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Abstract— Since there is no fixed infrastructure or
centralized management in wireless ad hoc networks, a
Connected Dominating Set (CDS) has been proposed as
the virtual backbone. The CDS of a graph representing
a network has a significant impact on an efficient design
of routing protocols in wireless networks. This problem
has been studied extensively in Unit Disk Graphs (UDG),
in which each node has the same transmission range.
However, in practice, the transmission ranges of all nodes
are not necessary equal. In this paper, we model a network
as a disk graph and introduce the CDS problem in
disk graphs. We present three constant approximation
algorithms to obtain a minimum CDS of a given net-
work. These algorithms can be implemented as distributed
algorithms. Furthermore, we show the size relationship
between a maximal independent set and a CDS as well
as the bound of the maximum number of independent
neighbors of a node in disk graphs. The theoretical analysis
and simulation results are also presented to verify our
approaches.
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I. I NTRODUCTION

In wireless ad hoc networks, there is no fixed or
pre-defined infrastructure. Nodes in wireless networks
communicate via a shared medium, either through a
single hop or multihops. Although there is no physi-
cal backbone infrastructure, a virtual backbone can be
formed by constructing a Connected Dominating Set
(CDS). Given anundirectedgraphG = (V, E), a subset
V ′ ⊆ V is a CDS ofG if for each nodeu ∈ V , u is either
in V ′ or there exists a nodev ∈ V ′ such thatuv ∈ E and
the subgraph induced byV ′, i.e., G(V ′), is connected.
The nodes in the CDS are calleddominators, other nodes
are calleddominatees. With the help of the CDS, routing
is easier and can adapt quickly to network topology
changes. To reduce the traffic during communication and
simplify the connectivity management, it is desirable to
construct a Minimum CDS (MCDS).

The CDS problem has been studied intensively in Unit
Disk Graph (UDG), in which each node has the same
transmission range. The MCDS problem in UDG has
been shown to be NP-hard [1]. To build a CDS, most
of current algorithms first find a Maximal Independent
Set (MIS) I of G and then connect all nodes inI to
have a CDS. The independent setI is a subset ofV
such that for any two nodesu, v ∈ I, uv /∈ E. In
other words, the nodes inI are pairwise nonadjacent.
A maximal independent set is an independent set such
that no more nodes can be added to remain the non-
adjacency property. The most relevant related work using
this scheme are in [2], [3]. In [2], Wanet al. proposed
the first distributed algorithm with the performance ratio
of 8. Later, Li et al. proposed a better algorithm with
the performance ratio of(4.8 + ln 5) by constructing a
Steiner tree when connecting all nodes inI [3].

However, in practice, the transmission ranges of all
nodes are not necessary equal. In this case, a wireless ad
hoc network can be modeled using a directed graphG =
(V, E). The nodes inV are located in a Euclidean plane
and each nodevi ∈ V has a transmission rangeri ∈
[rmin, rmax]. A directed edge(vi, vj) ∈ E if and only
if d(vi, vj) ≤ ri whered(vi, vj) denotes the Euclidean
distance betweenvi andvj . Such graphs are calleddisk
graphs. An edge(vi, vj) is bidirectional if both(vi, vj)
and (vj , vi) are in E, i.e., d(vi, vj) ≤ min{ri, rj}. In
other words, the edge(vi, vj) is bidirectional ifvi is in
the diskDj centered atvj with radiusrj andvj is in the
disk Di centered atvi with radiusri. In this paper, we
only study the CDS problem in disk graphs where all
the edges in the network are bidirectional, called Disk
Graphs with Bidirectional links (DGB). In this case,
G is undirected. Figure 1 gives an example of DGB
representing a network. In Figure 1, the dotted circles
represent the transmission ranges and the black nodes
represent a CDS.

The MCDS problem in DGB is NP-hard [14] since
the MCDS problem in UDG is NP-hard and UDG is
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Fig. 1. A Disk Graph with Bidirectional Links

a special case of DGB. In this paper, we present three
constant approximation algorithms for computing a min-
imum CDS in DGB. We first introduce their centralized
versions and later show how to implement them as dis-
tributed algorithms. We also analyze the size relationship
between an MIS and a CDS in DGB. Furthermore, we
show the upper bound of the number of independent
neighbors of any node in DGB. These analysis can help
us to study the CDS problem in a general disk graph,
where both unidirectional and bidirectional links are
considered.

The remainder of this paper is structured as fol-
lows. Section II describes the related research work on
the CDS problem, mainly focuses on UDG. The size
relationship between an MIS and a CDS in DGB is
shown in section III. The three algorithms and their
performance analysis are discussed in section IV. Section
V presents the performance comparisons of our three
algorithms through simulation results. The distributed
implementations are illustrated in section VI and section
VII ends the paper with conclusions and some future
work.

II. RELATED WORK

The CDS problem in wireless ad hoc networks has
been studied extensively. Algorithms that construct a
CDS can be divided into two categories:centralized
algorithms anddecentralizedalgorithms.

