

=
p(1 − p)e−x

(1 − p + e−x − (1 − p)e−x)2

≤ p(1 − p)e−x

(2
√

(1 − p)e−x − (1 − p)e−x)2

≤ p(1 − p)e−x

(
√

(1 − p)e−x)2

= p

= g′′(x).

Hence px + ln(1 − p + pe−x) ≤ px2/2 for any x ≥ 0.

For any t > 0, we have

E(e−ait(Xi−pi)) = pie
−tai(1−pi)+(1−pi)e

pitai = epitai+ln(1−pi+pie
−tai ) ≤ e

pi(tai)
2

2 .
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Hence

E(e−t(X−
Pn

i=1 aipi)) =

n
∏

i=1

e−t(Xi−piai)

≤
n

∏

i=1

e
pi(tai)

2

2

= e
Pn

i=1
pi(tai)

2

2

= e
t2ν
2

We have

Pr(X −
n

∑

i=1

aipi < −λ) = Pr(e−t(X−
Pn

i=1 aipi) > etλ)

≤ E(e−t(X−
Pn

i=1 aipi))e−tλ

≤ e
t2ν
2 −tλ

= e−
λ2

2ν

by choosing t = λ
ν . This completes the proof of Lemma 1.

�

We note that the special case of ai = 1 for all i is the usual inequality that

is included in most books in random graph theory and probability (e.g., [24]).

As immediate consequences of Lemma 1, the following facts then follow.

Fact 1: For a graph G in G(w), with probability 1 − e−c2/2, the number di of

edges incident to a vertex vi satisfies

di > wi − c
√

wi

and

Prob(di < (1 + ǫ)wi) > 1 − e−ǫ2wi/(2+2ǫ/3).

Fact 2: With probability 1− 2e−c2/2, the number e(G) of edges in G, satisfies

2e(G) > Vol(G) − c
√

Vol(G).

In the other direction,

Prob(2e(G) < (1 + ǫ)Vol(G)) > 1 − e−ǫ2Vol(G)/(2+2ǫ/3).
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With probability 1 − 2
n , all vertices vi satisfy

2
√

wi log n ≤ dvi − wi ≤
2

3
log n +

√

(
2

3
log n)2 + 4wi log n.

Fact 3: With probability at least 1 − e−c, the number of edges e(S) between

pairs of vertices in S is at least 1
2Vol(S)2ρ − Vol(S)

√
ρc.

Proof: e(S) can be expressed as the sum of independent 0-1 variables Xu,v,

which takes value 1 with probability wuwvρ. With probability at least 1 − e−c,

the number of edges between pairs of vertices in S is at least:

e(S) =
1

2

∑

u,v∈S

Xu,v

≥ E(e(S)) −
√

2E(e(S))c

=
1

2

∑

u,v∈S

wuwvρ −
√

∑

u,v∈S

wuwvρc

≈ 1

2
Vol(S)2ρ − Vol(S)

√
ρc.

In the remainder of this section, we will give several examples with proofs

which illustrate the sharpness of the main results. These examples are also

instrumental for developing methods later on for dealing with random graphs

with given expected degree distributions.

Example 2: For the following choices of the weight distribution w with d ≤ 1

and d̃ > 1, the random graph in G(w) almost surely has no giant component.

Let ǫ be a constant satisfying 1 > ǫ > 0. The weight sequence w of expected

degrees will be chosen as follows. For each of the first n−m vertices, the weight

is set to 1 − ǫ. For each of the other m vertices, the weight is set to x. Here m

and x satisfy

mx = o(
n

log n
) and mx2 > Cn.

Here C > 1. (For example, we can choose m = ⌈log n⌉, x =
√

(1 − ǫ)n/2 and

C = 10.) We have

Vol(G) = (n − m)(1 − ǫ) + mx ≈ (1 − ǫ)n.

d =
Vol(G)

n
≈ (1 − ǫ).
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d̃ =
Vol2(G)

Vol(G)
=

(n − m)(1 − ǫ)2 + mx2

(1 − ǫ)n
> 1 − ǫ +

C

1 − ǫ
> 1.

Let S1 be the set of vertices with weight 1− ǫ, and S2 be the set of vertices with

weight x. We let Gi denote the induced graph of G on Si, for i = 1, 2.

A classical result in [19] states that almost surely G(N, p) has a giant com-

ponent if Np > 1+ǫ and G(N, p) does not have a giant component if Np < 1−ǫ

while all components have sizes of at most Θ(log N).

To apply the above results to G1, we select

N = n − m ≈ n,

p = (1 − ǫ)2ρ ≈ (1 − ǫ)
1

n
,

Hence, we have Np ≈ (1 − ǫ) < 1. All components of G1 have size at most

Θ(log N) = Θ(log n).

We will next show that there is no giant component in G by establishing up-

per bounds for the sizes and volumes of all components in G. We first construct

an auxiliary graph G′ from G as follows. A new vertex v is added to G, and is

connected to all vertices in S2 but to no vertex in S1. The following facts are

immediate.

1. Every connected component of G must be contained in some component

in G′.

2. G′ has a special component C containing v and all vertices in S2.

3. Components of G′ other than C are components of G1. They can have at

most Θ(log n) vertices with volume at most Θ(log n).

Now we will use the branching process starting from v to reveal the component

C. Here, for a subset S, we define the i-neighborhood Γi(S) = {u : d(u, S) = i}.

We have

Γ1(v) = S2.

