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Abstract—Since there is no fixed infrastructure or The CDS problem has been studied intensively in Unit
centralized management in wireless ad hoc networks, a Disk Graph (UDG), in which each node has the same
Connected Dominating Set (CDS) has been proposed asransmission range. The MCDS problem in UDG has
the virtual backbone. The CDS of a graph representing pean shown to be NP-hard [1]. To build a CDS, most
Zlfnr?)tl\ftﬁ rk h?cftoi;fr;g'ﬁ?;'erzgagét%rirs] e;f;ﬁlsentr:;zr%n of current algorithms first find a Maximal Independent

gp ' P Set (MIS) I of G and then connect all nodes ihto

has been studied extensively in Unit Disk Graphs (UDG), . .
in which each node has the same transmission range.ha\/e a CDS. The independent sets a subset ofl/

However, in practice, the transmission ranges of all nodes Such that for any two nodes,v € I, wv ¢ E. In

are not necessary equal. In this paper, we model a network other words, the nodes ih are pairwise nonadjacent.
as a disk graph and introduce the CDS problem in A maximal independent set is an independent set such
disk graphs. We present three constant approximation that no more nodes can be added to remain the non-
algorithms to obtain a minimum CDS of a given net- adjacency property. The most relevant related work using
work._ These algorithms can be |mplemente_d as dls_tnbut(_ed this scheme are in [2], [3]. In [2], Waat al. proposed
algorithms. Furthermore, we show the size relationship the first distributed algorithm with the performance ratio

between a maximal independent set and a CDS as well . . .
as the bound of the maximum number of independent of 8. Later, Liet al. proposed a better algorithm with

neighbors of a node in disk graphs. The theoretical analysis the performance ratio of4.8 + In5) by constructing a
and simulation results are also presented to verify our Steiner tree when connecting all nodesTifi3].
approaches. However, in practice, the transmission ranges of all

nodes are not necessary equal. In this case, a wireless ad
Keywords: Connected Dominating Set, Independent Sefoc network can be modeled using a directed gr@ph

Disk Graph, Wireless Network, Virtual Backbone (V,E). The nodes it/ are located in a Euclidean plane
and each node; € V has a transmission range €
|. INTRODUCTION [Pimin, Tmaz)- A directed edg€g(v;,v;) € E if and only

In wireless ad hoc networks, there is no fixed df d(v;,v;) < r; whered(v;,v;) denotes the Euclidean
pre-defined infrastructure. Nodes in wireless networklistance between; andv;. Such graphs are callatisk
communicate via a shared medium, either throughgaaphs An edge(v;,v;) is bidirectional if both(v;, v;)
single hop or multihops. Although there is no physiand (v;,v;) are in E, i.e., d(v;,v;) < min{r;,r;}. In
cal backbone infrastructure, a virtual backbone can béer words, the edgey;, v;) is bidirectional ifv; is in
formed by constructing a Connected Dominating S#te diskD; centered at; with radiusr; andv; is in the
(CDS). Given arundirectedgraphG = (V, E), a subset disk D; centered aw; with radiusr;. In this paper, we
V' C Visa CDS ofG if for each node: € V, u is either only study the CDS problem in disk graphs where all
in V'’ or there exists a nodec V'’ such thatuv € £ and the edges in the network are bidirectional, called Disk
the subgraph induced by’, i.e., G(V’), is connected. Graphs with Bidirectional links (DGB). In this case,
The nodes in the CDS are callddminators other nodes G is undirected. Figure 1 gives an example of DGB
are calleddominateesWith the help of the CDS, routing representing a network. In Figure 1, the dotted circles
is easier and can adapt quickly to network topologgpresent the transmission ranges and the black nodes
changes. To reduce the traffic during communication angpresent a CDS.
simplify the connectivity management, it is desirable to The MCDS problem in DGB is NP-hard [14] since
construct a Minimum CDS (MCDS). the MCDS problem in UDG is NP-hard and UDG is



function that the algorithm uses to add nodes iftds

the number of the white neighbors of each node or a

pair of nodes. The one with the largest such number is

| marked black and its neighbors are marked grey. These

o nodes (black and grey nodes) are then added Thto
The algorithm stops when no white node existsdn
The second algorithm is an improvement of the first one.
This algorithm consists of two phases. The first phase is
to construct a dominating set and the second phase is
to connect the dominating set using a Steinter tree algo-
rithm. With such improvement, the second algorithm has
the performance factor off (A) + 2. These algorithms
a special case of DGB. In this paper, we present threger were studied and implemented by Desal. [11]-
constant approximation algorithms for computing a mirf1.3]. In [7], Ruanet al. introduced another centralized
imum CDS in DGB. We first introduce their centralize@nd greedy algorithm of which the approximation ratio
versions and later show how to implement them as dig-(2 + In A).
tributed algorithms. We also analyze the size relationshipThe decentralized algorithms can be further divided
between an MIS and a CDS in DGB. Furthermore, Wgto two categoriesdistributed algorithms andlocal-
show the upper bound of the number of independegkd algorithms. In distributed algorithms, the decision
neighbors of any node in DGB. These analysis can hedpocess is decentralized. In the localized algorithms, the
us to study the CDS problem in a general disk grapBecision process is not only distributed but also requires
where both unidirectional and bidirectional links ar@my a constant number of communication rounds. Most
considered. of the distributed algorithms find a Maximal Independent

