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Abstract: The connected domination game on a graph G is played by Dominator and Staller according to

the rules of the standard domination game with the additional requirement that at each stage of the game

the selected vertices induce a connected subgraph of G. If Dominator starts the game and both players

play optimally, then the number of vertices selected during the game is the connected game domination

number of G. Here this invariant is studied on Cartesian product graphs. A general upper bound is proved

and demonstrated to be sharp on Cartesian products of stars with paths or cycles. The connected game

domination number is determined for Cartesian products of P3 with arbitrary paths or cycles, as well as for

Cartesian products of an arbitrary graph with Kk for the cases when k is relatively large. A monotonicity

theorem is proved for products with one complete factor. A sharp general lower bound on the connected

game domination number of Cartesian products is also established.
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1 Introduction

Connected domination game on a graph G is played by two players, usually named Dominator and Staller.

They play in turns, at each move selecting a single vertex of G such that it dominates at least one vertex that

is not yet dominated with the previously played vertices and such that at each stage of the game the selected

vertices induce a connected subgraph of G. If Dominator has the first move, then we speak of a D-game,

otherwise they play an S-game. When the game is finished, that is, when there is no legal move available, the

players have determined a connected dominating set D of G. The goal of Dominator is to finish with |D| being

as small as possible, the goal of Staller is just the opposite. If both players play optimally, then |D| is unique. In

the D-game it is called the connected game domination number γcg(G) of G, while when S-game is played, the

corresponding invariant is denotedby γ′cg(G). The connecteddomination game is thus definedas the standard

domination game [1] with the additional requirement that the playersmaintain connectedness of the selected

vertices at all times. Other games closely related to the domination game are the total domination game [2–

5], the disjoint domination game [6], the transversal game on hypergraphs [7, 8], Maker-Breaker domination
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game [9, 10], Maker-Breaker total domination game [11], as well as the whole variety of domination games as

described in [12].

The connected domination game was introduced by Borowiecki, Fiedorowicz, and Sidorowicz in [13].

Among other results they proved a sharp upper bound on γcg of 2-trees, studied the game on the Cartesian

product, and considered the S-game and Staller-pass games. The game does not admit the so-called Continu-

ation Principle [14], which is an utmost useful tool for the standard game, cf. [15–19]. Instead, [13] brings the

so-called game with Chooser (to be described below) which plays a similar role for the connected game. The

game was further investigated in [20] where a question from [13] on a relation between the D-game and the

S-game is answered, the relation of the game with the diameter investigated, the game on the lexicographic

product completely explained, and the effect of a vertex predomination studied.

In this paper we focus on the connected domination game played on Cartesian products. In Section 2

we give a general upper bound on it that in particular extends the upper bound on γcg(G� Km) from [13].

The sharpness of the bound is demonstrated by several earlier exact results. In the subsequent section we

determine the connected gamedominationnumber of the Cartesian product of starswith paths orwith cycles.

This yields additional families for which the upper bound from the earlier section is sharp. We continue by

determining γcg(P3� Pn) and γcg(P3� Cn) in Section 4. In the subsequent section we consider products in

which one factor is complete.Wefirst prove that γcg(G� Kk) = 2n(G)−1, provided that k is not too small. Then

we obtain a monotonicity theorem asserting that γcg(Kn+1�G) ≥ γcg(Kn �G) holds for n ≥ 1. In Section 6 we

prove a general lower bound on the connected game domination number of Cartesian products and establish

its sharpness on several infinite families. We conclude with some general thoughts about the connected

domination game and pose several open problems.

In the rest of the introduction we present the connected domination game with Chooser and give further

definitions needed later on.

The connected domination game with Chooser [13] has similar rules as the normal game, except that there

is another player, Chooser, who can make zero, one, or more moves after any move of Dominator or Staller.

The conditions for his move to be legal are the same as for Dominator and Staller. Chooser has no specific

goal, he can help either Dominator or Staller. We recall the Chooser Lemma from [13] to be used later on.

Lemma 1.1 (Chooser Lemma). Consider the connected domination game with Chooser on a graph G. Suppose

that in the game Chooser picks k vertices, and that both Dominator and Staller play optimally. Then at the end

of the game the number of played vertices is at most γcg(G) + k and at least γcg(G) − k.

The Cartesian product G�H of graphs G and H has the vertex set V(G) × V(H), vertices (g, h) and (g′, h′)

being adjacent if either gg′ ∈ E(G) and h = h′, or g = g′ and hh′ ∈ E(H). If h ∈ V(H), then the subgraph of

G�H induced by the vertex set {(g, h) : g ∈ V(G)} is isomorphic to G, called a G-layer, and denoted with

Gh. Analogously the H-layers are defined and denoted with gH for a fixed vertex g ∈ V(G). For more on the

Cartesian product of graphs see [21].