For each u ∈ S1, the probability that u ∈ Γ(S2) is

1 − (1 − (1 − ǫ)xρ)m ≈ (1 − ǫ)mxρ since mxρ = o(1).
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The size of Γ(S2) can be upper bounded by a sum of n − m independent 0-

1 variables. The probability of each random variable with value one is about

(1 − ǫ)mxρ. These random variables are independent to each other. Let X =
∑

i Xi be a sum of independent 0-1 variables. Using Lemma 1, we have

Pr(X − E(X) > λ) < e−
λ2

2(E(X)+λ/3) .

by choosing

λ = E(X) ≈ (n − m)(1 − ǫ)mxρ ≈ mx.

With probability at least 1−e−3mx/8 = 1−o(1), the size of Γ(S2) is at most

2mx. Note that Γ2(v) = Γ(S2) are completely contained in S1, and so are the

i− neighborhoods Γi(v) for all i ≥ 2. Since in G1, any branching process can

expand at most Θ(log n) vertices, the total size of C can have at most

2mxΘ(log n) + m + 1 = Θ(mx log n).

The volume of C \ {v} is at most

2mxΘ(log n)(1 − ǫ) + mx = Θ(mx log n).

Hence each component in G can have volume at most Θ(mx log n) = o(n).

Thus, there is no giant component in G.

Example 3: For the following choice of the weight distribution w with d < 1

and d̃ > 1, the random graph G(w) almost surely has a giant component.

Let M be a very large but fixed constant. For each of the first ⌈ (M−1)n
M ⌉

vertices, the weight is set to be x = o(1). For the other n
M vertices, each weight

is set to 1 + ǫ. In this example, we have

Vol(G) ≈ (M − 1)n

M
x +

1 + ǫ

M
n =

1 + ǫ + o(1)

M
n,

d =
Vol(G)

n
=

1 + ǫ + o(1)

M
<< 1,

d̃ =
Vol2(G)

Vol(G)
= 1 + ǫ − o(1) > 1.
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Note that G(w) contains a classical random graph G(N, p), where N = n
M , and

p = M(1+ǫ+o(1))
n . Since Np = n

M
M(1+ǫ+o(1))

n = 1 + ǫ + o(1) > 1, G(N, p) has

a giant component of size Θ(N) = Θ(n). The component of G containing this

connected subset will have at least Θ(n) vertices and at least Θ(Vol(G)) volume.

3 The expected number of components of size k

In this section, we consider the probability of the existence of a connected com-

ponent of size k. This is useful later for proving the uniqueness of the giant

component.

Suppose that we have a subset of vertices S = {vi1 , vi2 . . . , vik
} with weights

wi1 , wi2 , . . . , wik
. The probability that there is no edge leaving S is

∏

vi∈S,vj 6∈S (1 − wiwjρ)

≈ e
−ρ

P

vi∈S,vj 6∈S wiwj

= e−ρVol(S)(Vol(G)−Vol(S)) (4)

where ρ = 1
P

n
i=1 wi

= 1
nd . We next consider the edges inside S. If S is a

connected component, the induced subgraph on S contains at least one spanning

tree T . The probability of containing a spanning tree T is

Pr(T ) =
∏

(vij
vil

)∈E(T )

wij wil
ρ.

Hence the probability of the existence of a connected spanning graph on S is at

most
∑

T

Pr(T ) =
∑

T

∏

(vij
vil

)∈E(T )

wij wil
ρ,

where T ranges over all spanning trees on S.

By a generalized version of celebrated matrix-tree Theorem [34], the above

sum equals the determinant of any k − 1 by k − 1 principal sub-matrix of the

matrix D − A, where A is the weight matrix
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A =











0 wi1wi2ρ · · · wi1wik
ρ

wi2wi1ρ 0 · · · wi2wik
ρ

...
...

. . .
...

wik
wi1ρ wik

wi2ρ · · · 0











and D is the diagonal matrix diag(wi1(Vol(S) − wi1 )ρ, . . . , wik
(Vol(S)wik

−
wik

)ρ). By evaluating the determinant, we conclude that

∑

T

P (T ) = wi1wi2 · · ·wik
Vol(S)k−2ρk−1. (5)

Let Xk be the random variable of the number of the components with size k.

By combining (4) and (5), we have proved the following:

Lemma 2 The expected value E(Xk) of the number of connected components

of size k is at most

E(Xk) ≤
∑

S

wi1wi2 · · ·wik
Vol(S)k−2ρk−1e−Vol(S)(1−Vol(S)/Vol(G)) (6)

where the sum ranges over all sets S of k vertices.

Lemma 3 For a positive ǫ < 1, The expected value E(Yk) of the number of

ǫ-small connected components on size k is at most

E(Yk) ≤
∑

S

wi1wi2 · · ·wik
Vol(S)k−2ρk−1e−Vol(S)(1−ǫ) (7)

where the sum ranges over all set S of k vertices with Vol(S) < ǫVol(G).

4 Proof of Theorem 1

Suppose that G is a random graph with a given expected degree sequence w.

In addition, we assume that the expected average degree d satisfies d > 1. We

want to show that the expected number E(Yk) of ǫ-small components of size k

is small if k is sufficiently large.

We follow the notation in Section 2. From Lemma 3, it suffices to upper

bound

f(k) =
∑

S

wi1wi2 · · ·wik
Vol(S)k−2ρk−1e−Vol(S)(1−ǫ)
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By using the fact that the function x2k−2e−x(1−ǫ) achieves its maximum value

at x = (2k − 2)/(1 − ǫ), we have

f(k) =
∑

S

wi1wi2 · · ·wik
Vol(S)k−2ρk−1e−Vol(S)(1−ǫ)

≤
∑

S

ρk−1

kk
Vol(S)2k−2e−Vol(S)(1−ǫ)

≤
∑

S

ρk−1

kk
(
2k − 2

1 − ǫ
)2k−2e−(2k−2)

≤ nk

k!