The centralizedalgorithms in general yield a smaller
CDS with a better performance ratio than that of de-
centralized algorithms. In [6], Guha and Khuller first
proposed two polynomial time algorithms to construct a
CDS in a general graphG. These algorithm are greedy
and centralized. The first one has the approximation ratio
of 2(H(∆) + 1) where∆ is the maximum degree ofG
andH is a harmonic function. The idea of this algorithm
is to build a spanning treeT rooted at the node with
maximum degree and growT until all nodes are added to
T . The non-leaf nodes inT form a CDS. In particular, all
nodes in a given network are white initially. The greedy

function that the algorithm uses to add nodes intoT is
the number of the white neighbors of each node or a
pair of nodes. The one with the largest such number is
marked black and its neighbors are marked grey. These
nodes (black and grey nodes) are then added intoT .
The algorithm stops when no white node exists inG.
The second algorithm is an improvement of the first one.
This algorithm consists of two phases. The first phase is
to construct a dominating set and the second phase is
to connect the dominating set using a Steinter tree algo-
rithm. With such improvement, the second algorithm has
the performance factor ofH(∆) + 2. These algorithms
later were studied and implemented by Daset al. [11]-
[13]. In [7], Ruanet al. introduced another centralized
and greedy algorithm of which the approximation ratio
is (2 + ln ∆).

The decentralized algorithms can be further divided
into two categories:distributed algorithms andlocal-
ized algorithms. In distributed algorithms, the decision
process is decentralized. In the localized algorithms, the
decision process is not only distributed but also requires
only a constant number of communication rounds. Most
of the distributed algorithms find a Maximal Independent
Set (MIS) and connect this set. Note that in an undirected
graph, an MIS is also a Dominating Set (DS). In [2],
[15], [16], the authors proposed a distributed algorithm
for a CDS problem in UDG. This algorithm consists
two phases and has the constant approximation ratio of
8. The algorithm first constructs a spanning tree. Then
each node in a tree is examined to find an MIS for the
first phase. All nodes in an MIS are colored black. At
the second phase, more nodes are added (color blue) to
connect the black nodes. Later, Cardeiet al. presented
another 2-phase distributed algorithm for a CDS in UDG.
This algorithm has the same performance ratio as the
previous one. However, the improvement over [2] is the
message complexity. The root does not need to wait
for the COMPLETE message from the furthest nodes.
Recently, Liet al.proposed another distributed algorithm
with a better approximation ratio, which is(4.8 + ln 5)
[3]. This algorithm also has two phases. At the first
phase, an MIS is found. At the second phase, a Steiner
tree algorithm is used to connect the MIS.

For the localized algorithms, Wu and Li [8] proposed
a simple algorithm that can quickly determine a CDS
based on the connectivity information within the 2-hops
neighbors. This approach uses a marking process. In
particular, each node is marked true if it has two uncon-
nected neighbors. All the marked nodes form a CDS. The
authors also introduced some dominant pruning rules to
reduce the size of the CDS. In [2], the authors showed
that the performance ratio of [8] is within a factor of
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O(n) wheren is the number of nodes in a network.
In [10], Alzoubi et al. proposed another localized 2-

phase algorithms with the performance ratio of 192. At
the first phase, an MIS is constructed using the 2-hops
neighbors information. Specifically, once a node knows
that it has the smallest ID within its neighbors, it be-
comes a dominator. At the second phase, the dominators
are responsible for identifying a path to connect the MIS.
In [9], Li et al.proposed another localized algorithm with
the performance ratio of 172. This localized algorithm
has only 1 phase. A node marks itself as a dominator if
it can cover the most white nodes compared to its 2-hops
neighbors.

Most of the constant approximation algorithms are
for the CDS problem in UDG. However, in practice,
the communication ranges of nodes in a network are
not necessary equal. Such a network can be modeled
as a disk graph. In this paper, we present three constant
approximation algorithms for the CDS problem in DGB.
The main approach is to construct an MIS and then
connect them. Hence we first need to analyze the size
relationship between a CDS and an MIS, which is shown
in next section.

III. T HE SIZE RELATIONSHIP BETWEEN A CDS AND

A MAXIMAL INDEPENDENTSET

In this section, we show the size relationship between
any maximal independent set and a CDS of a given DGB.
DenoteOPT as an optimal CDS andopt as the size of
OPT , we have:

Fact 1: Given 3 nodesx, y, andz such thatd(x, y) ≤
d(x, z) andd(y, z) ≤ d(x, y), theny andz are adjacent.

Proof: The disk aty has radius at leastd(x, y) and
the disk atz has radius at leastd(x, z). Therefore, both
disks have radius at leastd(y, z). Hence,y and z are
adjacent.

2

Lemma 1:Let NID(u) denote the independent neigh-
bors of nodeu. In a DGB, the size ofNID(u) is bounded
by:

|NID(u)| ≤
{

5 if k = 1
10b ln k

ln(2 cos(π/5))c otherwise

wherek =
rmax

rmin
Proof: Whenk = 1, a DGB is a UDG. Thus the lemma
holds. Whenk > 1, consider a nodex and all nodes that
are adjacent tox. Without loss of generality, assume that
the disk atx has radius 1. Then a nodey that is adjacent
to x has radius at leastd(x, y) and at mostk. Thus, all
nodes that are adjacent tox lie in the inside of circle at
centerx with radiusk.