The closed neighborhood of a vertex v in a graph G is denoted by N[v]. The closed neighborhood of a

set of vertices S ⊆ V(G) is N[S] =
⋃

v∈S N[v]. Similarly, the open neighborhood of v is N(v) = N[v] \ {v}. A

set S ⊆ V(G) is a dominating set of the graph G if N[S] = V(G). The minimal cardinality of a dominating

set is the domination number γ(G) of G. A connected dominating set is a set S that is both connected and

dominating. The smallest cardinality of such set is the connected domination number γc(G) of G. The largest

size of an independent set of vertices in G is the independence number α(G) of G. Additionally, we denote

[n] = {1, . . . , n}, ∆(G) as the maximum degree of vertices of G, and n(G) as the number of vertices of G.
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2 A general upper bound

In this section we prove a general upper bound on the connected game domination number of Cartesian

products and demonstrate its sharpness by several earlier results. A key for the bound is the following

theorem from the seminal paper [13]. We reprove the result here in more detail, to give additional insight.

Theorem 2.1. [13, Theorem 1] If G is a connected graph, then γcg(G) ≤ 2γc(G) − 1.

Proof. Let ℓ = γc(G) and let D = {x1, . . . , xℓ} be a connected dominating set in G, where for every i ∈ [ℓ], the

set {x1, . . . , xi} induces a connected subgraph of G. As D is a connected dominating set, such an ordering of

the vertices of D is clearly possible.

The strategy of Dominator is to consecutively play the vertices x1, . . . , xℓ, in particular, his first move is

on the vertex x1. Suppose now that xi, i ≥ 2, is the next vertex to be played by Dominator according to his

strategy and that he is not able to play it.

It is possible that Dominator cannot play xi because xi was already played by Staller in the course of

the game. If this is the case, Dominator simply plays xi+1, provided this is a legal move. If it is not and

also xi+1 was already played by Staller, we continue this process until we reach a vertex xj, j ≥ i, that was

neither played earlier by Staller nor it is playable by Dominator. Because of the latter fact, all the vertices

from N[xj] are already dominated at this stage of the game. If each of the vertices xj+1, . . . , xℓ was either

already played by Staller or is unplayable by Dominator, then the set of vertices selected so far constitutes a

connected dominating set of G. Indeed, all the vertices from each of N[x1], . . . , N[xℓ] are dominated, hence

G is dominated because {x1, . . . , xℓ} is a dominating set. Moreover, it is a connected dominating set because

the strategy of Dominator preserves the connectedness (and Staller must follow it anyway).

Assume therefore that there exits a vertex xk, j + 1 ≤ k ≤ ℓ, that is undominated and let k be the smallest

possible index of such a vertex. If xk is adjacent to some vertex already played, then Dominator plays xk.

Otherwise, consider an arbitrary neighbor xs of xk from the sequence x1, . . . , xk−1. If xs was played in the

game played so far, then Dominator can extend the game by playing xk. So suppose that xs was not played

before. This means that xs was (and is) an unplayable vertex. In particular, its neighbor xk must have been

dominated by some vertex already played. But this means again that Dominator can play xk because it is

adjacent to an already played vertex.

By the above strategy of Dominator, the game is finished no later than at the moment when Dominator

plays xℓ. If this happens and if Dominator played all the vertices x1, . . . , xℓ, then the number of vertices

played is exactly 2ℓ − 1 = 2γc(G) − 1. If, however, some of the vertices xi were played by Staller or became

unplayable during the game, the number of vertices played is even smaller.

We can now quickly derive the announced upper bound.

Theorem 2.2. If G and H are connected graphs, then

γcg(G�H) ≤ min{2γc(G)n(H), 2γc(H)n(G)} − 1 .

Proof. LetXG bea connecteddominating set ofGwith |XG| = γc(G). SinceXG induces a connected subgraphof

G, the set of vertices XG×V(H) induces a connected subgraph ofG�H andhence it is a connected dominating

set of G�H. Therefore, γc(G�H) ≤ 2γc(G)n(H) and thus γcg(G�H) ≤ 2γc(G)n(H) − 1 by Theorem 2.1. By a

parallel argument (or by referring to the commutativity of the Cartesian product) we also have γcg(G�H) ≤

2γc(H)n(G) − 1.

Before listing known results that demonstrate the sharpness of the bound of Theorem 2.2, we note that

the following result is a direct consequence of the theorem.

Corollary 2.3. [13, Theorem 5] If G is a connected graph, then γcg(G� Km) ≤ min{2mγc(G)) − 1, 2n(G) − 1}.

In [13, Theorem 6, Theorem 7] it was proved that if 2 ≤ m ≠ n ≥ 4, then

γcg(K1,n−1� Km) = min{2n − 1, 2m − 1} ,
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and if m, n ≥ 4, then

γcg(Pn � Km) = 2n − 1 .

These results demonstrate that the bound of Theorem 2.2 is sharp.

Let next r ≥ 2 and n1 ≥ n2 ≥ · · · ≥ nr ≥ 2. By the associativity of the Cartesian product we have

Kn1 � Kn2 � · · · � Knr = Kn1 � (Kn2 � · · · � Knr ), hence applying Theorem 2.2 we get

γcg(Kn1 � Kn2 � · · · � Knr ) ≤ 2n2 · · · nr − 1 .

Since it is proved in [20, Proposition 2.3] that the equality holds here provided that n1 ≥ 2n2 · · · nr, this gives

another example for the sharpness of Theorem 2.2.