ρk−1

kk
(
2k − 2

1 − ǫ
)2k−2e−(2k−2)

≤ 1

4ρ(k − 1)2
(nρ)k(

2

1 − ǫ
)2ke−k

≤ 1

4ρ(k − 1)2
(

4

de(1 − ǫ)2
)k

The above inequality is useful when d > 4
e(1−ǫ)2 which is the assumption for

Theorem 1. When k satisfies log n
1+log d−log(4)−2ǫ < k < 2 log n

1+log d−log(4)−2ǫ , we have

f(k) ≤ 1

4nρ(k − 1)2
= O(

1

log n
).

When k satisfies 2 log n
1+log d−log(4)−2ǫ ≤ k ≤ n, we have

f(k) ≤ 1

4n2ρ(k − 1)2
= O(

1

n log n
).

We write k0 = log n
1+log d−log(4)−2ǫ . The probability that a small component of size

k > k0 is at most

∑

k>k0

f(k) ≤ log n

1 + log d − log(4) − 2ǫ
× o(

1

log n
) + n × o(

1

n log n
) = o(1).

Therefore, almost surely the size of a ǫ-small component is at most k0 =

log n
1+log d−log 4−2ǫ . We have proved the first part of Theorem 1.

To show that the above upper bound for the size of a small component is

asymptotically best possible for large d, we consider the following example.

Example 4: We consider a random graph with the following weights as the

expected degree sequence. Here we assume that d > 10.

There are n2/3 vertices with weights (d − 1)n1/3 + 1. The rest of n − n2/3

vertices have weights 1. The average weight (degree) is exactly d.
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Let S1 denote the set of vertices with weight 1, and S2 denote the set of

vertices with weight (d−1)n1/3 +1. Let Gi be the induced graph of G on Si, for

i = 1, 2. The graph G2 is the classical random graph G(N, p) with N = n2/3 and

Np = n2/3((d − 1)n1/3 + 1)2/(nd) = Θ(
√

N). Almost surely G2 is connected.

In fact, G2 is contained in the giant component of G. Let c denote the fraction

of vertices, which is not in the giant component. We claim that c is bounded

away from 0.

To prove the claim, we consider a special branching process. We first re-

veal all edges in G2. Then we examine the neighborhood of S2 in S1, the

2-neighborhood of S2, and so on, which grows into the giant component of G.

For any vertex u ∈ S1, the probability of u in Γ(S2) is

1 −
(

1 − (d − 1)n1/3 + 1

nd

)n2/3

≈ 1 − e−1+ 1
d .

The size of Γ(S2) can be well approximated by the binomial distribution with

N = n − n2/3 and p = 1 − e−1+ 1
d . Thus with high probability, its size is

about (1− e−1+ 1
d )n. We will estimate the size of Γi(S2) by induction. Suppose

|Γi(Si)| is highly concentrated on ain for some constant ai, for i ≥ 2. Let ci =

1−
∑i

k=1 ai. For any vertex u not in ∪j≤iΓi(Si), the probability of u ∈ Γi+1(S2)

is

1 −
(

1 − 1

nd

)ain

≈ 1 − e−
ai
d .

The size of Γi+1(S2) can be well approximated by the binomial distribution with

N = cin and p = 1 − e−
ai
d . By the definition of ai. We have

ai+1 = ci(1 − e−
ai
d ).

ci+1 = ci − ai+1 = cie
− ai

d .

Hence

ci+1 = c1

i
∏

k=1

e−
ak
d = (1 − e−1+ 1

d )e−
1−ci

d .

By the above recurrence for ci, we see that c = limi−>∞ ci exists and satisfies

c = (1 − e−1+ 1
d )e−

1−c
d .
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By some elementary analysis, the above equation has a unique solution of c in

[0, 1] for d > 1 and the solution for c increases as d increases. Since we choose

d > 10, c is bounded away from zero. The claim is proved.

The size of the second largest component can be estimated as follows. After

removing the giant component from G, the remain graph is a classical random

graph G(t, p) with t = cn and p = 1
nd = c

dt . By the classical result of Erdős and

Rényi [19], the largest component of G(t, c
dt ) with d < 1 has size about

log n − 5/2 loglog n
c
d − 1 − log c

d

=
(1 + o(1)) log n

log d − log c − 1 + c
d

The constant 1
log d−log c−1+ c

d
is asymptotically close to 1

1+log d−log 4 when d is

large and ǫ is arbitrarily small. This completes the proof for Theorem 1.

Remark: When d > 1, the classical random graph G(n, d
n ) has small

connected components except for the giant component. In [19], it was shown

that the size of the second largest connected components is approximately the

same of the size of the largest connected component of G(m, c
m). Here c is the

unique solution of ce−c = de−d for c in (0, 1), and m = c
dn. From [19], the

largest component of G(m, c
m ) has size about

log m − 5/2 loglog m

c − 1 − log c
=

(1 + o(1)) log n

d − 1 − log d

which is smaller than the upper bound in the statement of Theorem 1.

