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Abstract subregions within the object region. (3) 2D regions com-
prising a subimage occupied by an object have certain pho-
This paper proposes a new object representation, tometric and geometric properties. Most prior work on 2D
called Connected Segmentation Tree (CST), which capturesmage/object representation uses only (3), or a combinatio
canonical characteristics of the object in terms of the pho- of either (1)+(3) or (2)+(3). This paper proposes an object
tometric, geometric, and spatial adjacency and contain- representation that simultaneously captures all threecisp
ment properties of its constituent image regions. CST is of image structure, namely, (1)+(2)+(3), and demonstrates
obtained by augmenting the object’s segmentation tree (ST)he advantages of this more comprehensive object represen-
with inter-region neighbor links, in addition to their recu  tation over the existing approaches in category modeling
sive embedding structure already present in ST. This makegind recognition.

CST a hierarchy of region adjacency graphs. A region’s  Specifically, we extend the segmentation tree (ST) repre-
neighbors are computed using an extension to regions of thesentation, used previously in [19, 3], which models (2)+(3)
Voronoi diagram for point patterns. Unsupervised learning of regions that occur in a multiscale segmentation of im-
of the CST model of a category is formulated as match- ages, by representing regions as nodes and their embedded
ing the CST graph representations of unlabeled training regions as the node’s children. Like other strictly hierar-
images, and fusing their maximally matching subgraphs. chical representations, ST can only help one infer some as-
A new learning algorithm is proposed that optimizes the pects of (1) from the information explicitly stored in it via
model structure byimultaneouslysearching for both the (2, 3), e.g., the centroid locations and orientations of sub
most salient nodes (regions) and the most salient edgesegions. However, ST cannot distinguish many different
(containment and neighbor relationships of regions) asros ways in which the same set of subregions may be spatially
the image graphs. Matching of the category model to the distributed within the parent region, giving rise to signif
CST of a new image results in simultaneous detection, segicantly different visual appearances (Fig. 1a), while tthei
mentation and recognition of all occurrences of the cate- properties (2,3) remain fixed. Consequently, STs for many
gory, and a semantic explanation of these results. visually distinct objects are identical. The extended nhode
we propose in this paper addresses this problem by includ-
ing new information about (1) — namely, information about
1. Introduction 2D spatial adjacency among the regions — while retaining
the information about their recursive embedding structure
Physical objects in 3D world are finite and cohesive, already present in ST. The new model augments ST with
having characteristic photometric and geometric proesrti  region adjacency graphs, one for the children of each ST
such as contrast, size, and shape. They also possess charawde. A neighbor edge is added between two sibling nodes
teristic visual structure which may be hierarchical, raflec in ST if the corresponding two regions are neighbors in
ing the containment and spatial layout of structure of the the image. This transforms ST into a graph, consisting of
matter comprising them. Finally, they occupy distinct po- two distinct sets of edges — one representing the original,
sitions in space. Real world images are 2D projections of parent-child hierarchy, and the other, consisting of klter
real world objects, giving rise to 2D objects in images. The links, representing the newly added neighbor relatiorship
images also exhibit a structure that mimics the real world (Fig. 1). The neighbor relationships between any nonsi-
structure: (1) The 2D regions occur in a certain spatial con- bling nodes in CST can be easily retrieved by examining
figuration, or spatial layout. (2) The hierarchical struetu  the neighbor relations of their ancestor nodes. To high-
of 3D, physical objects appears as recursive embedding oflight the presence of the complementary, neighbor informa-
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tion modifying the segmentation tree, the new representa-(1)+(3). While the literature discusses whether (1)+(3) or
tion is referred to as connected segmentation tree (CST),(2)+(3) is more important for modeling objects, we present
even though it is strictly a graph. Both nodes and edges ofthe first empirical evaluation of advantages of jointly mod-
CST have attributes, i.e., they are weighted, where the nodeeling (1)+(2)+(3) vs. modeling either (1)+(3) or (2)+(3).
(edge) weight is defined in terms of properties of the cor- By adding (1) to aspects (2) and (3) of the image
responding region (spatial relationship between regions) structure already captured by ST, CSTs either retain or
Thus, CST generalizes ST to represent images as a hierarstrengthen the following desired characteristics of aateg
chy of region adjacency graphs. As multiscale regions mayrecognition based on them: (I) Efficient training under vary
be viewed as a basic vocabulary of object categories, theing degrees of supervision, including unsupervised gtin
CST may be seen as a basis for defining general purposend on training sets of sizes very small to arbitrarily large
image syntax, which can serve as an intermediate stage tdll) Providing for both object recognition and segmentatio
isolate and simplify inference of image semantics. thatis invariantto translation, in-plane rotation, olbgic-