3 Products of stars with paths or cycles

In this section we determine the connected game domination number for the Cartesian product of stars with

paths or with cycles. In both cases the bound of Theorem 2.2 is sharp.

Theorem 3.1. If n ≥ 3 and m ≥ 1, then

γcg(K1,n � Pm) = 2m − 1 .

Proof. The statement is clear for m = 1 and easily verified for m = 2. For m = 3 it holds γcg(K1,n � P3) =

5. Indeed, the upper bound follows from Theorem 2.2. The lower bound can be shown with a simple case

analysis. In the remaining part of the proof, we consider m ≥ 4.

Consider a path Pm = u1 . . . um (m ≥ 4) and a star K1,n on the vertex set v1, . . . , vn+1 (n ≥ 3) where

vn+1 is the center. In K1,n � Pm, the layer K
uj
1,n will be denoted simply by K

j
1,n. In a connected domination

game on K1,n � Pm, let Ai (resp. A
′

i) denote the set of integers j ∈ [m] for which at least one vertex from the

layer K j
1,n was played within the moves d1, s1, . . . , di (resp. d1, s1, . . . , di , si). By connectivity, both Ai and

A′

i are sets of consecutive integers. We will use the notation Ai = [ai , bi] and A
′

i = [a′i , b
′

i]. By Theorem 2.2, we

have γcg(K1,n � Pm) ≤ 2m − 1. To prove the lower bound we describe a strategy of Staller that maintains the

following property for every i.

(*) After themove si of Staller, either at least two vertices are played fromevery layer K j
1,n with j ∈ [a′i , b

′

i]\

{1,m}, or there is only one layer K j*

1,n (j
* = a′i > 1 or j* = b′i < m) among them which is played only

once. In the latter case, the vertex played in the layer K j*

1,n is a leaf of the layer, and there are at least

two leaves played from the neighboring layer.

Property (*) and the strategy of Staller will ensure that from every K j
1,n, with 2 ≤ j ≤ m − 1, at least two

vertices will be played during the game. The below rule (S1) in Staller’s strategy clearly establishes (*) after

s1. Then, we will suppose that it is true before Dominator’s move di (i ≥ 2). Note that, under this condition,

we may have at most two layers K j
1,n with 2 ≤ j ≤ m − 1 which are played exactly once after the move di.

(S1) If Dominator plays the center of a layer K j
1,n as his first move d1, Staller replies by playing the leaf

(v1, uj) of the same star; if Dominator plays a leaf from K
j
1,n, Staller picks the center (vn+1, uj) as s1.

Later, if Dominator plays the first vertex from Kbi
1,n as di, that is, if bi = b′i−1 + 1, and bi < m, then Staller

replies according to the following rules:

(S2) If at least two vertices from the neighboring layer Kbi−1
1,n have been played in the game so far, Staller

chooses a vertex from Kbi
1,n. This clearly can be done as at most one vertex from Kbi+1

1,n has been

dominated so far.

(S3) If only one vertex from Kbi−1
1,n has been played so far, Staller chooses a leaf from Kbi−1

1,n . Such a legal

move exists as (*) was true after the move si−1.
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The rules are analogous (and we do not repeat them) for the case when Dominator plays the first vertex from

Kai
1,n as di (and ai > 1). If Dominator plays a vertex from Km

1,n or K
1
1,n as di, or he plays a vertex from a layer

K
j
1,n which has been played earlier (i.e., j ∈ [a′i−1, b

′

i−1]), Staller replies as follows:

(S4) If bi < m and Kbi
1,n is played only once, Staller chooses a vertex from Kbi

1,n. This clearly can be done as

at most one vertex from Kbi+1
1,n has been dominated so far. The rule is similar for the case when ai > 1

and Kai
1,n is played only once.

(S5) If both Kbi
1,n and Kai

1,n are played at least twice, Staller plays a vertex from Kbi
1,n or K

ai
1,n, if such a legal

move exists.

(S6) If there are no playable vertices in Kbi
1,n (and bi < m), then all vertices of the layer have been played. If

the situation is similar for Kai
1,n, Staller plays the leaf (v1, ubi+1) if bi < m − 1, and she plays (v1, uai−1)

if bi ≥ m − 1 and ai > 2.

What remains is only the case when all the layers K j
1,n with 2 ≤ j ≤ m − 1 have been played at least twice.

(S7) Staller plays a vertex from Km−1
1,n or from K2

1,n. Note that it is always possible if the game is not yet over.

One can check that property (*) is preserved if Staller applies the above strategy. Remark that, by (S5) and

(S6), Staller plays a first vertex from a K
j
1,n only if all vertices of the neighboring layer have already been

played. Moreover, if Staller plays the first vertex in a layer, then this vertex corresponds to a leaf of the star.

Consequently, if we have two neighboring layers which are played only once, then these played vertices must

be leaves. In particular, we may have the following two situations before the end of the game:

– If Staller finishes the game and in the last turn a vertex from Km
1,n becomes dominated, then the center

of this star is not played and, therefore, at least n + 1 vertices were played from these two stars.

Moreover, every layer K j
1,n, 2 ≤ j ≤ m − 2, is played at least twice and the domination of K1

1,n needs at

least one further vertex. We may infer that at least n + 1 + 2(m − 3) + 1 ≥ 2m − 1 vertices were played

during the game. (The argumentation is similar if a vertex from K1
1,n was dominated in the last turn.)