5 Proof of Theorem 2

In this section, we consider 1
1−ǫ < d < 2

1−ǫ . The methods in the proof for

Theorem 1 for establishing the upper bound of f(k) no longer works and a

different estimate for f(k) is needed here. We will derive an upper bound for the

expected number E(Yk) of connected components of size k by using inequality

(2). First, we split f(k) into two parts as follows:

f(k) = f1(k) + f2(k)
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where

f1(k) =
∑

Vol(S)<dk

wi1wi2 · · ·wik
Vol(S)k−2ρk−1e−Vol(S)(1−ǫ)

f2(k) =
∑

Vol(S)≥dk

wi1wi2 · · ·wik
Vol(S)k−2ρk−1e−Vol(S)(1−ǫ)

To bound f1(k), we note that x2k−2e−x(1−ǫ) is an increasing function when

x < (2k − 2)/(1 − ǫ). Thus we have

Vol(S)2k−2e−Vol(S) ≤ (dk)2k−2e−dk(1−ǫ)

since Vol(S) < dk < (2k − 2)/(1 − ǫ). This implies

f1(k) =
∑

Vol(S)<dk

wi1 · · ·wik
Vol(S)k−2ρk−1e−Vol(S)(1−ǫ)

≤
∑

Vol(S)<dk

ρk−1

kk
Vol(S)2k−2e−Vol(S)(1−ǫ)

≤
∑

Vol(S)<dk

ρk−1

kk
(dk)2k−2e−dk(1−ǫ)

≤
(

n

k

)

ρk−1

kk
(dk)2k−2e−dk(1−ǫ)

≤ nk

k!

ρk−1

kk
(dk)2k−2e−dk(1−ǫ)

≤ 1

d2k2ρ
(nρ)kd2ke−(d(1−ǫ)−1)k

=
n

dk2
(

d

ed(1−ǫ)−1
)k

Next, we consider bounding f2(k) from above. Note that xk−2e−x(1−ǫ) is a

decreasing function when x > (k − 2)/(1 − ǫ). We have

Vol(S)k−2e−Vol(S)(1−ǫ) ≤ (dk)k−2e−dk(1−ǫ)

16



since Vol(S) ≥ dk > k−2
1−ǫ . We have

f2(k) =
∑

Vol(S)≥dk

wi1wi2 · · ·wik
Vol(S)k−2ρk−1e−Vol(S)(1−ǫ)

≤
∑

Vol(S)≥dk

wi1 · · ·wik
ρk−1(dk)k−2e−dk(1−ǫ)

≤
∑

S

wi1wi2 · · ·wik
ρk−1(dk)k−2e−dk(1−ǫ)

<
Vol(G)k

k!
ρk−1(dk)k−2e−dk(1−ǫ)

≤ 1

d2k2ρ
dke−(d(1−ǫ)−1)k

≤ n

dk2
(

d

e(d(1−ǫ)−1)
)k

Hence,

f(k) = f1(k) + f2(k) ≤ 2n

dk2
(

de

ed(1−ǫ)−1
)k.

When log n
d(1−ǫ)−1−log d < k < 2 log n

d(1−ǫ)−1−log d , we have

f(k) ≤ 2

dk2
= O(

1

log2 n
).

When 2 log n
d(1−ǫ)−1−log d ≤ k ≤ n, we have

f(k) ≤ 2

ndk2
= O(

1

n log2 n
).

By setting k1 = log n
d(1−ǫ)−1−log d , the probability that a small component of size

k > k1 is at most

∑

k>k1

f(k) ≤ log n

d(1 − ǫ) − 1 − log d
× O(

1

log2 n
) + n × O(

1

n log2 n
) = o(1).

Therefore, almost surely the size of a small component is at most k1 = log n
d(1−ǫ)−1−log d .

To see that this upper bound is best possible, we consider the random graph

G(n, d
n ) with d < 1, which is a random graph with a given expected degree

sequence having equal weights d. By the classical result of Erdős and Rényi [19],

the largest component of G(n, d
n ) has size about log n−5/2 loglog n

d−1−log d as required.
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6 Neighborhood expansions

In this section we will prove two key lemmas on neighborhood expansions.

Lemma 4 Let A, B be two disjoint sets. Suppose that each vertex in B has

weight at most c1. If Vol(A) = o( 1
c1

Vol(G)) and Vol(A)Vol(B) ≥ 8Vol(G) log n,

then with probability at least 1− 1
n , Γ(A)∩B has at least (1

2−o(1))Vol(A)Vol(B)ρ

vertices.

Proof: For any vj ∈ B, let Xj be the indicator random variable for the event

that vj has exactly one edge joining to A. The probability for Xj = 1 is

Pr(Xj = 1) =
∑

vi∈A

wiwjρ
∏

vi′∈A,i′ 6=i

(1 − wi′wjρ)

≥
∑

vi∈A

wiwjρ(1 − Vol(A)wjρ)

≥ Vol(A)wjρ − Vol(A)2w2
j ρ2.

We note that

Pr(Xj = 1) =
∑

vi∈A

wiwjρ
∏

vi′∈A,i′ 6=i

(1 − wi′wjρ)

≤
∑

vi∈A

wiwjρ

= Vol(A)wjρ.