We first evenly divide this area into several small ones
Ai with rays (half lines) atx. Two adjacent rays form an
angleα. Supposexy andxz are two rays with angleα
between them. Supposed(x, y) ≤ d(x, z) andd(y, z) =
d(x, y). Then from Fact 1, we know thaty andz are adja-
cent. Sinced(y, z) = d(x, y), we have∠xzy = α. Hence
d(x, z) = 2d(x, y)cosα, i.e., d(x, z)/d(x, y) = 2 cos α.
Hence, each areaAi can be divided into subareas by cir-
cles atx with radius1, 2 cos α, (2 cos α)2, ..., (2 cos α)j .
Note that(2 cos α)j ≤ k. Hence,j = b ln k

ln(2 cos α)c. Now
we need to show that all nodes that are adjacent tox
and lie in each subarea are adjacent. Indeed, lety andz
be such nodes. Thenx, y, andz satisfy the condition in
Fact 1.

Therefore, there are at mostb ln R
ln(2cosα)c(2π/α) sub-

areas. In other words,x can be adjacent to at most
b ln R

ln(2cosα)c(2π/α) independent nodes.

Let f(α) = b ln R
ln(2cosα)c(2π/α). Note that in our proof,

α = 2π/m wherem is an integer andm > 6. Hence,
we need to find a local minima off(α) where 0 <
α < 2π/6. With some algebraic steps, we haveα =
2π/10. Hence, whenk > 1, x can be adjacent to at
most10b ln k

ln(2cos(π/5))c independent nodes.
2

Theorem 1:In a DGB G = (V, E), the size of any
maximal independent set is upper bounded byKopt

where k =
rmax

rmin
and K = 5 if k = 1, otherwise,

K = 10b ln k
ln(2cos(π/5))c

Proof: Let I be an MIS. By Lemma 1, no node in
OPT can dominate more thanK nodes inI. Thus the
theorem follows:|I| ≤ Kopt.

2

From now on, we will referk asrmax/rmin andK =
5 if k = 1, otherwise,K = 10b ln k

ln(2cos(π/5))c.

IV. A PPROXIMATION ALGORITHMS AND ANALYSIS

In this section, we present three constant approxi-
mation algorithms for the CDS problem in DGB and
analyze their performance ratio.

A. First Algorithm

1) Algorithm Description:The First Algorithm (TFA)
has two phases. First, we construct the maximal inde-
pendent setI, then connect them by finding a set of
connector nodesB. This algorithm is similar to [2].
Through out the paper, sometimes, we call a black node
as a node inI, a blue node as a connector node inB,
and a grey node as a non-CDS node. Note that the set
I is also a dominating set ofG.

To construct an MIS, we first randomly choose a
vertexu ∈ V and construct the Breath-First Search tree
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Algorithm 1 The First Algorithm
1: INPUT: A DGB G = (V, E), all nodes are white
2: OUTPUT: A CDS ofG
3: Randomly pick a vertexu ∈ V and coloru black
4: I = {u}, B = ∅, GREY = ∅
5: Construct a BFS treeT of G, rooted atu
6: d = depth(T )
7: for j = 1 to d do
8: TMPi = { vi | level(i) = j}
9: if vi is dominated by some black nodes in

TMPi−1 then
10: Color vi grey; GREY = GREY ∪ {vi}
11: end if
12: Choose a setA of nodes in TMPi−1 that is

not grey and a maximal independent set in
G(TMPi−1 −GREY )

13: Color A black; I = I ∪A
14: Choose a setC of nodes inTMPi−1 that are

parent of black nodes inTMPi

15: Color C blue; B = B ∪ C
16: end for
17: ReturnI ∪B

(BFS)T of G rooted atu. Next, we marku black. Then
mark all the neighbor nodes ofu grey. For each level
level(i) of T , find a maximal independent set of a set of
nodes that are neither black nor grey. In other words, we
need to find an MIS of the nodes that are not dominated
yet. After finding an MIS, the process of connecting them
is easy with the help ofT . For each black nodeu, we
just need to find a grey node that is a parent ofu and be
dominated by another black nodes in the previous level.
The detail of TFA is shown in Algorithm 1.

2) Theoretical Analysis:The maximal independent
setI obtained from TFA satisfies this property:

Lemma 2:Any pair of complementary subsets of the
MIS has a distance of exactly two hops.

Proof: This is trivial from the construction ofI in the
algorithm. If a nodeu ∈ I, then allN(u) ∈ GREY . If
u ∈ GREY , then there exist a nodev such thatuv ∈ E
andu is black.

2

Theorem 2:TFA produces a CDS with the size
bounded by2Kopt where K = 5 if k = rmax

rmin
= 1,

otherwiseK = 10b ln k
ln(2cos(π/5))c

Proof: From Lemma 2 and Theorem 1, we have:

|CDS| ≤ 2|I| ≤ 2Kopt

2

In practice, we expect thatk is very small since the
transmission ranges of all nodes in a network should be
slightly different.

Corollary 1: If the maximum and minimum trans-
mission ranges are bounded, then our algorithm has an
approximation factor ofO(1).