– If Dominator finishes the game, at least two vertices are chosen from every K
j
1,n, if 2 ≤ j ≤ m − 1.

The domination of K1
1,n and Km

1,n needs at least two further vertices. Hence, at least 2m − 2 vertices

were played. On the other hand, the number of chosen vertices must be odd as, by our assumption,

Dominator finishes the game. This proves γcg(K1,n � Pm) ≥ 2m − 1.

This finishes the proof of the equality.

Theorem 3.2. If n ≥ 3 and m ≥ 3, then

γcg(K1,n � Cm) = 2m − 1 .

Proof. For m = 3, it can easily be checked that γcg(K1,n � C3) = 5. Thus we only consider m ≥ 4.

By Theorem 2.2, γcg(K1,n � Cm) ≤ 2m − 1. To prove the lower bound, we use a similar strategy of Staller

as in the proof of Theorem 3.1. We also use the same notation, but now the addition is done modulo m (with

values in [m]), so the sets Ai and A′

i are sets of consecutive integers modulo m. The main difference is only

that in the strategy on K1,n � Pm layers K1
1,n and K

m
1,n are studied differently, but on the K1,n � Cm the special

K1,n-layers are the ones which are played last or not played at all. Similarly, all the conditions like 1 < a′i and

b′i < mmust be replaced with |b′i − a
′

i| ≤ m −3. Apart from that, Staller’s strategy and the final counting of the

moves remains the same.

4 Products of P3 with paths or cycles

In Theorems 3.1 and 3.2 we have considered Cartesian products of stars K1,n, n ≥ 3, with paths or cycles. For

the star K1,2 = P3 the situation is slightly different, in particular, the bound of Theorem 2.2 is no longer sharp.

Theorem 4.1. If m ≥ 4, then

γcg(P3� Pm) = 2m − 2 .
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Proof. Let P3 = v1v2v3 and Pm = u1 . . . um. We will also use the notations introduced in the proof of

Theorem 3.1.

To prove that γcg(P3� Pm) ≤ 2m − 2, we consider the following strategy of Dominator in a connected

domination game with Chooser and apply the Chooser Lemma 1.1. Let d1 = (v2, u2). Then, Staller has four

different legal replies.

– If Staller respondswith themove s1 = (v1, u2), thenChooser picks the vertices (v2, u3), . . . , (v2, um−1).

Dominator’s strategy is to play d2 = (v2, um). Then, only the vertex (v3, u1) remains undominated and

the game finishes with a set ofm+1 played vertices. By Chooser Lemma, we have t ≤ (m+1)+(m−3) =

2m − 2, where t is the length of the connected domination game under the described strategies of the

players.

– The reply s1 = (v3, u2) is treated analogously as the move s1 = (v1, u2).

– If s1 = (v2, u3), Chooser picks (v2, u4), . . . , (v2, um) and Dominator plays d2 = (v2, u1). By Chooser

Lemma, we have t ≤ m + (m − 3) = 2m − 3.

– If s1 = (v2, u1), Chooser picks (v2, u3), . . . , (v2, um−1) and Dominator plays d2 = (v2, um). By Chooser

Lemma, we have t ≤ m + (m − 3) = 2m − 3, again.

This proves that Dominator can ensure t ≤ 2m−2 under any strategy of Staller, that is, γcg(P3� Pm) ≤ 2m−2.

To prove the other direction, that is, γcg(P3� Pm) ≥ 2m − 2, we consider the strategy (S1)–(S7) of Staller

and property (*) as these are given in the proof of Theorem 3.1. In fact, as P3 = K1,2, we have the same line

of the proof except the final counting which is the following for the case of P3� Pm. By Staller’s strategy, at

least two vertices were played from every Pj3 with 2 ≤ j ≤ m − 1. Moreover, the domination of V(P13) ∪ V(P23)

and V(Pm−13 ) ∪ V(Pm3 ) needs at least two further vertices. Hence, we get γcg(P3� Pm) ≥ 2(m − 2) + 2 = 2m − 2

and the theorem follows.

We remark inpassing that γcg(P3� P3) = 3, anoptimal firstmoveofDominator being the vertexof P3� P3

of degree 4.

Theorem 4.2. If m ≥ 4, then

γcg(P3� Cm) = 2m − 2 .

Proof. Let m ≥ 4 and let V(Cm) = [m]. All the exponents of the P3-layers will be taken modulo m.

First, we show that γcg(P3� Cm) ≤ 2m − 2. The basic strategy of Dominator is to play a legal move in

the center of some P3-layer. Clearly this is possible in the D-game. Inductively, let Pi3, . . . , P
j
3, i ≤ j, be the

P3-layers in which at least one vertex has been played so far. We may assume without loss of generality that

Staller’s last move was in P
j
3. If this move was in the center of Pj3, then Dominator replies with the move on

the center of Pj+13 . Otherwise, Dominator selects the center of Pj3. After m − 1 moves of Dominator we have

two cases. If all the P3-layers were played, then by the strategy of Dominator, the whole graph is dominated,

hence at most 2m − 3moves were played. Otherwise, one P3-layer has not been played, say Pj3. In this case

Dominator has played all the centers of the remainingm−1 P3-layers. But then Staller has played at least one

non-center vertex from the layers Pj−13 and Pj+13 . Consequently, atmost one vertex from P
j
3 is not yet dominated

after the (m−1)stmove of Dominator, whichmeans that in the nextmove Staller must finish the game. Hence

the game finishes in no more than 2m − 2moves.