Γ(A) ∩ B has at least
∑

vj∈B Xj vertices. Now we apply lemma 1 to X =
∑

vj∈B Xj and we have

E(
∑

vj∈B

Xj) ≥ Vol(A)Vol(B)ρ − Vol(A)2Vol2(B)ρ2

where

ν =
∑

vj∈B

Pr(Xj = 1) ≤ Vol(A)Vol(B)ρ.
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We choose λ = 1
2Vol(A)Vol(B)ρ, then

E(
∑

vj∈B

Xj) − λ ≥ 1

2
Vol(A)Vol(B)ρ − Vol(A)2Vol2(B)ρ2

≥ 1

2
Vol(A)Vol(B)ρ(1 − Vol(A)c1ρ)

= (1 − o(1))
1

2
Vol(A)Vol(B)ρ

Also,

e−
λ2

2ν ≤ e−
(Vol(A)Vol(B)ρ)2

8Vol(A)Vol(B)ρ

≤ e−
1
8Vol(A)Vol(B)ρ

≤ 1
n

By Lemma 1, with probability at least 1 − 1
n , Γ(A) ∩ B has at least (1 −

o(1))1
2Vol(A)Vol(B)ρ vertices. �

The next lemma is useful for bounding from below the growth rate of volumes

in the branching process.

Lemma 5 Let A, B be two disjoint sets. Suppose that each vertex in B has

weight at most c1. Let x, y be two positive constants and we assume that

yc1 log n ≤ Vol(A) = o(
Vol(G)

c1
)

and

Vol2(B)ρ ≥ 1 + 2x.

Then with probability at least 1 − n− (1+x)2y
2(1+2x) , we have

Vol(Γ(A) ∩ B) ≥ (1 + x − o(1))Vol(A).

Proof: For any vj ∈ B, let Xj be the indicator random variable for the event

that vj has exactly one edge joining to A as in the proof of Lemma 4. We have

Vol(A)wjρ ≥ Pr(Xj = 1) ≥ Vol(A)wjρ − Vol(A)2w2
j ρ2.

Γ(A)∩B has at least
∑

vj∈B Xj vertices. Applying Lemma 1 to X =
∑

vj∈B wjXj ,

we have

E(
∑

vj∈B

wjXj) ≥ Vol(A)Vol2(B)ρ − Vol(A)2Vol3(B)ρ2
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where

ν =
∑

vj∈B

w2
j Pr(Xj = 1) ≤ Vol(A)Vol3(B)ρ.

We choose λ = x
1+2xVol(A)Vol2(B)ρ. By using the fact that Vol3(B) ≤ c1Vol2(B),

we have

E(
∑

vj∈B

wjXj) − λ ≥ 1 + x

1 + 2x
Vol(A)Vol2(B)ρ − Vol(A)2Vol3(B)ρ2

≥ 1 + x

1 + 2x
Vol(A)Vol2(B)ρ(1 − 1 + 2x

1 + x
Vol(A)c1ρ)

≥ (1 + x − o(1))Vol(A)

Also,

e−
λ2

2ν ≤ e
−

(
1+x
1+2x

Vol(A)Vol2(B)ρ)2

2Vol(A)Vol3(B)ρ

≤ e
− (1+x)2

2(1+2x)2c1
Vol(A)Vol2(B)ρ

≤ e−
(1+x)2y
2(1+2x)

log n

= n− (1+x)2y
2(1+2x)

We apply lemma 1 and the proof is complete. �

7 Proof of Theorem 3

The most difficult part of this paper is the proof of Theorem 3, involving the ex-

istence of a giant component. The straightforward method of branching process

works well for almost regular graphs but not as useful here. The probabilistic

bounds for Poisson trials are less effective when we have some vertices of large

weights while possibly a large number of vertices are possibly of much smaller

weights. Alternative methods are needed.

Before proving Theorem 3, we will briefly sketch two main ideas. The first

idea is an easy reduction to the existence of a connected subset of size Θ(log n).

The second idea is to focus on key structures in the graph by identifying two

subsets of the vertices. One subset has a large volume but consists of vertices

with small weights. The other set consists of vertices with large weights, and
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is augmented into a connected subset of weights Θ(log n). Then we will apply

a refined and truncated version of branching process to show that the second

subset will grow into a giant component.

Proof of theorem 3: We will state a series of reductions and useful lemmas.

Fact 4: Suppose d > 1+δ, and there is a connected subset containing more than

C log n vertices, where C = max{ 2
δ−log δ , 10}. Then there is a giant component.

Proof: If a connected component has at least C log n vertices, it can not be a

small component by the following observation. We have

C ≥ 2

δ − log δ
>

1

d − 1 − log d − ǫ1d

for some ǫ1 > 0 when 1 + δ < d ≤ 2. We also have

C ≥ 10 >
1

1 + log d − log 4 + 2 log(1 − ǫ2)

for some ǫ2 > 0 when 2 < d. By theorem 1 and 2, this component is a giant

component. �

From Fact 4, it is enough to find a connected subset of size C log n in order

to show the existence of a giant component.

We first consider the range d > 4 + δ.

The weights w are ordered non-increasingly w1 ≥ w2 ≥ · · · ≥ wn. (Ties are

being broken arbitrarily.) We claim the following:

Claim A: There exists an i0 satisfying

1. n1/3 ≤ i0 ≤ n.

2. wi0 ≥
√

(1+ δ
8 )Vol(G)

i0
.

Proof of Claim A:

Suppose the contrary. We have

wi ≤

√

(1 + δ
8 )Vol(G)

i
for all n1/3 ≤ i ≤ n.
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We consider

Vol(G) =

n1/3
∑

i=1

wi +

n
∑

i=n1/3

wi

≤ n1/3n1/2 +

n
∑

i=n1/3

√

(1 + δ
8 )Vol(G)

i

≤ o(n) + 2

√

(1 +
δ

8
)Vol(G)n

Hence we have

Vol(G) ≤ o(n) + 4(1 +
δ

8
)n,

which contradicts Vol(G) = nd ≥ (4 + δ)n. Claim A is proved.