The remainder of this paper is structured as fofet (MIS) and connect this set. Note that in an undirected
lows. Section Il describes the related research work gfaph, an MIS is also a Dominating Set (DS). In [2],
the CDS problem, mainly focuses on UDG. The siZgs] [16], the authors proposed a distributed algorithm
relationship between an MIS and a CDS in DGB ifor a CDS problem in UDG. This algorithm consists
shown in section Ill. The three algorithms and thetjyo phases and has the constant approximation ratio of
performance analysis are discussed in section IV. Sect@nThe algorithm first constructs a spanning tree. Then
V presents the performance comparisons of our thregch node in a tree is examined to find an MIS for the
algorithms through simulation results. The diStribUtemst phase. All nodes in an MIS are colored black. At
implementations are illustrated in section VI and SeCtiQﬂe second ph3361 more nodes are added (COlOf b|ue) to
VIl ends the paper with conclusions and some futug®nnect the black nodes. Later, Caré¢ial. presented
work. another 2-phase distributed algorithm for a CDS in UDG.

This algorithm has the same performance ratio as the
Il. RELATED WORK previous one. However, the improvement over [2] is the

The CDS problem in wireless ad hoc networks hasessage complexity. The root does not need to wait
been studied extensively. Algorithms that construct far the COMPLETE message from the furthest nodes.
CDS can be divided into two categoriesentralized Recently, Liet al. proposed another distributed algorithm
algorithms anddecentralizedalgorithms. with a better approximation ratio, which {g.8 + In 5)

The centralizedalgorithms in general yield a smallef3]. This algorithm also has two phases. At the first
CDS with a better performance ratio than that of dghase, an MIS is found. At the second phase, a Steiner
centralized algorithms. In [6], Guha and Khuller firstree algorithm is used to connect the MIS.
proposed two polynomial time algorithms to construct a For the localized algorithms, Wu and Li [8] proposed
CDS in a general grapty. These algorithm are greedya simple algorithm that can quickly determine a CDS
and centralized. The first one has the approximation rabased on the connectivity information within the 2-hops
of 2(H(A) + 1) where A is the maximum degree @ neighbors. This approach uses a marking process. In
and H is a harmonic function. The idea of this algorithnparticular, each node is marked true if it has two uncon-
is to build a spanning tre& rooted at the node with nected neighbors. All the marked nodes form a CDS. The
maximum degree and graW until all nodes are added toauthors also introduced some dominant pruning rules to
T'. The non-leaf nodes i form a CDS. In particular, all reduce the size of the CDS. In [2], the authors showed
nodes in a given network are white initially. The greedthat the performance ratio of [8] is within a factor of

Fig. 1. A Disk Graph with Bidirectional Links



O(n) wheren is the number of nodes in a network. We first evenly divide this area into several small ones
In [10], Alzoubi et al. proposed another localized 2-A; with rays (half lines) at:. Two adjacent rays form an

phase algorithms with the performance ratio of 192. Aingle«. Supposery andzz are two rays with angle

the first phase, an MIS is constructed using the 2-hopstween them. Supposkz,y) < d(zx, z) andd(y, z) =

neighbors information. Specifically, once a node know&zx, y). Then from Fact 1, we know thgtand: are adja-

that it has the smallest ID within its neighbors, it beeent. Sincel(y, z) = d(z,y), we haveZzzy = a. Hence

comes a dominator. At the second phase, the dominatd(s, z) = 2d(z,y)cosa, i.e., d(z, z)/d(x,y) = 2cos a.

are responsible for identifying a path to connect the MiI$lence, each ared; can be divided into subareas by cir-

In[9], Li et al.proposed another localized algorithm wititles atr with radius1,2 cos a, (2 cos a)?, ..., (2 cos a).

the performance ratio of 172. This localized algorithNote that(2cos )’ < k. Hence,j = Lln(gﬁfw)y Now

has only 1 phase. A node marks itself as a dominatonile need to show that all nodes that are adjacent to

it can cover the most white nodes compared to its 2-hogsd lie in each subarea are adjacent. Indeed; beid 2

neighbors. be such nodes. Then y, andz satisfy the condition in
Most of the constant approximation algorithms argact 1.

for the CDS problem in UDG. However, in practice, Therefore, there are at mof 5tlts |(2m/a) sub-

the communication ranges of nodes in a network aasgeas. In other wordsy can be adjacent to at most

not necessary equal. Such a network can be modeled!™Z - |(27/a) independent nodes.