B. Second Algorithm

In the first algorithm, we connect two black nodesu
and v (assume thatlevel(u) < level(v)) by finding a
grey nodew that is a parent ofv in T and neighbor of
u in G. However, we can connectI by using the Steiner
tree, which is a tree interconnecting all nodes inI. The
nodes in the Steiner tree but not inI are called Steiner
nodes. To reduce the size of an obtained CDS, we need to
find a Steiner tree with the Minimum number of Steiner
Nodes (MSN). We can define this problem as follows:

Definition 1: Steiner Tree with MSN: Given a graph
G = (V, E) and a set of nodesV ′ ⊆ V calledterminals,
construct a Steiner treeT that connects all the terminals
such that the number of Steiner nodes is minimum.

1) Algorithm Description: The Second Algorithm
(TSA) also has two phases. The first phase is to find an
MIS I that satisfies Lemma 2. Note that this condition
is vital for the second phase to work. Since the obtained
MIS I from TFA satisfies this condition, we can use
the procedure in TFA to find the MISI. At the second
phase, we construct a Steiner tree with the minimum
number of Steinter nodes to interconnect all nodes inI as
follows. Define ablack-blue componentas a connected
component of the subgraph induced only by black and
blue nodes,ignoring connections between blue nodes.
Initially, we have|I| black-blue components. LetB be
a set of Steiner nodes, called blue nodes. Initially,B
is empty. From Lemma 1, we know that each node is
adjacent to at mostK independent nodes. In other words,
a blue node is adjacent to at mostK black nodes. Color
all nodes inV − I grey. At each iteration, we can find a
grey node that is adjacent to most black-blue components
and color it blue. Formally, forj from K to 2, at each
iterationj, find a grey nodev such thatv is adjacent to at
leastj black nodes indifferent black-blue components.
Color v blue and re-compute the black-blue components
as described in Algorithm 2

2) Theoretical Analysis:The CDS in this algorithm is
a union of setI and setB. To analyze the performance
ratio of our algorithm, we first compare the size of set
B to opt. Recall thatB is a set of all the Steiner nodes.
Let T ∗ be an optimal tree when connecting a given set
I andC(T ∗) is the number of the Steiner nodes inT ∗,
we have this following lemma:
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Algorithm 2 The Second Algorithm
1: INPUT: A DGB G = (V, E), all nodes are white
2: OUTPUT: A CDS ofG
3: I = ∅; B = ∅
4: Use the procedure in Algorithm 1 to computeI,

other nodes are grey at this stage
5: for j = K to 2 do
6: while There exists a grey nodev adjacent to

at least j black nodes in different black-blue
componentsdo

7: B = B ∪ {v}
8: end while
9: end for

10: ReturnI ∪B

Lemma 3:The size ofB obtained from TSA is at
most (2 + lnK)C(T ∗)
Proof: Let n = |I| andp = |B|. If n = 1, then the lemma
is trivial. Assume thatn ≥ 2, thus C(T ∗) ≥ 1. Let
vj , j = 1...p be the blue nodes in the order of appearance
in the second phase. Letai be the number of the black-
blue components afterv1, ..., vi turns blue. Since every
black-blue component contains a black node which is
adjacent to a Steiner node ofT ∗, there existsvi which
is adjacent to at least ai

C(T ∗) . Thus we have:

ai+1 ≤ ai − ai

C(T ∗)
+ 1

Hence we have this following recurrence:

ai ≤ ai−1 − ai−1

C(T ∗)
+ 1

≤ ai−1

(
1− 1

C(T ∗)

)
+ 1

≤ ai−2

(
1− 1

C(T ∗)

)2

+
(

1− 1
C(T ∗)

)
+ 1

≤ ...

≤ a0

(
1− 1

C(T ∗)

)i

+
i−1∑

j=0

(
1− 1

C(T ∗)

)j

≤ a0

(
1− 1

C(T ∗)

)i

+ C(T ∗)

For the last step in the above recurrence, we note

that the second term
∑i−1

j=0

(
1− 1

C(T ∗)

)j
is the ge-

ometric series and it will converge toC(T ∗). After
i = C(T ∗) ln a0

C(T ∗) iterations, the number of black-blue
components will be:

ai ≤ a0

(
1− 1

C(T ∗)

)i
+ C(T ∗)

≤ e
− i

C(T∗) + C(T ∗)
≤ 2C(T ∗)

Therefore, the total number of blue nodes is bounded
as follows:

|B| ≤ i + 2C(T ∗) ≤ C(T ∗)(ln a0
C(T ∗) + 2)

≤ C(T ∗)(ln n
C(T ∗) + 2) ≤ (2 + lnK)C(T ∗)

2

Theorem 3:The Second Algorithm produces a CDS
with size bounded by(K + 2 + lnK)opt whereK = 5
if k = rmax

rmin
= 1, otherwiseK = 10b ln k

ln(2cos(π/5))c
Proof: From Theorem 1 and Lemma 3, we have:

|CDS| = |I|+ |B|
≤ (K + 2 + lnK)opt

2

Corollary 2: If the maximum and minimum transmis-
sion ranges are bounded, then TSA has an approximation
factor of O(1).