Now we consider the subgraph G1 on the first i0 vertices. For any pairs of

vertices (vi, vj), i, j ≤ i0, the probability that it is an edge of G1 is at least

wiwjρ ≥ w2
i0ρ ≥ (1 + δ

8 )

i0
.

From [19], G1 has a giant component of size Θ(i0) = Ω(n1/3). Theorem 1-2

show that almost surely any connected component with size of Ω(log n) is a

giant component. Hence G has a giant component in this case.

We now consider the range 1 + δ ≤ d ≤ 4 + δ. We claim the following.

Claim B: The vertex set can be partitioned into two sets S and T , satisfying

(a) There is a positive number c1, so that the vertices in S has weight at

most c1 and the vertices in T has weight at least c1.

(b) Vol(S) ≥ 1+d
2 n.

(c) T has at least n1/3 vertices.

(d) If T has t vertices, we have

tc2
1ρ ≥ δ2

32(1 + δ)
.

22



Proof of Claim B.

We denote c2 = δ2

32(1+δ) . Recall that the weights w are in a non-increasing

order. Let n0 be a fixed index satisfying
∑n

i=n0
wi = (1 + o(1))1+d

2 n. We can

find an i0 satisfying

(i) n1/3 ≤ i0 ≤ n0, and,

(ii) wi0 ≥
√

c2Vol(G)
i0

,

since, we have otherwise

Vol(G) =
n1/3
∑

i=1

wi +

n0
∑

i=n1/3

wi +
n

∑

i=n0

wi

≤ n1/3n1/2 +

n0
∑

i=n1/3

√

c2Vol(G)

i
+

1 + d

2
n

≤ o(n) + 2
√

c2Vol(G)n0 +
1 + d

2
n.

Hence, we have c2 ≥ (d−1)2

16d , which is a contradiction to the definition of c2.

We choose c1 = wi0 and let T denote the set of the first i0 vertices while

S be the complement of T . It is straightforward to verify all conditions. The

proof of claim B is complete.

ST

U Γ(   )U

c1

Figure 1: The method — G is partitioned into two parts S and T . T has vertices
with weights at least c1 and contains a connected subset U of size Θ(log n). Each
vertex of S has weight at most c1.
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Now we consider a special branching process. We consider all pairs with

both ends in T . Since tc2
1ρ ≥ δ2

32(1+δ) , the probability of each pair (vi, vj) being

an edge is wiwjρ which is greater than or equal to δ2

32(1+δ)
1
t . For a constant

c = δ2

32(1+δ) , the induced subgraph of G on T contains a random graph G(t, c
t )

as a subgraph. By the classical result of Erdős and Rényi [19], the largest

component of G(t, c
t ) have size about g(c)(log t − 5

2 loglog n). where

g(c) =
1

c − 1 − log c
.

Hence, almost surely there is a connected subset (denoted by U) in T with size at

least f(δ) log t, where f(δ) = 1
2g( δ2

32(1+δ) ) is a positive constant only depending

on δ. We have

Vol(U) ≥ c1f(δ) log t ≥ c1f(δ)

3
log n.

Let U ′ denote the connected component containing U . If Vol(U ′) ≥ Θ(Vol(G)
c1

),

then U ′ is a giant component and we are done. We may assume Vol(U ′) =

o(Vol(G)
c1

) which implies that

Vol(U) = o(
Vol(G)

c1
)

and for all i

Vol(Γi(U)) = o(
Vol(G)

c1
).

If c1 ≥ 24C
f(δ) , then we have Vol(U) ≥ 8C log n. We can apply lemma 4 by

choosing A = U and B = S. We have

Vol(A)Vol(B) ≥ 8C log n
d + 1

2
n > 8Vol(G) log n.

By lemma 4, Γ(A) ∩ S has more than (4C − o(1)) log n vertices. By Fact 4, the

giant component exists.

If c1 ≤ 24C
f(δ) , we will use lemma 5 repeatedly. We will inductively prove that

Vol(Γi(U) ∩ S) ≥ (1 + x − o(1))iVol(U), (8)

for all i from 1 to i′ = logx
Cf(δ)

3 satisfying Vol(Γi′(U) ∩ S) > 8C log n. Here

x = (d−1)2

16d ≥ δ2

16(1+δ) . By applying the same argument to Vol(Γi′ (U) ∩ S), we

conclude that there is always a giant component.
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Here is the proof for (8).

Initially, let A = U , B = S, and y = f(δ)
3 . we have

Vol(A) ≥ f(δ)

3
c1 log n = c1y log n.

By using Claim B, we have

Vol2(B)ρ ≥ Vol(B)2

n − t
ρ

≥ (d + 1)2n2

4n2d

=
(d + 1)2

4d

= 1 + 4x

> 1 + 2x

With failure probability at most n− (1+x)2y
2(1+2x) , we have Vol(Γ(U) ∩ S) ≥ (1 + x −

o(1))Vol(Γ(U)).

At the inductive step i, let A = Γi(U) ∩ S and B = S \ (∪j≤i(Γi(U) ∩ S))

and we have

Vol(A) ≥ Vol(U) ≥ c1y log n.