M(2cosa)

as a disk graph. In this paper, we present three constarrgetf( )= hﬂéﬂ%“gﬂ/a) Note that in our proof,
approximation algorithms for the CDS problem in DGB,, — 27 /;m wherem is an integer andn > 6. Hence,
The main approach is to construct an MIS and thefle need to find a local minima of (o) where 0 <
connect them. Hence we first need to analyze the size 27 /6. With some algebraic steps, we hawe=
relationship between a CDS and an MIS, which is show /19, Hence, whenk > 1, = can be adjacent to at

in next section. most 10| gami-75;) independent nodes.

O
[1l. THE SIZE RELATIONSHIP BETWEEN ACDSAND Theorem 1:In a DGB G = (V, E), the size of any
A MAXIMAL INDEPENDENTSET maximal independent set is upper bounded Kypt
In this section, we show the size relationship betweayhere k = Imar and K = 5 if k = 1, otherwise,
any maximal independent set and a CDS of a given DGR- _ 10(; i ]
DenoteOPT as an optimal CDS anadpt as the size of  pof- If_gf"j(’%g))an MIS. By Lemma 1, no node in
OPT, we have: OPT can dominate more thaii nodes in/. Thus the
Fact 1. Given 3 nodes:, y, andz such thatd(z,y) <  theorem follows:|1| < Kopt.
d(z,z) andd(y, z) < d(x,y), theny andz are adjacent. O

Proof: The disk aty has radius at least(z,y) and  From now on, we will refe aSTmaz/Tmin ANAK =
the disk atz has radius at least(z, z). Therefore, both 5 it 1. — 1 otherwise K = 10| ik ],

disks have radius at leasl(y, z). Hence,y and z are n(2cos(m/5))
adjacent. V. APPROXIMATION ALGORITHMS AND ANALYSIS

= In this section, we present three constant approxi-

Lemma 1:Let Nip(u) denote the independent neighp,ation algorithms for the CDS problem in DGB and
bors of node.. In a DGB, the size oiN;p(u) is bounded analyze their performance ratio.

by:
Nip(u)| < 5 if k=1 A. First Algorithm
u .
oA = 10L%J otherwise 1) Algorithm Description:The First Algorithm (TFA)
r has two phases. First, we construct the maximal inde-
wherek = ™%

pendent set/, then connect them by finding a set of
Proof: When% =1, a DGB is a UDG. Thus the lemmaconnector nodes3. This algorithm is similar to [2].
holds. Wherk > 1, consider a node and all nodes that Through out the paper, sometimes, we call a black node
are adjacent ta. Without loss of generality, assume thahs a node in/, a blue node as a connector nodeAn

the disk atr has radius 1. Then a nodethat is adjacent and a grey node as a non-CDS node. Note that the set
to = has radius at leasi(z,y) and at mos#. Thus, all I is also a dominating set .

nodes that are adjacent iolie in the inside of circle at To construct an MIS, we first randomly choose a
centerz with radiusk. vertexu € V' and construct the Breath-First Search tree



Algorithm 1 The First Algorithm In practice, we expect thdt is very small since the
1: INPUT: A DGB G = (V, E), all nodes are white  transmission ranges of all nodes in a network should be

2: OUTPUT: A CDS ofG slightly different.

3: Randomly pick a vertex. € V' and coloru black Corollary 1: If the maximum and minimum trans-

4 I ={u}, B=0, GREY =0 mission ranges are bounded, then our algorithm has an

5: Construct a BFS tre& of G, rooted atu approximation factor of(1).

6: d = depth(T)

7. for j=1tod do .

8 TMP, —{ v | level(i) = j} B. Second Algorithm

9: if v; is dominated by some black nodes in In the first algorithm, we connect two black nodes
TMP;_, then and v (assume thatevel(u) < level(v)) by finding a

10: Color v; grey; GREY = GREY U {v;} grey nodew that is a parent ob in 7" and neighbor of

11:  end if u in G. However, we can conneétby using the Steiner

12: Choose a setd of nodes inTMP;,_; that is tree, which is a tree interconnecting all noded/irThe
not grey and a maximal independent set iRodes in the Steiner tree but not Inare called Steiner

G(TMP;—1 — GREY) nodes. To reduce the size of an obtained CDS, we need to
13: ColorA black: T=TUA find a Steiner tree with the Minimum number of Steiner
14: Choose a set” of nodes inTMP,_; that are Nodes (MSN). We can define this problem as follows:
parent of black nodes "M P; Definition 1: Steiner Tree with MSN: Given a graph
15  ColorC blue; B=BUC G = (V,E) and a set of nodeg’ C V calledterminals
16: end for construct a Steiner treg that connects all the terminals
17: Return/ U B such that the number of Steiner nodes is minimum.