C. The Third Algorithm

In the two previous proposed algorithms, we find an
MIS based on the Breath First Search treeT which is
constructed based on the connectivity information of a
given network. In this section, we show the effect of the
size of the disks on the size of an MIS. We first introduce
the following lemma:

Lemma 4: In a DGB G, there exists a node that is
adjacent to at most five independent nodes.
Proof: Let D be a disk with radiusrmin centered at node
u. Note thatD is the smallest disk inG. We prove that
u has at most 5 independent neighbors by contradiction.
Suppose thatu has more than 5 independent neighbors.
Let vj , 1 ≤ j ≤ 6 be the independent neighbors of
u. Then there exist two nodes that lie in a sector with
the angle less than or equal to 60 degree. Without loss
of generality, assume thatv1 and v2 are such nodes as
shown in Figure 2. Thend(v1, v2) ≤ rmin. Hencev1 and
v2 are connected, contradicting to our assumption.
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Fig. 2. On the Proof of 5 Independent Neighbors
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Note that the subgraph of a DGB is still a DGB.
Hence, let us consider the algorithm to find an MIS as
shown in Algorithm 3.

Algorithm 3 Choose Smallest Disks
1: INPUT: A DGB G = (V, E)
2: OUTPUT: A Maximal Independent SetI
3: I = ∅
4: while V 6= ∅ do
5: Find a nodeu ∈ V with the smallest radius, color

u black
6: I = I ∪ {u}
7: V = V − {u} −N(u)
8: end while
9: ReturnI

In this algorithm, at each iteration, we find a node
with the smallest radius inV and color it black, then
remove this node and its neighbors fromV . This step
runs iteratively untilV is empty. The black nodes form
a maximal independent setI. Let I∗ be the optimal MIS
of G, i.e., |I∗| ≥ |I| for any MIS I, we have:

Lemma 5:The size ofI is at least
|I∗|
5

Proof: Every nodev ∈ V is either inI or adjacent to
some nodes inI. SinceI∗ ⊂ V , every nodev ∈ I∗ is
either in I or adjacent to some nodes inI. Let define
N [u] as the closed neighbors ofu when addingu into I,
i.e., N [u] = N(u) ∪ {u}. Then every nodev ∈ I∗ is in
N [u] for someu ∈ I. Because at each step, we choose
a nodeu with the smallest disk, eachu has at most 5
independent nodes (Lemma 4). Thus eachN [u] contains

at most 5 vertices fromI∗. This results to|I| ≥ |I∗|
5

2

Now, let us color the biggest disks instead of the
smallest disks black. Specifically, as shown in Algorithm
4, at each iteration, we find a node with the largest
transmission range inV and color it black. Remove this
node and its neighbors fromV . The set of black nodes
forms a maximal independent setI.

Again, let I∗ be the optimal MIS ofG, we have the
following lemma:

Lemma 6:The size ofI is at least
|I∗|
K

whereK = 5

if k = rmax

rmin
= 1, otherwiseK = 10b ln k

ln(2cos(π/5))c.
Proof: Using the same approach in the previous proof,

by Lemma 1, eachN [v] contains at mostK independent

nodes inI∗. This follows that|I| ≥ |I∗|
K

2

We believe that the size ofI obtained from Algorithm
4 is less than that obtained from the First or Second
Algorithm due to the above lemma. Thus we introduce

Algorithm 4 Choose Biggest Disks
1: INPUT: A DGB G = (V, E)
2: OUTPUT: A Maximal Independent SetI
3: I = ∅
4: while V 6= ∅ do
5: Find a nodeu ∈ V with the biggest radius, color

u black
6: I = I ∪ {u}
7: V = V − {u} −N(u)
8: end while
9: ReturnI

The Third Algorithm (TTA) and its performance is
evaluated by simulations. In this algorithm, we first
find a set of dominating setI using the Algorithm 4.
Then connectI by choosing a node that is adjacent to
most black-blue components and color it blue. Recall
that the black-blue component is defined as a connected
component of the subgraph induced only by black and
blue nodes, ignoring connections between blue nodes.
The detail of TTA is shown in Algorithm 5.

Algorithm 5 The Third Algorithm
1: INPUT: A DGB G = (V, E), all nodes are white
2: OUTPUT: A CDS
3: I = ∅; B = ∅
4: I = Choose Biggest Disks(G)
5: while I is disconnecteddo
6: Select a white nodeu such thatu is adjacent to

most black-blue components
7: Color u blue
8: B = B ∪ {u}
9: end while

10: ReturnI ∪B

V. SIMULATION RESULTS

In the previous section, we evaluate our algorithms
through theoretical analysis. In this section, we con-
ducted some simulation experiments to measure the
performance (in terms of the size of CDS) of three
algorithms: The First Algorithm (TFA), The Second Al-
gorithm (TSA), and The Third Algorithm (TTA). Recall
that the improvement of TSA over TFA is that we use
the Steiner tree with the minimum number of Steiner
nodes to interconnect all black nodes. The improvement
of TTA over TSA is that we select nodes with largest
transmission ranges as the black nodes. Moreover, we
are interested in comparing the size of the black nodes
obtained from each algorithm to see whether the choos-
ing the biggest disks approach can return the smallest



7

number of black nodes. Since the number of black nodes
in TFA and TSA is the same, letI1 denote the size of
black nodes obtained from eitherTFA or TSA. Let Ib

denote the size of black nodes obtained from TTA and
Is be the size of black nodes obtained from the Choose
Smallest Disks (CSD) algorithm. We study three network
parameters that may affect the algorithm performance:

1) n, the number of nodes in a given network
2) k, the ratio of the largest transmission range to the

smallest transmission range, i.e.,k =
rmax

rmin
3) The network density, i.e., the number of nodes per

area

A. Effects of Number of Nodes
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Fig. 3. Effects of Number of Nodes

To evaluate the performance of the three proposed
algorithms under different number of nodes, we ran-
domly deployedn nodes to a fixed area of 800m x

800m.n changed from 10 to 200 with an increment of
1. Each nodevi randomly chose the transmission range
ri ∈ [rmax, rmin] where rmax = 600m and rmin =
200m. For each value ofn, 1000 network instances were
investigated and the results were averaged.

As can be seen in Figure 3(a), the size of a CDS ob-
tained from TTA is smallest among all three algorithms.
Specifically, the size of the CDS obtained from TTA is
3.3% smaller than that of TSA, and 8.9% smaller than
that of TFA. Also, the size of the CDS obtained from
TSA is 5.5% less than that of TFA. The results indicate
that constructing the Steiner tree with the minimum
number of Steiner nodes to interconnect the maximal
independent set can reduce the size of the CDS. In
addition, choosing the biggest disk as a black node can
reduce the size of the CDS as well.

Figure 3(b) shows the comparison of the number of
black nodes obtained from TFA, CSD, and TTA. The
number of black nodesIb obtained from TTA is smaller
than that of TFA. The Choose Smallest Disks (CSD)
algorithm returns the largest number of black nodesIs

as shown in Figure 3(b). This is consistent with our
expectation as we have analyzed in the previous section.

Figure 3 also shows how the number of nodes in a
network affects the size of the CDS. In particular, the size
of the CDS increases as the number of nodes increases.
This fact is obvious since the number of nodes that need
to be dominated is larger when we deploy more nodes.

B. Effects of the Transmission Range Ratio

We also conducted simulations to compare the per-
formance of all three algorithms when changing the
transmission range ratiok as well as to see how this
change affects the size of the obtained CDS. To change
k, we fixedrmin = 200m and changedrmax from 200m
to 1200m with an increment of 10. In this experiment,
we randomly deployed 100 nodes into a fixed area of size
800m x 800m. Each node randomly chose a transmission
range in[rmin, rmax]. For each network instance, we ran
the test for 1000 times.

Figure 4(a) compares the performance of three algo-
rithms in terms of the CDS size. As shown in Figure
4(a), TTA is the best. In particular, the CDS size obtained
from TTA is 10.7% smaller than that of TFA, and 4%
smaller than that of TSA. The resultant CDS from TSA
has a size 6.7% smaller than that of TFA. Again, these
results reveal that using the Steiner tree to interconnect
a dominating set can reduce the CDS size.

As expected,Ib < I1 < Is as shown in Figure 4(b).
Note thatIs is 21% bigger thanIb. This number is large
and significant to increase the size of CDS. This very
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Fig. 4. Effects of the Transmission Range Ratio

high percentage is predicted since whenk increases,K
increases as well. Recall thatK is the maximum number
of independent neighbors of each node. Since|I∗|/K ≤
|Ib|, Ib has the potential to decrease asK increases.

Figure 4 illustrates how the transmission ranges affect
the CDS size. As can be seen in Figure 4, three curves
show obvious trend of decrease. In other words, the
CDS size decreases when the maximum transmission
range increases. It is due to the fact that the larger the
transmission range, the more nodes a node can dominate.

C. Effects of the Network Density

Simulations were also carried out to compare the
performance of all three algorithms when changing the
network density as well as to see how this change affects
the CDS size. To change the network density, we fixed
the number of nodesn = 50 and increased the area from
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Fig. 5. Effects of the Network Density

400m x 400m to 1,400m x 1,400m with an increment of
50. In this experiment, we randomly generated 50 nodes
in an area with the size changing as described. Each node
randomly chose a transmission range in[rmin, rmax]
where rmin = 200m and rmax = 600m. For each
network instances, we ran the simulations for 1000 times
and the results were averaged.

Figure 5(a) provides the performance comparison of
three algorithms in terms of the CDS size. As revealed
by Figure 5(a), TTA still outperforms the other two in
this case. And TSA outperforms TFA. Specifically, the
CDS size obtained from TTA is 8% less than that of TFA
and 3.2% less than that of TSA. Moreover, the CDS size
obtained from TSA is 4.9% less than that of TFA. As
predicted, Figure 5(b) indicates thatIb < I1 < Is. The
number of black nodes obtained from TTA is slightly
less than that of TFA but is much less than that of the
CSD algorithm.
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In addition, Figure 5 shows the obvious trend of
increase of three curves, which implies that the CDS
size gets bigger when the network density decreases.
This is because when the network density decreases, the
neighbors of each node decreases as well. Thus the CDS
size need to be larger to dominate all nodes in a network.