Proving that γcg(P3� Cm) ≥ 2m − 2 goes along the same lines as in the proof for P3� Pm in Theorem 4.1,

where the strategy of Staller is modified as in the proof of Theorem 3.2.

The upper bound in Theorem4.2 can also be proven using the gamewith Chooser as it is done in the proof

of Theorem 4.1. We have given an alternative proof instead, because it yields an exact strategy of Dominator.

We have thus seen that in many cases the upper bound of Theorem 2.2 is sharp or close to be sharp. On

the other hand, the bound can also be arbitrary weak. For this sake let G be a graph with γc(G) ≫ n(G)/2 and

consider G�G. Then a rough estimate for the the right hand side of the inequality of Theorem 2.2 is that it is

≫ n(G)2 = n(G�G).
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5 Products with complete graphs

A large class of graphs which are extremal with respect to the general upper bound in Theorem 2.2 can be

obtained when we consider the Cartesian products Kk �G with sufficiently large k. In fact, for every graph G,

there exists a threshold k0(G) such that k ≥ k0(G) ensures

γcg(Kk �G) = 2n(G) − 1 = min{2γc(G)n(Kk), 2γc(Kk)n(G)} − 1 .

It is not difficult to prove that k0(G) = 2n(G) − 1 is always appropriate, see the proof of Theorem 5.1. On the

other hand, we also establish a threshold k0(G) in terms of the maximum degree ∆(G) and independence

number α(G) of G.

Theorem 5.1. If G is a connected graph and k ≥ min{4∆(G) + α(G), 2n(G) − 1}, then

γcg(Kk �G) = 2n(G) − 1 .

Proof. Let G be a connected graph on n vertices with maximum degree ∆ and with independence number

α. During the game, a Kk-layer will be called played if at least one vertex has been already played from it.

A Kk-layer will be called dominated if all of its vertices have been dominated, otherwise, it is undominated.

Clearly, if aKk-layer is played, then it is dominated.Observe that, by Theorem2.2,wehave γcg(Kk �G) ≤ 2n−1.

First suppose that k ≥ 2n − 1 and consider the following simple strategy of Staller: she always chooses a

(legal) vertex from a dominated Kk-layer. While the game is not over, Staller can follow this strategy. Indeed,

by the connectivity of G, if there is an undominated Kk-layer in Kk �G, then we have two neighboring layers

Kg
k
and Kg′

k
(i.e., gg′ ∈ E(G)) such that Kg

k
is dominated but a vertex (h, g′) ∈ V(Kg′

k
) is undominated. Then,

Staller may play (h, g). Hence, after the (n − 1)st move of Staller, at most n − 1 Kk-layers are played. Each

remaining unplayed layer is certainly not dominated since it would need at least k ≥ 2n −1 vertices played in

the neighboring layers. This proves γcg(Kk �G) ≥ 2n − 1 under the condition k ≥ 2n − 1.

Now, suppose that k ≥ 4∆ + α and consider a connected domination game on Kk �G. We assign blue,

green or red color to those vertices which were played in the game. If Dominator plays a vertex di = v from a

Kk-layer such that the layer was undominated before his move, the vertex di is colored blue. If di is blue and

Staller plays si from the same Kk-layer as her next move, then si is blue, otherwise si is green. If Dominator

plays di fromadominated layer, thenboth di and si are red.We say that a Kk-layer is a blue layer if it contains a

blue vertex.
1

A Kk-layer iswhite if it remains unplayed at the end of the game and also if it becomes dominated

before it is played. When the game finishes, each Kk-layer is either blue or white and, denoting the number

of blue or white layers by ℓb or ℓw respectively, we have ℓb + ℓw = n.

Consider the following strategy of Staller: After Dominator’s move di, Staller plays a legal vertex from the

same Kk-layer if possible; otherwise, Staller plays a legal vertex from any dominated layer. As we have seen

earlier, the latter choice is always possible (if the game is not over) as there must be an undominated layer

which has a neighboring dominated layer.

Now, we prove the following claims.

Claim 1. At the end of the game, the number of green vertices is at most α.

Proof. Suppose that si, which is the ith move of Staller, is a green vertex. Then di, the previous move of

Dominator, was the first vertex played from the undominated layer Kg
k
and no further vertex could be played

from Kg
k
after hismove. The latter propertymeans that every neighboring layer was already dominated (either

played or not) right after themove di. Consequently, no blue vertex can be played from the neighboring layers

1 We will see that under the described strategy of Staller a layer is blue if and only if it was undominated right before the first

vertex was played from it.
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in the game after di. Therefore, if every green vertex sj of the product is associated with the vertex f (sj) from

V(G) such that dj ∈ V(K
f (sj)

k
) holds for the previous move of Dominator, the set F = {f (sj) : sj is green} is an

independent vertex set in G and |F| ≤ α follows. (�)

Claim 2. If Kg
k
is a white layer, then at least 2∆ red vertices were played from the neighboring layers.