1) Algorithm Description: The Second Algorithm
(TSA) also has two phases. The first phase is to find an
(BFS)T of G rooted atu. Next, we marky black. Then MIS I that satisfies Lemma 2. Note that this condition
mark all the neighbor nodes af grey. For each level is vital for the second_ phase t_o work._$ince the obtained
level(i) of T, find a maximal independent set of a set df!IS I from TFA satisfies this condition, we can use
nodes that are neither black nor grey. In other words, W Procedure in TFA to find the MI3. At the second
need to find an MIS of the nodes that are not dominatBaS€, We construct a Steiner tree with the minimum

yet. After finding an MIS, the process of connecting thefimPer of Steinter nodes to interconnect all nodesas
is easy with the help of". For each black node, we follows. Define ablack-blue componerds a connected

just need to find a grey node that is a parent.@nd be component of the subgraph induced only by black and

dominated by another black nodes in the previous levB|U€ nodesignoring connections between blue nodes
The detail of TFA is shown in Algorithm 1. Initially, we have|I| black-blue components. Ld® be

2) Theoretical Analysis:The maximal independentfgl set of Steiner nodes, called blue nodes. Initialy,

set ] obtained from TFA satisfies this property: IS _empty. From Le”.‘ma 1, we know that each node is
] . adjacent to at mogk independent nodes. In other words,
Lemma 2: Any pair of complementary subsets of the : :
: a blue node is adjacent to at mdstblack nodes. Color
MIS has a distance of exactly two hops.

Proof- This is trivial f th truction of in th all nodes inV — I grey. At each iteration, we can find a
root- This IS trivial from the construction af in the grey node that is adjacent to most black-blue components
algorithm. If a nodeu € I, then allN(u) € GREY . If

. and color it blue. Formally, foy from K to 2, at each
Zned GiEb}lfe:cTen there exist a nodesuch thatw € £ iterationy, find a grey node such thaw is adjacent to at
u .

least; black nodes irdifferent black-blue components.

_ ~ Color v blue and re-compute the black-blue components
Theorem 2:TFA produces a CDS with the sizesg gescribed in Algorithm 2

bounded by2Kopt where K* = 5 if k = D=+ =1, 2) Theoretical AnalysisThe CDS in this algorithm is
otherwiseK = 10| rzosz757 ) a union of setl and setB. To analyze the performance
Proof: From Lemma 2 and Theorem 1, we have: ratio of our algorithm, we first compare the size of set
B to opt. Recall thatB is a set of all the Steiner nodes.
ICDS| < 2|I| < 2K opt Let 7 be an optimal tree when connecting a given set
I andC(T™) is the number of the Steiner nodesii,
o we have this following lemma:



Algorithm 2 The Second Algorithm Therefore, the total number of blue nodes is bounded
1: INPUT: A DGB G = (V, E), all nodes are white  as follows:

> ?UT@F_’%T: AV)CDS ofG B] <i+20(T%) < C(T*)(In gl +2)
4: Use the procedure in Algorithm 1 to compufe < C(T)(In gy +2) < (2+ I K)C(T)
other nodes are grey at this stage u
5: for j = K to 2 do Theorem 3:The Second Algorithm produces a CDS
6: while There exists a grey node adjacent to With size bounded byK + 2 + In K)opt where K = 5
at leastj black nodes in different black-blueif k = == =1, otherwiseKX = 10| m ot 7y ]
componentsio Proof: From Theorem 1 and Lemma 3, we have:
n B=BUfu} cDS| =1 +|B|
8: end while < (K +2+InK)opt
9: end for

O
Corollary 2: If the maximum and minimum transmis-
sion ranges are bounded, then TSA has an approximation

Lemma 3:The size of B obtained from TSA is at factor ofO(1).
most (2 + In K)C(T™)
Proof: Letn = |I| andp = |B|. If n = 1, then the lemma C. The Third Algorithm
is trivial. Assume thaty > 2, thus C(T") > 1. Let |5 the two previous proposed algorithms, we find an
vj,j = 1...p be the blue nodes in the order of appearan§@s pased on the Breath First Search t@evhich is
in the second phase. Let be the number of the black-¢onstructed based on the connectivity information of a
blue components after, ..., v; s blue. Since every giyen network. In this section, we show the effect of the

black-blue component contains a black node which ;¢ of the disks on the size of an MIS. We first introduce
adjacent to a Steiner node @f, there exists; which the following lemma:

10: Return/ U B

is adjacent to at leasty;=. Thus we have: Lemma 4:1n a DGB G, there exists a node that is
a; adjacent to at most five independent nodes.
Qi1 < @ — C(T%) +1 Proof: Let D be a disk with radius,,;, centered at node

u. Note thatD is the smallest disk itz. We prove that
u has at most 5 independent neighbors by contradiction.
Suppose that. has more than 5 independent neighbors.