In conclusion, for all aspects that we have studied,
TTA is the best algorithm. Next is the TSA. Choosing
nodes with the largest transmission ranges for the dom-
inating set and using the Steiner tree with the minimum
number of Steiner nodes to interconnect the dominating
set can reduce the CDS size. Specifically, choosing nodes
with the biggest radius can form a smaller dominating
set. With the help of the Steiner tree, the number of
blue nodes can be reduced. The size of a CDS obtained
using these two mechanisms is about 10% less than that
obtained without using them. In addition, the simulation
results reveal that the CDS size increases as the number
of nodes increases. The CDS size also can get larger if
the network gets sparser. Furthermore, when the trans-
mission ranges increase, the CDS size decreases.

VI. D ISTRIBUTED IMPLEMENTATIONS

From the practical point of view, all algorithms de-
signed in wireless networks should be distributed. In
this section, we discuss how to implement our three
algorithms as distributed algorithms. There exist several
distributed algorithms for constructing an MIS satisfying
Lemma 2 in literature [2], [5]. Specifically, the authors
constructed an arbitrary rooted spanning treeT by the
distributed leader-election algorithm in [17]. This al-
gorithm has anO(n) time complexity andO(n log n)
message complexity wheren is the number of nodes in
a given network. After constructing the spanning treeT ,
Wan et. al [2] introduced a distributed construction on
how to find a maximal independent set using the color
mechanism withO(n) message complexity andO(n)
time complexity. We can use this construction for our
TFA. Hence, the distributed implementation of TFA has
O(n log n) message complexity andO(n) time complex-
ity. Now we present the distributed implementations for
TSA and TTA.

A. Distributed Version of TSA

For The Second Algorithm, we first find the MIS that
satisfies Lemma 2, which we can use the above method.
We thus only present a distributed algorithm for the
second phase, that is to find a Steiner tree to interconnect
the maximal independent set. Note that after running the
first phase, all nodes in an MIS are black and all other
nodes are grey.

Algorithm 6 Distributed Version of TSA Second Phase
1: INPUT: A maximal independent setI and G =

(V, E), all nodesvi ∈ I are black, andvj ∈ V − I
are grey

2: OUTPUT: Color connectors blue
3: SetIDC of each black node equal to the Black nodes

ID {IDC is the black-blue component ID}
4: SetIDC of each grey node equal to−1
5: IDC = −1 for all grey nodevj

6: Each grey node maintains theADJ list which is the
list of its adjacent black nodes in different black-blue
components

7: Each grey node maintains aCOMPETITORS list
8: Each grey node maintains a global valueB, B = K

initially
9: vi sends a BLACK message contained itsIDC

10: Upon receiving the BLACK message, grey nodevj

updates itsADJ andCOMPETITORS lists
11: vj sends a GREY message contained itsid and its

|ADJ |
12: vj turns blue if its|ADJ | > |ADJ | of its neighbors

and its|ADJ | > 1
13: Each blue node updates itsIDC to the smallest value

in its ADJ list
14: A blue node then sends a BLUE message contained

its newIDC and newADJ list
15: Upon receiving a BLUE message, black nodevi

updates itsIDC and send a BLACK message
16: Upon receiving a BLUE message, a GREY node

decreasesB by 1
17: If |ADJ | of a grey nodevj equal to 1, then do

nothing

As described in Algorithm 6, all black nodesvi in
the maximal independent setI maintains its black-blue
component id, i.e.,IDC . Initially, we have |I| black-
blue components. Hence,IDC of each black node can
be set to the node ID. Each grey node also maintains
its black-blue component id and initially,IDC = −1,
which indicates that it does not belong to any black-
blue component yet. Each grey node also maintains a
list of its adjacent black-blue components with there
IDC values, calledADJ and a list of its competitors
called COMPETITORS. The grey node is adjacent
to a black-blue component if it is adjacent to ablack
node in the black-blue component. A grey nodeu is a
competitor of a grey nodev if the number of adjacent
black-blue components ofv andu are the same. At this
time, the node with the smaller node id becomes a blue
node. Hence theCOMPETITORS list contains a list
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of competitors node id. Each grey nodes also maintain a
global valueB which represents the maximum number
of independent neighbors. Initially,B = K.

Note that after finding a maximal independent set, we
still has a spanning treeT . Thus each node also maintain
a list of its children inT , calledCHILDREN . Initially,
a root node ofT which is a black node sends the BLACK
message contained itsIDC to its one hop neighbors.
Upon receiving a BLACK message, the grey nodevj

add theIDC in the BLACK message to its adjacent
black-blue componentsADJ . If this number IDC is
already in ADJ , it does nothing. After updating its
ADJ , the grey node then broadcasts the GREY message
< |ADJ |, id >. Note thatid is the grey node id and
|ADJ | is the size of theADJ list. Upon receiving the
GREY message, a grey node compares its|ADJ | to the
|ADJ | in the GREY message. If its|ADJ | is equal to
the |ADJ | in the GREY message, it adds the grey node
id in the GREY message to itsCOMPETITORS list.