Vol2(B)ρ ≥ Vol2(S)ρ − ρ
∑

i′≤i

Vol2(Γi(U) ∩ S)

ρ ≥ Vol2(S)ρ − ρi′c2
18C log n

= 1 + 4x − o(1)

> 1 + 2x

By lemma 5, with failure probability at most n− (1+x)2y
2(1+2x) , we have Vol(Γi+1(U)∩

S) ≥ (1+x−o(1))i+1Vol(Γ(U)). The total failure probability is bounded above

by

logx

Cf(δ)

3
n− (1+x)2y

2(1+2x) = o(1).

Thus we finish the inductive proof. Hence, the volume of Γi(U) will grow in S

by a factor of at least 1 + x for each i. The process can only stop when the

volume is no longer o(Vol(G)/c1). Therefore, a giant component will eventually

exist.
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The above argument using (8) can be used to show the uniqueness of the

giant component as well. For any two vertices u and v in two giant connected

component, we begin a branching process starting at u but stop at the moment

when the volume of its neighbors S1 reaches
√

(2 + ǫ)Vol(G) log n. Then we

begin a new branching process starting at v and stop at the moment when the

volume of its neighbors S1 reaches
√

(2 + ǫ)Vol(G) log n. Then we see that the

probability of two neighbors sets are not connected by any edge is at most

∏

u∈S1,v∈S2

(1 − wuwvρ) ≤
∏

u∈S1,v∈S2

e−wuwvρ

= e−
P

u∈S1,v∈S2
wuwvρ

= e−Vol(S1)Vol(S2)ρ

≤ e−(2+ǫ) log n

= n−2−ǫ.

The probability that any two vertices belong to the same connected component

with probability at least 1 − n−ǫ. Thus, the giant component is almost surely

unique.

Now we consider the volume of the giant component. We want to show the

following:

(i) If d ≥ e, the volume of the giant component is at least (1− 2√
de

+o(1))Vol(G).

(ii) If 1 + δ ≤ d ≤ e, the volume of the giant component is at least

(1 − 1+log d
d + o(1))Vol(G).

Let us consider the case of d ≥ e. If (i) does not hold, then the giant

component is ǫ-small for some ǫ satisfying ǫ < 1 − 2√
de

. By Theorem 1, the

size of the giant component is at most log n
1+log d−log 4+2 log(1−ǫ) . Hence there is one

vertex with weight w great than or equal to the average:

w ≥ ǫVol(G)
log n

1+log d−log 4+2 log(1−ǫ)

≥ cǫ
Vol(G)

log n
.

It is easy to check that

w2ρ ≫ 1
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which contradicts our assumption (1). Hence the volume of the giant component

is at least (1 − 2√
de

+ o(1))vol(G) if d ≥ e.

For the case of d0 ≤ d ≤ e, we again prove by first assuming the contrary

that the giant component is ǫ-small for some ǫ satisfying ǫ < 1 − 1+log n
d . By

Theorem 2, the size of the giant component is at most log n
d−1−log d−ǫd . Hence there

is one vertex with weight w great than or equal to the average:

w ≥ ǫvol(G)
log n

d−1−log d−ǫd

≥ c′ǫ
vol(G)

log n
.

Since w2ρ ≫ 1, we again have a contradiction and (ii) is proved.

Now we consider the case of d̃ is smaller than 1. The following claim

shows that in this range almost surely all components have volumes of at most
√

n log n. Therefore there is no giant component in this case.

Claim C: If d̃ < 1 − δ, with probability at least 1 − dd̃2

C2(1−d̃)
, all components

have volume at most C
√

n.

Proof of Claim C: Let x be the probability that there is a component having

volume greater than C
√

n. Now we choose two random vertices with the prob-

ability of being chosen proportional to their weights. Under the condition that

there is a component with volume greater than C
√

n, the probability of each

vertex in this component is at least C
√

nρ. Therefore, the probability that the

random pair of vertices are in the same component is at least

x(C
√

nρ)2 = C2xnρ2. (9)

On the other hand, for any fixed pair of vertices u and v, the probability Pk(u, v)

of u and v is connected by path of length k + 1 is at most

Pk(u, v) ≤
∑

i1i2...ik

(wuwi1ρ) (wi1wi2ρ) · · · (wik
wvρ)

≤ wuwvρd̃k

The probability that u and v belong to the same component is at most

n
∑

k=0

Pk(u, v) ≤
∑

k≥0

wuwvρd̃k =
1

1 − d̃
wuwvρ.
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Since the probabilities of u and v being selected are wuρ and wvρ respectively,

the probability that the random pair of vertices are in the same connected

component is at most

∑

u,v

wuρ wvρ
1

1 − d̃
wuwvρ =

d̃2

1 − d̃
ρ.

Combining with (9), we have

C2xnρ2 ≤ d̃2

1 − d̃
ρ

which implies

x ≤ dd̃2

C2(1 − d̃)
.

Claim C is proved.

We have completed the proof for Theorem 4. �

8 Several other models

In the literature, the following model, so called the configuration model, is often

used to construct a random graph with a prescribed degree sequence. It was

first introduced by Bender and Canfield [9], refined by Bollobás [10] and also

Wormald [35]. A random graph G with given degrees dv is formed by first

associating to each vertex v a set Sv of dv nodes, then considering the disjoint

union N of Sv and taking a random matching M on N . The number of edges

between two vertices u and v is the number of edges in M with one node in Su

and one node in Sv. It is easy to see that the resulting graph (as a multi-graph)

has degrees exactly as required.

Molloy and Reed [31, 32] used the configuration model to show that if there

are di(n) ≈ λin vertices of degree i, where
∑

i λi = 1 and
∑

i(i−2)λi > 0, then

the graph almost surely has a giant component if the following conditions are

satisfied.