Proof. Since Kg
k
is white, its k vertices are dominated by k different (blue, green, red) vertices of the neighbor-

ing layers. (This remains true, even if later some vertices from Kg
k
are played.) By definition, every neighboring

Kk-layer may contain at most two blue vertices and there are at most ∆ neighboring layers. By Claim 1, there

exist at most α green vertices. Hence, the number of red vertices in the neighboring layers is at least k−2∆−α.

Since k ≥ 4∆ + α, the number of such red vertices is at least 2∆. (�)

Now, denote by r and p the number of red vertices and played vertices, respectively, at the end of the

game. The number of edges between the red vertices and the white layers is at least 2∆ · ℓw by Claim 2. On

the other hand, since ∆ is the maximum vertex degree, the number of these edges is at most ∆ · r. This yields

2ℓw ≤ r. Moreover, p − r, which is the total number of blue and green vertices, equals either 2ℓb or 2ℓb − 1.

(The latter occurs if Dominator finishes the game by playing a blue vertex.) Hence, 2ℓb − 1 ≤ p − r. We have

the following inequalities:

2ℓb − 1 ≤ p − r ≤ p − 2ℓw

and, since ℓb + ℓw = n, we may conclude 2n − 1 ≤ p. This finishes the proof of γcg(Kk �G) = 2n(G) − 1 under

the condition k ≥ 4∆ + α.

In the following theorem we prove that if γcg(Kk0 �G) = 2n(G) − 1 holds for some k0, then γcg(Kk �G) =

2n(G) − 1 holds for every k ≥ k0. This result might appear obvious, however, it does not generalize to general

subgraphs. If G is a graph with a large γcg(G) and H is a graph obtained from G by adding a universal vertex,

then it holds 1 = γcg(H) ≪ γcg(G), even though G ⊆ H.

Theorem 5.2. If n ≥ 1, then

γcg(Kn+1�G) ≥ γcg(Kn �G) .

Proof. We prove the theorem using imagination strategy. Two games will be played in the proof, one on

Kn+1�G and one on Kn �G. In order to avoid confusion between vertices of those two graphs, we introduce

the notation x[n] = {x1, . . . , xn}.

The real game is played on Kn+1�Gwith vertex set v[n+1]×V(G), while Staller imagines a game on Kn �G

with vertex set u[n] ×V(G). Define a function f : v[n] ×V(G) → u[n] ×V(G) by f : (vi , g) 7→ (ui , g) for every i ∈ [n]

and g ∈ V(G), with the inverse f −1 : (ui , g) 7→ (vi , g). Even though f (vn+1, g) is not formally defined, we will

simply say that it is not a legal move in the imagined game on Kn �G. Additionally, in the real game the label

vn+1 is given to a vertex of Kn+1 such that the underlying G-layer was played last among all G-layers (or not

played at all).

Dominator plays optimally in the real game and Staller plays optimally in the imagined game. Let DR

and DI denote the set of already played vertices in the real and in the imagined game, respectively. Staller’s

strategy is to ensure that until the imagined games ends it holds (i) |DR| = |DI | and (ii) f (N[DR]∩(v[n]×V(G))) ⊆

N[DI ]. If this is true, then the number of moves needed to finish the real game is at least the number of moves

needed in the imagined game.As Staller plays optimally in the imagined gameandDominator plays optimally

in the real game, we have γcg(Kn �G) ≤ γcg(Kn+1�G).

Consider the strategy of Staller. She always replies optimally in the imagined game and tries to copy her

move to the real game. By the property (ii), this move surely dominates new vertices in the real game, but

might not be connected to a previous move in the real game. Let x = si be the optimal move of Staller in

the imagined game. If f −1(x) is a legal move in the real game, then Staller copies it to the real game (clearly

preserving properties (i) and (ii)). But if f −1(x) is not a legal move in the real game, then let y be the move

in the imagined game that first dominated x. Now set x = y and iteratively repeat the above procedure until

Staller reaches a vertex x such that f −1(x) is a legal move in the real game. Clearly, the procedure stops (as

the graph is finite) and properties (i) and (ii) are preserved.
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Let di = (vk , g), k ∈ [n + 1], g ∈ V(G), be an (optimal) move of Dominator in the real game. Staller copies

his move to the imagined game by the following rules.

(D1) If f (di) is a legal move in the imagined game, then Staller imagines Dominator played f (di) = (uk , g)

in the imagined game.

(D2) If f (di) is not a legalmove, but there exists a playable vertex p in Kg
n in the imagined game, then Staller

imagines Dominator played p.

(D3) If neither (D1) nor (D2) can be applied, then Staller imagines Dominator played any legal move in the

imagined game.

All the rules clearly preserve (i) and the rule (D1) also preserves (ii).