When a node is a leaf, besides broadcasting the
BLACK or GREY message depending on its color, it
also broadcasts the END message. Upon receiving the
END message, a GREY node turns to blue according to
the follows:
• Its |ADJ | ≥ B > 1 and
• Its id is smaller than all id in its

COMPETITORS list
After turning its color to blue, a blue node updates

its IDC to the smallest number in itsADJ list and
decreasesB by 1. The blue node then sends a BLUE
message and keeps it color permanent. A BLUE message
contains its id and its ADJ list. Upon receiving a
BLUE message, all black nodes update theirIDC to
the smallest number in the BLUE message and send the
BLACK message out. Note that all nodes in the same
black-blue component must have the sameIDC . At the
end of this algorithm, the grey node keeps its color grey
if its |ADJ | is 1. A node stops sending message if it
is adjacent to one black-blue component. This indicates
that either the all black nodes are connected at this
time or a node is just adjacent to only one black node.
The main idea of this distributed version is shown in
Algorithm 6.

Theorem 4:The distributed version of TSA has an
O(n log n) message complexity andO(n) time complex-
ity.
Proof: The time and message complexity of the MIS
construction phase is dominated by the time and message
complexity of constructing the rooted spanning treeT
which are O(n) and O(n log n) respectively [2]. For
the second phase, each node sends at mostO(n log n)
messages and takes at most linear time. Hence the

message complexity of distributed TSA isO(n log n)
where its time complexity isO(n).

2

B. Distributed Version of TTA

The distributed version of TTA consists two phases
as shown in Algorithm 7. The first phase is to find a
dominating set such that at each iteration, we select a
node with the largest transmission range. And the second
phase is to connect the above dominating set.

Algorithm 7 Distributed Version of TTA
1: INPUT: A DGB G = (V, E) with all nodes in white
2: OUTPUT: A CDS
3: Each white node maintains aSORT list
4: Each white nodevi broadcasts a WHITE message

< idi, ri >
5: Upon receiving a WHITE message, each node up-

dates itsSORT list
6: A node with itsid at the beginning of theSORT list

marks itself black and sends the BLACK message
contained itsid

7: Upon receiving a BLACK message, a white node
marks itself grey and broadcasts the GREY message
contained itsid and id in the BLACK message

8: Upon receiving a GREY message, a white node
updates itsSORT list

9: Use the Algorithm 6 to connect all black nodes

Initially, all nodes are white. Each node maintains
a list of all node id in the decreasing order of the
transmission ranges, calledSORT list. At the beginning,
the SORT list of each node contains its ownid. Each
white nodevi broadcasts a WHITE message containing
its own id and its transmission range< idi, ri >. Upon
receiving a WHITE message, each node updates its
SORT list by adding theid in the WHITE message
in the decreasing order of transmission ranges. A node
which has itsid at the head of theSORT list has the
largest transmission range.

A white node which has itsid at the head of the
SORT list marks itself black and sends the BLACK
message to its neighbors. The BLACK message contains
the black nodeid. Upon receiving the BLACK message,
a white node marks itself grey. The grey node then
broadcasts a GREY message which contains its own
id and id in the BLACK message. Upon receiving the
GREY message, a white node updates itsSORT list by
removing theid in the grey message from theSORT
list.
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Once a node makes itself black or grey, its color is
unchanged. This process stops when there does not exist
any white node. Note that after marking itself black or
grey and sending out the BLACK or GREY message,
this node will not join in the coloring process anymore.

At the end of this phase, all nodes in the network are
either black or grey. All black nodes form a dominating
set. Now, we need to connect these black nodes. The
process is similar to the distributed version of TSA
Second Phase.

Theorem 5:The distributed version of TTA has an
O(n2) message complexity andO(n2) time complexity.
Proof: The time and message complexity of the first
phase is dominated by the sorting part, i.e, to compute
theSORT list of each node. Since each node broadcasts
a WHITE message, the time and message complexity is
O(n2). The second phase usesO(n log n) message and
takes at most linear time. Hence the message complexity
of distributed TTA isO(n2) and its time complexity is
alsoO(n2).

2

VII. C ONCLUSION

In this paper, we have studied the Connected Dom-
inating Set (CDS) problem in Disk Graphs with only
Bidirectional links (DGB). The disk graphs can be used
to model wireless ad hoc networks where nodes have
different transmission ranges. We have proposed three
approximation algorithms and shown that the obtained
CDS is within a constant factor of the optimal CDS. The
main approach in our algorithms is to construct a max-
imal independent set and then connect them. Through
the theoretical analysis and simulation results, we have
shown that using a Steiner tree with the minimum
number of Steiner nodes to interconnect the maximal
independent set can help to reduce the size of the CDS.
In addition, choosing a node with the largest transmission
range as a dominator can further reduce the CDS size.

Moreover, we have also presented the size relationship
between an independent set and a CDS of a given
network. We have pointed out some important charac-
teristics of a DGB. In particular, given a DGBG, there
exists a node such that the maximum number of its
independent neighbors is 5. In addition, we have also
proved the upper bound of the maximum number of
independent neighbors of any node in a DGB.

When nodes in a network have different transmission
ranges, a nodeu can communicate directly to a nodev
but nodev might not be able to communicate directly
back to nodeu. In this case, the edge(u, v) is a directed
edge, called unidirectional links. Thus we are interested

to study the CDS problem in the general disk graphs,
where both unidirectional and bidirectional links exist.
One simple way is to find a dominating set and then use
a directed Steiner nodes algorithm to connect them. Note
that the CDS in this case is directed. Hence we need to
find a strongly connected CDS to help the routing.
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