1. The maximum degree is at most n1/4−ǫ.

2. i(i − 2)di(n)/n tends uniformly to i(i − 2)λi.

28



3. The limit

L(D) = lim
n→∞

∑

i≥1

i(i − 2)di(n)/n

exists, and the sum approaches the limit uniformly.

4. The degree sequence is graphic.

The advantage of the configuration model is to generate graphs exactly with

the prescribed degrees and it is the primary model for examining regular graphs

with constant degrees. There are several disadvantages of the configuration

model. The analysis of the configuration model is much more complicated due

to the dependency of the edges. A random graph from the configuration model

is in fact a multigraph instead of a simple graph. The probability of having

multiple edges increases rapidly when the degrees increase. In the papers of

Molloy and Reed, the condition on maximum degree with an upper bound of

n1/4−ǫ is required because of occurance of multiple edges in the configuration

model. Consequently, this model is restrictive for power-law graphs, where

the largest degree can be quite large. Furthermore, additional conditions (e.g.,

Condition 2 and 3 as in [31, 32]) are often required for the configuration models

which are hard to deal with for realistic graphs. In the same way, the classical

random graph model G(n, p) is often preferred to the configuration models of

random graphs with p
(

n
2

)

edges.

The advantage of the generalized model that we use here is the simplicity

without any condition on the degree sequence except for the only assumption

(1). Our model does not produce the graph with exact given degree sequence.

Instead, it yields a random graph with given expected degree sequence.

Another line of approach which simulates realistic graphs is to generate a

vertex/edge at a time, starting from one node or a small graph. Although

we will not deal with such models in this paper, we will briefly mention several

evolution models. Barabasi and Albert [7] describe the following graph evolution

process. Starting with a small initial graph, at each time step they add a new

node and an edge between the new node and each of m random nodes in the

existing graph, where m is a parameter of the model. The random nodes are
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not chosen uniformly. Instead, the probability of picking a node is weighted

according to its existing degree (the edges are assumed to be undirected). Using

heuristic analysis with the assumption that the discrete degree distribution is

differentiable, they derive a power law for the degree distribution with a power

of 3, regardless of m. A power law with power 3 for the degree distribution of

this model was independently derived and proved by Ballobás et al. [11].

Kumar at el. [28] proposed three evolution models — “linear growth copy-

ing”, “exponential growth copying”, and “linear growth variants”. The Linear

growth coping model adds one new vertex with d out-links at a time. The desti-

nation of i-th out-link of the new vertex is either copied from the corresponding

out-link of a “prototype” vertex (chosen randomly) or a random vertex. They

showed that the in-degree sequence follows the power law. These models were

designed explicitly to model the World Wide Web. Indeed, they show that their

model has a large number of complete bipartite subgraphs, as has been observed

in the WWW graph, whereas several other models do not. This (and the lin-

ear growth variants model) has the similar drawback as the first model in [27].

The out-degree of every vertex is always a constant. Edges and vertices in the

exponential growth copying model increase exponentially.

Aiello et al. described a general random graph evolution process in [3] for

generating directed power law graphs with given expected in-degrees and out-

degrees. At each time t, a new node is generated and certain edges are added as

follows. The end points of new edges can be either the new node or one of the

existing nodes. An existing node is selected as the destination (or the origin)

with probability proportional to its in-degree (or out-degree). There are four

types of edges according to their destinations and origins. A probability space

Pt controls the number and the type of edges to be added at time t. Under the

assumption that the number of edges added at each time is bounded and Pt

has a limiting distribution, Aiello et al. [3] proved this general process generates

power law graphs. The power of the power law of out-degree (or in-degree)

equals to 2 + A
B , where A is the expected number of edges per step with the

new node as the origin (or the destination) and B is the expected number of
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edges per step with an existing node as the origin (or the destination). Recently,

Cooper and Frieze [17] independently analyzed the above evolution of adding

either new vertices or new edges and derived power law degree distribution for

vertices of small degrees.

9 Remarks on power law graphs

In this paper, we examine the sizes of connected components of a random graph

with given degree sequences. The results and methods here can be useful to

examine power law graphs that arise in various context. A power law graph

with power α has the number of vertices of degree k proportional to kα. For

example, the collaboration graph consists of 337,000 authors in Mathematics

Review as vertices and collaborations as edges, as described in the webpage of

Jerry Grossman [22] at http://www.oakland.edu/∼grossman/trivia.html. From

Figure 2, we can see that the degree sequence of the collaboration graph can be

approximated by a power law with power 2.2.
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Figure 2: Degree distribution of the collaboration graph

If we model realistic graphs by random graphs with power law degree se-

quences, the results here on the volume of the connected components can be

utilized. For example, a rough calculation shows that the results in Theorem 1

is consistent with the actual data on connected components of the collaboration

graph (see Figure 1).

To actually model a realistic graph, there are a number of additional fac-

tors to be taken into consideration. For example, the so-called “small world”
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Figure 3: Connected components distribution

phenomenon asserts that the distance between two random vertices is small.

In a forthcoming paper [15], the authors examine the average distances in a

random graph with given expected degree sequences. It is shown that the aver-

age distance of a random graph with expected degree sequences almost surely

has average distance (1 + o(1)) log n/ log d̃, provided certain mild conditions are

satisfied. (Power law random graphs satisfies such conditions.) There is also

a clustering effect that is often found in realistic graphs. A more elaborated

model in combining the local structures and global (random) properties will be

considered in a subsequent paper [16].
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