If k ∈ [n], but f (di) is not a legal move, then either f (di) dominates no new vertex in the imagined game

or it is not connected to a previously played vertex. In the first case, the property (ii) still holds after Staller

imagines the ith move of Dominator by the rule (D2) or (D3). We now explain that the second case is not

possible. Let x be the already played neighbor of di in the real game. By the property (ii), N[x] and f (N[x] ∩

(v[n] ×V(G))) are both dominated, in particular, di and f (di) are both dominated. Thus a neighbor of f (di)was

already played in the imagined game.

Next, consider the case k = n+1. By the definition of the vertex vn+1, themove di cannot be the first move

of the game. By induction on the number of moves on vn+1G, we will prove that the property (ii) is preserved

and also that if Staller cannot apply (D2) at Dominator’s move di, then the whole set u[n] × N[g] is already

dominated in the imagined game.

Firstly, consider the first move di0 = (vn+1, g0) played on
vn+1G in the real game. Property (ii) is preserved

no matter where Staller imagines his move. Suppose that Staller cannot apply (D2) after the move di0 . If a

vertex was already played in K
g0
n in the imagined game, then Staller cannot apply (D2) only if u[n] × N[g0]

is already dominated (otherwise she could play another move on K
g0
n ). So from now on, suppose also that

no vertex was already played in K
g0
n in the imagined game. As di0 is a legal move of Dominator in the real

game, it is adjacent to an already played vertex x = (vk , g0), k ∈ [n], in the real game. Then x was a move

of Dominator in the real game, N[(uk , g0)] is already dominated in the imagined game, in particular Kg0
n is

already dominated. Thus all vertices in K
g0
n are adjacent to an already played vertex in the imagined game.

As none of them is a legal move, it means that u[n] × N[g0] is already dominated.

Next, consider the case when di is some later move on vn+1G. If Staller can apply (D2), then the property

(ii) is clearly satisfied. Suppose now that Staller cannot apply (D2). If di is adjacent to an already played vertex

in v[n] × {g} in the real game, then the proof goes along the same lines as above for di0 . So the only remaining

case is if di is not adjacent to an already played vertex in v[n] × {g} in the real game. This means it is adjacent

to an already played vertex d′ = (vn+1, g
′), g ≠ g′ ∈ V(G), in the real game and no vertex was played so far in

v[n] × {g} in the real game. We distinguish two cases.

The first case is that di dominates no new vertex in v[n] × {g}. Then this set is already dominated in the

real game and u[n] × {g} is dominated in the imagined game, thus the connectedness condition is satisfied

for every vertex in u[n] × {g}. As Staller cannot apply (D2), u[n] × N[g] is already dominated and property (ii)

holds.

The second case is that di dominates a new vertex in v[n] × {g}. If u[n] × {g} is already dominated in the

imagined game, then Staller could apply rule (D2), unless u[n]×N[g] is already dominated. Otherwise, there is

an undominated vertex in u[n] × {g} in the imagined game. This means that a move (ul , g
′)was played in the

imagined game on u[n]×{g
′} (otherwise u[n]×{g} ⊆ u[n]×N[g

′]would be already dominated). But then Staller

can imagine Dominator plays (ul , g) in the imagined game to dominate the undominated vertex in u[n] × {g},

hence applying (D2).
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6 A lower bound

In [13] an upper bound but no lower bound is given on γcg(G� Kn). To give (general) lower bounds on

γcg(G�H) appears more difficult than giving upper bounds. An intuitive reason for this is the intrinsic

structure of the Cartesian product that, for instance, makes a possible proof of the lower bound on the

domination number of G�H as suggested by Vizing a notorious open problem [22]. Nonetheless, we can

give the following general lower bound.

Theorem 6.1. If G and H are connected graphs on at least two vertices, then

γcg(G�H) ≥

{

2γc(G); n(H) = 2,

2γc(G) + 1; n(H) ≥ 3.

Proof. The vertices of V(G�H) will be denoted as {(g, h); g ∈ G, h ∈ H}. Let Ai (resp. A
′

i) denote the set

of all g ∈ G such that at least one vertex in the layer gH has been played within moves d1, s1, . . . , di (resp.

d1, s1, . . . , di , si). Let Bi ⊆ Ai be the smallest connected subset of Ai that dominates N[Ai]. We similarly

define B′

i ⊆ A′

i. Note that at each step (and at the end of the game) it holds |Ai| ≥ |Bi| and |A′

i| ≥ |B′

i|.

Staller’s strategy is to play si on a vertex above Bi, meaning that si ∈ Bi ×V(H). If this is not possible, she

plays any legal move. We prove that this strategy assures that after each move of Staller it holds i ≥ |B′

i|.

As n(H) ≥ 2, Staller can make her first move in the same H-layer where Dominator played, thus 1 ≥ |B′

1|.

Suppose the property holds for the first i −1moves of Staller and consider the situation after Dominator’s ith

move, say di = (g, h). We now distinguish two cases.

1. The vertex di newly dominates only vertices above Ai (i.e. di ∈ Ai × V(H)).

In this case, g is not added to Bi, so Bi = B′

i−1. No matter where Staller replies, we have |Bi| ≤ |B′

i| ≤

|Bi| + 1 = |B′

i−1| + 1. But then i − 1 ≥ |B′

i−1| ≥ |B′

i| − 1, which implies i ≥ |B′

i|.