Hence we have this following recurrence:

ai—1
a; < a1 — 70(}*) +1 Let v;, 1 < 5 < 6 be the independent neighbors of
1 u. Then there exist two nodes that lie in a sector with
< @i (1 - C(T*)> +1 the angle less than or equal to 60 degree. Without loss
1 \2 1 of generality, assume thay andv; are such nodes as
< a;-2 (1 - C(T*)) + ( - C(T*)) + shown in Figure 2. Thef(vy, v2) < rpi,. Hencev; and

v9 are connected, contradicting to our assumption.
O

IN

§a0(1—6@>i+§<1_0(1m>j

< a0<1 - Cém)i + o)

For the last step in the above recurrence, we note '/\
i J .
that the second ternEj:%) <1 — ﬁ) is the ge-
ometric series and it will converge t@'(T*). After N——
i=C(T")In C(“TO* iterations, the number of black-blue
components will be: A
1 ‘ *

< e e 4+ O(T%)
< 20(T%)

Fig. 2. On the Proof of 5 Independent Neighbors



Note that the subgraph of a DGB is still a DGBAIgorithm 4 Choose Biggest Disks
Hence, let us consider the algorithm to find an MIS asl: INPUT: A DGB G = (V, E)

shown in Algorithm 3. 2: OUTPUT: A Maximal Independent Sét
33 1=0
Algorithm 3 Choose Smallest Disks 4: while V # () do
1. INPUT: ADGB G = (V, E) 5:  Find a nodeu € V' with the biggest radius, color
2: OUTPUT: A Maximal Independent Sét u black
3 I=10 6: I=1U{u}
4: while V £ ) do 7 V=V—{uj - N(u)
5:  Find a nodeu € V with the smallest radius, color 8: end while
u black 9: Return/
6: [=1U{u}
7. V=V—{u} —N(u) . _ _ .
s: end while The Third Algorithm (TTA) and its performance is
o Return] evaluated by simulations. In this algorithm, we first

find a set of dominating set using the Algorithm 4.

In this algorithm, at each iteration, we find a nodZerhen connectl’ by choosing a node that is adjacent to
with the smallest radius iV and color it black, then most black-blue components a_md C(_)Ior it blue. Recall
remove this node and its neighbors frdm This step that the black-blue componer_lt is defined as a connected
runs iteratively untilV is empty. The black nodes formcomponent O_f the_subgraph |r_1duced only by black and
a maximal independent sét Let I* be the optimal MIS blue nodgs, ignoring conne_ctlons t_)etween blue nodes.
of G, i.e., |I*| > |I| for any MIS I, we have: The detail of TTA is shown in Algorithm 5.

Lemma 5:The size of] is at Ieastu Algorithm 5 The Third Algorithm

Proof: Every nodev € V' is either in% or adjacentto 1. INPUT: A DGB G = (V, E), all nodes are white
some nodes ifl. Sincel* C V, every nhodev € I* is 2. OUTPUT: A CDS
either in I or adjacent to some nodes In Let define 3. 1=0: B=10
N[u] as the closed neighbors efwhen adding: into I,  4: [ = Choose Biggest Disk&>)

i.e., N[u] = N(u) U {u}. Then every node € I* isin 5. while I is disconnectedio
Nfu] for someu € I. Because at each step, we choose:  Select a white node: such thatu is adjacent to

a nodeu with the smallest disk, each has at most 5

most black-blue components

independent nodes (Lemma 4). Thus eadh] contains  7:  Color u blue
. . I* : _
at most 5 vertices froni*. This results to| > L] 8 B=BU{u}
o 9 end while
Return/ U B

Now, let us color the biggest disks instead of théo:

smallest disks black. Specifically, as shown in Algorithm
4, at each iteration, we find a node with the largest
transmission range i and color it black. Remove this
node and its neighbors fromi. The set of black nodes In the previous section, we evaluate our algorithms
forms a maximal independent skt through theoretical analysis. In this section, we con-
Again, let I* be the optimal MIS ofG, we have the ducted some simulation experiments to measure the
following lemma: performance (in terms of the size of CDS) of three
algorithms: The First Algorithm (TFA), The Second Al-

V. SIMULATION RESULTS

|1"]

Lemma 6:The size off is at least whereK =5 X ) ]
_ _ , Ik gorithm (TSA), and The Third Algorithm (TTA). Recall
if k= Tees =1, otherwiseX” = 10| o757 - that the improvement of TSA over TFA is that we use

Tmin | . .
Proof: Using the same approach In the.prewous pro%e Steiner tree with the minimum number of Steiner
by Lemma 1, eactV[v] contains at mosk' independent e to interconnect all black nodes. The improvement

+
nodes in/*. This follows that|I| > ’;’ of TTA over TSA is that we select nodes with largest