2. The vertex di dominates at least one vertex not above Ai, say a vertex (g
′, h).

(a) B′

i−1 dominates N[Ai].

In this case Bi = B′

i−1 and i ≥ |B′

i| as in the previous case.

(b) B′

i−1 does not dominate N[Ai].

This means that at least the vertex g′ ∈ N[Ai] is not dominated by B′

i−1, so no vertex in
g′H,

except for (g′, h), is dominated after Dominator’s ith move. We have Bi = B′

i−1 ∪ {g} and di
is the only already played vertex in gH. As n(H) ≥ 2, Staller can reply in the same H-layer to

newly dominate a vertex in g′H. Thus |B′

i| = |Bi| = |B′

i−1| + 1 ≤ (i − 1) + 1 = i.

If Dominator is the one who finishes the game in his jth move, then his last move is not as in the case

2.(b) above (otherwise Staller has a legal reply and the game is not over). Thus j − 1 ≥ |B′

j−1| = |Bj| ≥ γc(G),

which means j ≥ γc(G) + 1. Hence the number of moves is at least j + (j − 1) ≥ 2γc(G) + 1.

On the other hand, if Staller ends the game with her jth move, then her strategy assures that j ≥ |B′

j| ≥

γc(G), thus the number of moves is at least 2γc(G). This completes the proof in the case n(H) = 2.

If n(H) ≥ 3, consider again the situation where Staller ended the game. We distinguish two cases. If the

last vertex was added to the set B′

j not in the last two moves of the game but earlier, then clearly the number

of moves is greater than 2γc(G)+1. Otherwise, in the last two steps, one of the players added the last vertex to

the set B′

j. If the move dj added the last vertex to B
′

j = Bj, then this situation is as in case 2.(b). Thus after the

moves dj , sj, at most 2 < n(H) vertices in the layer g
′

H are dominated. But then the game is not yet finished

and at least one more move is needed. On the other hand, if the move sj added a vertex to B′

j ≠ Bj (and it

follows from the above cases that this can only occur if Dominator did not add a vertex to Bj), then in the

newly dominated H-layer only 1 < n(H) vertex is dominated, hence at least one more move is needed. It

follows that if n(H) ≥ 3, the game ends after at least 2γc(G) + 1moves.

If G and H are graphs of order at least 3, then Theorem 6.1 can be rephrased as follows:

γcg(G�H) ≥ max{2γc(G), 2γc(H)} + 1 .
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Particular examples on which the bound of Theorem 6.1 is sharp are P3� P3, C3� K2, and C3� C3. The

bound is also sharp for Pm � K2 and Pm � K3, m ≥ 4 [13, Theorem 7], and for Circular ladders Cm � K2, m ≥

4 [20, Theorem 5.3]. Using similar reasoning as in the proof of [13, Theorem 7], we obtain another equality

case

γcg(Cm � K3) =

{

3; m = 3,

2m − 3; m ≥ 4.

7 Concluding remarks

As far as we can recall, the (total) domination game was studied on the Cartesian product only in [1], where

a connection with Vizing’s conjecture was established and a lower bound in terms of 2-packings proved;

in [23]where Cartesianproducts of complete graphswere investigated; and in [24],where (with a considerable

effort) the total domination game critical graphs were characterized among the products K2� Cn. Relating

this small number of known results to the waste bibliography on the (total) domination game indicates that

the game is intrinsically difficult on the Cartesian product. On the other hand, the results from this paper as

well as from [13, 20] demonstrate that on Cartesian products it is somehow easier to investigate the connected

domination game. An intuitive reason for this could be that the players have more restrictive possibilities for

theirmoves than in the standard game. This intuitiondoes not hold in generalwhen comparing the connected

domination gamewith the domination game. For instance and as already noted earlier, the domination game

admits Continuation Principle while the connected domination game does not.

The results of this paper lead to several open problems, we list some of them.

Problem 7.1. Find additional infinite families of graphs which attain the upper bound of Theorem 2.1.

In view of Theorems 4.1 and 4.2 we pose:

Problem 7.2. Determine γcg(Pn � Pm), γcg(Pn � Cm), and γcg(Cn � Cm).

For Theorem 5.1 we strongly feel that the condition 4∆ + α is replaceable with some smaller value. More

precisely:

Problem 7.3. Does there exist a constant c ∈ R
+, such that Theorem 5.1 remains valid provided that 4∆ + α is

replaced with c∆?

If the answer is positive for Problem 7.3, onemay be interested in finding the smallest coefficient c = c(G) over

the class G of all connected graphs or over any specified subclass of it. In view of the monotonicity stated in

Theorem 5.2, this question can be formulated as follows.

Problem 7.4. Given a graph class G that does not contain disconnected graphs, determine the constant

c(G) = sup
G∈G

min

{

k

∆(G)
: γcg(G� Kk) = 2n(G) − 1, k ∈ Z

+

}

.

For the lower bound of Theorem 6.1 we do not know many sharpness examples, hence we also pose:

Problem 7.5. Do there exist families of graphs for which the lower bound of Theorem 6.1 is sharp and none of

the factors is K2 or K3?

Finally, in this paper we have focused on the D-game played on Cartesian products. It seems likewise

interesting to investigate the S-game on Cartesian products.
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