O transmission ranges as the black nodes. Moreover, we

We believe that the size df obtained from Algorithm are interested in comparing the size of the black nodes

4 is less than that obtained from the First or Secomdbtained from each algorithm to see whether the choos-

Algorithm due to the above lemma. Thus we introdudag the biggest disks approach can return the smallest




number of black nodes. Since the number of black nod@80m.n changed from 10 to 200 with an increment of
in TFA and TSA is the same, |dh denote the size of 1. Each node); randomly chose the transmission range
black nodes obtained from eith&F' A or TSA. Letl, 7 € [Fmaz,Tmin] Where rpe,; = 600m and rp, =
denote the size of black nodes obtained from TTA arxd0m. For each value of,, 1000 network instances were
I be the size of black nodes obtained from the Chooswestigated and the results were averaged.

Smallest Disks (CSD) algorithm. We study three network As can be seen in Figure 3(a), the size of a CDS ob-
parameters that may affect the algorithm performanceaained from TTA is smallest among all three algorithms.

1) n, the number of nodes in a given network Specifically, the size of the CDS obtained from TTA is
2) k, the ratio of the largest transmission range to tf&3% smaller than that of TSA, and 8.9% smaller than
smallest transmission range, Ié,: Tmi that of TFA. AlSO, the size of the CDS obtained from

3) The network density, i.e., the numbg?ng’f nodes p%]ISA s 5.5% I?SS than tha_t of TFA, Th.e results i_nc_iicate
area that constructing the Steiner tree with the minimum
number of Steiner nodes to interconnect the maximal
independent set can reduce the size of the CDS. In
addition, choosing the biggest disk as a black node can
reduce the size of the CDS as well.

A. Effects of Number of Nodes

14 Figure 3(b) shows the comparison of the number of
black nodes obtained from TFA, CSD, and TTA. The
120 number of black node§, obtained from TTA is smaller
than that of TFA. The Choose Smallest Disks (CSD)
o 10 algorithm returns the largest number of black nodgs
N as shown in Figure 3(b). This is consistent with our
K expectation as we have analyzed in the previous section.
© 8 Figure 3 also shows how the number of nodes in a
network affects the size of the CDS. In particular, the size
6l of the CDS increases as the number of nodes increases.
This fact is obvious since the number of nodes that need
| | | to be dominated is larger when we deploy more nodes.
“ 50 100 150 200
Nodes o )
(a) Compare the CDS Size B. Effects of the Transmission Range Ratio
12 We also conducted simulations to compare the per-
formance of all three algorithms when changing the
transmission range ratié as well as to see how this
g 107 change affects the size of the obtained CDS. To change
ng k, we fixedr,,;, = 200m and changed,,,, from 200m
X 8f to 1200m with an increment of 10. In this experiment,
= we randomly deployed 100 nodes into a fixed area of size
5 800m x 800m. Each node randomly chose a transmission
2 range in[r,in, Tmaz)- FOr €ach network instance, we ran
E the test for 1000 times.
< 4 Figure 4(a) compares the performance of three algo-
rithms in terms of the CDS size. As shown in Figure
5 4(a), TTA is the best. In particular, the CDS size obtained

0 50 NL%%S 150 200 from TTA is 10.7% smaller than that of TFA, and 4%
_ smaller than that of TSA. The resultant CDS from TSA
(b) Compare the MIS Size has a size 6.7% smaller than that of TFA. Again, these
Fig. 3. Effects of Number of Nodes results reveal that using the Steiner tree to interconnect
a dominating set can reduce the CDS size.
To evaluate the performance of the three proposedAs expected,], < I; < Is as shown in Figure 4(b).
algorithms under different number of nodes, we ramNote that/; is 21% bigger thard,. This number is large
domly deployedn nodes to a fixed area of 800m xand significant to increase the size of CDS. This very
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Fig. 4. Effects of the Transmission Range Ratio Fig. 5. Effects of the Network Density

high percentage is predicted since wheimcreasesK 400m x 400m to 1,400m x 1,400m with an increment of
increases as well. Recall that is the maximum number 50. In this experiment, we randomly generated 50 nodes
of independent neighbors of each node. Siff¢é/ K < in an area with the size changing as described. Each node
|I|, I, has the potential to decrease Hsincreases. randomly chose a transmission range [ifin, "mazx)
Figure 4 illustrates how the transmission ranges affaghere r,,;, = 200m and rp,.; = 600m. For each
the CDS size. As can be seen in Figure 4, three curvegiwork instances, we ran the simulations for 1000 times
show obvious trend of decrease. In other words, tlaad the results were averaged.
CDS size decreases when the maximum transmissiorigure 5(a) provides the performance comparison of
range increases. It is due to the fact that the larger ttgee algorithms in terms of the CDS size. As revealed
transmission range, the more nodes a node can dominblseFigure 5(a), TTA still outperforms the other two in
this case. And TSA outperforms TFA. Specifically, the
_ CDS size obtained from TTA is 8% less than that of TFA
C. Effects of the Network Density and 3.2% less than that of TSA. Moreover, the CDS size
Simulations were also carried out to compare thabtained from TSA is 4.9% less than that of TFA. As
performance of all three algorithms when changing thmedicted, Figure 5(b) indicates that < I; < I;. The
network density as well as to see how this change affecismber of black nodes obtained from TTA is slightly
the CDS size. To change the network density, we fixéelss than that of TFA but is much less than that of the
the number of nodes = 50 and increased the area fromCSD algorithm.



In addition, Figure 5 shows the obvious trend oflgorithm 6 Distributed Version of TSA Second Phase

increase of three curves, which implies that the CDS: INPUT: A maximal independent set and G =

size gets bigger when the network density decreases. (V, E), all nodesuv; € I are black, and; € V' — I

This is because when the network density decreases, theare grey

neighbors of each node decreases as well. Thus the C?s OUTPUT: Color connectors blue

size need to be larger to dominate all nodes in a networkd: Setl/ D¢ of each black node equal to the Black nodes
In conclusion, for all aspects that we have studied, D {/Dc is the black-blue component D

TTA is the best algorithm. Next is the TSA. Choosing4: Set/D¢ of each grey node equal tel

nodes with the largest transmission ranges for the don®: /D¢ = —1 for all grey nodev,

inating set and using the Steiner tree with the minimun$: Each grey node maintains theD J list which is the

number of Steiner nodes to interconnect the dominating list of its adjacent black nodes in different black-blue

set can reduce the CDS size. Specifically, choosing nodes components

with the biggest radius can form a smaller dominating’: Each grey node maintains@OM PETITORS list

set. With the help of the Steiner tree, the number of: Each grey node maintains a global valbe B = K

blue nodes can be reduced. The size of a CDS obtained initially

using these two mechanisms is about 10% less than thét v; sends a BLACK message contained iS¢

obtained without using them. In addition, the simulatiod0: Upon receiving the BLACK message, grey node

results reveal that the CDS size increases as the numberupdates itsAD.J and COM PETITORS lists

of nodes increases. The CDS size also can get larged¥# v; sends a GREY message contained:itsand its

the network gets sparser. Furthermore, when the trans- |ADJ|

mission ranges increase, the CDS size decreases. 12: v; turns blue if its|ADJ| > [AD.J| of its neighbors
and its|ADJ| > 1

VI. DISTRIBUTED |IMPLEMENTATIONS 13: Each blue node updates it® to the smallest value
: From_the _practical point of view, al alg_orit_hms Ole'14: Z]gﬁjffoﬁgiLen sends a BLUE message contained
signed in wireless networks should be distributed. In its new 7D and newAD.J list
this section, we discuss how to implement our thre&r Upon receiving a BLUE message, black node
algorithms as distributed algorithms. There exist severa updates its7 D, and send a BLACK’message
distributed algorithms for constructing an MIS satisfyin%: Upon receiving a BLUE message, a GREY node
Lemma 2 in Iiteratqre [2], [5]. Specific._ally, the authors decreases by 1 '
cpngtructed an arbltrary rooted spanning tiedy t_he 17: If |[ADJ| of a grey nodev; equal to 1, then do
distributed leader-election algorithm in [17]. This al- nothing
gorithm has anO(n) time complexity andO(nlogn)
message complexity whereis the number of nodes in
a given network. After constructing the spanning tiee
Wan et. al [2] introduced a distributed construction on . . . .
how to find a maximal independent set using the coIorAS de_scrlbgd in Algorithm 6, _aII plac_k nodas in
mechanism withO(n) message complexity an@(n) the maX|maI' mdgpendent §§tmalntalns its black-blue
time complexity. We can use this construction for OLEomponent id, i.e.IDc. Initially, we have|I| black-
TFA. Hence, the distributed implementation of TFA habIue components. HencéDc: of each black node can
O(n log n) message complexity an@(n) time complex- ° e set to the node ID. Each grey node also maintains

ity. Now we present the distributed implementations tdfS black-blue component id and iniall.Dc = —1,
TSA and TTA. which indicates that it does not belong to any black-

blue component yet. Each grey node also maintains a
o , list of its adjacent black-blue components with there
A. Distributed Version of TSA IDc values, calledADJ and a list of its competitors
For The Second Algorithm, we first find the MIS thatalled COM PETITORS. The grey node is adjacent
satisfies Lemma 2, which we can use the above methtal.a black-blue component if it is adjacent tob&ack
We thus only present a distributed algorithm for theode in the black-blue component. A grey nadés a
second phase, that is to find a Steiner tree to interconneainpetitor of a grey node if the number of adjacent
the maximal independent set. Note that after running th&ack-blue components af andu are the same. At this
first phase, all nodes in an MIS are black and all othéme, the node with the smaller node id becomes a blue
nodes are grey. node. Hence th€ OM PETITORS list contains a list




10

of competitors node id. Each grey nodes also maintaimeessage complexity of distributed TSA 3(nlogn)

global valueB which represents the maximum numbewhere its time complexity i€ (n).

of independent neighbors. Initially3 = K. O
Note that after finding a maximal independent set, we

still has a spanning treE. Thus each node also maintain

a list of its children in", calledCHILDREN. Initially, B. Distributed Version of TTA

aroot node off" which is a black node sends the BLACK  The distributed version of TTA consists two phases

message contained itsD¢ to its one hop neighbors. 535 shown in Algorithm 7. The first phase is to find a
Upon receiving a BLACK message, the grey node gominating set such that at each iteration, we select a

add the/Dc in the BLACK message to its adjaceniygge with the largest transmission range. And the second
black-blue componentgiDJ. If this number D¢ is phase is to connect the above dominating set.
already in ADJ, it does nothing. After updating its

ADJ, the grey node then broadcasts the GREY mess‘%dﬁorithm 7 Distributed Version of TTA

D Nt e g e " T 0G0 (15t e
- P 9 2. OUTPUT: A CDS

GREY message, a grey node comparesAts).J| to the 3: Each white node maintains @O RT list

|ADJ| in the GREY message. If it]dDJ| is equal to . ‘
the |ADJ| in the GREY message, it adds the grey node4' Ea;;h :/h;te nodey; broadcasts a WHITE message

id in the GREY message to itSOM PETITORS list. 5 Unon receiving a WHITE message. each node up-
When a node is a leaf, besides broadcasting th& pon | g ge, P
dates itsSORT list

BLACK or GREY message depending on its color, Ites- A node with itsid at the beginning of th€ ORT list

also broadcasts the END message. Upon receiving the marks itself black and sends the BLACK message
END message, a GREY node turns to blue according to contained itsid

the follows: 7: Upon receiving a BLACK message, a white node
« lis|ADJ] > B> 1 and ks itself grey and broadcasts the GREY message
e lts id is smaller than all id in its marks [tset g y - g
COMPETITORS list contained |j[&_d andid in the BLACK message
T 8: Upon receiving a GREY message, a white node
After turning its color to blue, a blue node updates updates itsSORT list
its IDc to the smallest number in itslDJ list and 9: Use the Algorithm 6 to connect all black nodes
decreasesB by 1. The blue node then sends a BLUE
message and keeps it color permanent. A BLUE message
contains itsid and its ADJ list. Upon receiving a Initially, all nodes are white. Each node maintains
BLUE message, all black nodes update thelb- to a list of all nodeid in the decreasing order of the
the smallest number in the BLUE message and send tr@nsmission ranges, call&) RT list. At the beginning,
BLACK message out. Note that all nodes in the santee SORT list of each node contains its own. Each
black-blue component must have the sahi#-. At the White nodev; broadcasts a WHITE message containing
end of this algorithm, the grey node keeps its color grég own id and its transmission range id;, ; >. Upon
if its |[AD.J| is 1. A node stops sending message if heceiving a WHITE message, each node updates its
is adjacent to one black-blue component. This indicaté® RT' list by adding theid in the WHITE message
that either the all black nodes are connected at ttilsthe decreasing order of transmission ranges. A node
time or a node is just adjacent to only one black nodehich has itsid at the head of the&§ORT list has the
The main idea of this distributed version is shown ilrgest transmission range.

Algorithm 6. A white node which has it3d at the head of the
Theorem 4:The distributed version of TSA has anSORT list marks itself black and sends the BLACK
O(nlogn) message complexity ar@(n) time complex- message to its neighbors. The BLACK message contains

ity. the black noded. Upon receiving the BLACK message,
Proof: The time and message complexity of the MI& white node marks itself grey. The grey node then
construction phase is dominated by the time and mességeadcasts a GREY message which contains its own
complexity of constructing the rooted spanning tfEe id andid in the BLACK message. Upon receiving the
which are O(n) and O(nlogn) respectively [2]. For GREY message, a white node updatesSiERT list by

the second phase, each node sends at @¢sflogn) removing theid in the grey message from theORT
messages and takes at most linear time. Hence tis¢
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Once a node makes itself black or grey, its color i® study the CDS problem in the general disk graphs,
unchanged. This process stops when there does not exisere both unidirectional and bidirectional links exist.
any white node. Note that after marking itself black dDne simple way is to find a dominating set and then use
grey and sending out the BLACK or GREY message,directed Steiner nodes algorithm to connect them. Note
this node will not join in the coloring process anymorehat the CDS in this case is directed. Hence we need to

At the end of this phase, all nodes in the network afnd a strongly connected CDS to help the routing.
either black or grey. All black nodes form a dominating
set. Now, we need to connect these black nodes. The
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