Since different spatial distributions of the same set of ulation, partial occlusion, background clutter, and aaiart
regions result in significantly different 2D objects, model d€gree of scale changes; and (lIf) Providing for a seman-
ing the region adjacency distribution captured in property tlc_explanauon of object rgcognmon in terms_ of the leatne
(1) above is important. However, formalizing this distribu  ©PIect structure captured in the representation.
tion is difficult, in part, because there is not even a clear ~GIV€N a set of fraining images, the three main steps of
intuitive notion of neighbors among regions. For exam- the CST based approach to object learning and recognition
ple, it is not clear which of the many compact regions in '€ |Ilgstrated in Fig. 1b. Stgp 1:_A CST is obtained for
Fig. 1a should be called neighbors. Most prior work consid- €ach image. Step 2: The training images need not all con-
ers only contiguous regions that share borders as neighbord@n €xamples of the unspecified category(ies) contained in
As the second major contribution of this paper, we proposethe training s_et which we want to _Iearn. The_ category_oc_cur-
an approach to defining a region’s neighbors, as well as the’@nces are discovered by searching for subimages within the
strength of their neighborliness. Specifically, we gerizeal training images that are more similar to gach othqr Wlth re-
the Voronoi diagram, conventionally used for point patsern ~ SPeCt to (1)+(2)+(3) than to any other objects. This is done
to define region neighbors. Our generalized Voronoi dia- Y matching CSTs, and finding their common subgraphs.
gram partitions an image into polygons, each containing aEach _set of matched subgraphs represents a!l occurrences of
region, representing its area of influence around it. Region On€ discovered category. The subgraphs within each such
having neighboring polygons define simple neighbors, and S€t aré then fu§ed into a single graph-union wh|ch_const|—
the polygon properties determine their neighborlinesss Th  tutes the canomcal mo_dgl of the category. Step 3: Given the
definition has yielded perceptually valid neighbors in most ST of @ new image, it is matched with the learned model
cases in our informal evaluation (not presented in this pa-{© Simultaneously detect, recognize and segment all cate-
per) on a large collection of image regions. The neighbors 90Ty occurrences in the image. This matching also identi-

and the strengths of their neighborliness are encoded by latfi€S object parts along with their containment and neighbor
eral links and associated weights in CST. relationships present, which can be used as an explanation

of why each object is recognized. These steps parallel the
corresponding steps that would be followed if an ST were

based alaorithm for | . b dqf used as in [19]; however, CST based processing involves
ased algorithm for learning STs [19, 3] cannot be use Orcyclic graphs instead of trees which significantly changes

CSTs, because a clique is defined only for graphs with un-yo 1 a4,re and complexity of the associated algorithms.
weighted edges. We resolve this by treating the weighted g 4o 5 reviews prior work; Sections 3 and 4 describe

edges in CST as a new set of_weight_ed vert@ces, OIiSjOintSteps 1 and 2; and Sec. 5 presents experimental evaluation.
from the set of nodes representing regions. Given the CST

representations of training images, our new algorithm dy- 2. Prior Work and Our Contributions

namically optimizes the model structure by simultaneously

searching for nodes (regions) and edges (neighbor refation  There is a wide agreement in the literature that modeling
ships) with the highest weights across the images. The re-the spatial information along with (3) (i.e., photometnila
sulting model may, at one extreme, degenerate into a pla-geometric properties) of regions is beneficial. Howevéy, di
nar graph, encoding only the region adjacency, or at an-ferent approaches advocate different representatiorsof t
other extreme, into a strict tree, encoding only the regarsi  spatial information. Methods that account only for (1).(i.e
embedding of regions. Consequently, CSTs, due to theirobject’s spatial layout) and (3) simplify the object’s inte
richer coverage of object structure, are expected to morerior structure to a flat layout of regions, and compensate for
accurately model a broader variety of 2D categories thanthe missing information about (2) (i.e., containment or eom
the existing approaches based on capturing either (2)+(3) o positionality) by developing complex models of (3). This

As the third major contribution of this paper, we pro-
pose a new algorithm for learning CSTs. The max-clique
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(a) STsvs. CSTs (b) Block-diagram of our approach using the actual resultsuo algorithms

Figure 1.(a) Segmentation trees (STs), like other strict hierarchicadlebs, do not directly encode the spatial layout of partshbawe to
infer this from the intrinsic part properties explicitlyosed in STs, e.g., part orientation and centroid locatidatire to the object. Parts

of objects A and B have the same centroid locations and atiens. Therefore, the structure of two STs representifgcth A and B

is identical. In contrast, the connected segmentation ({t&T) adds lateral edges to ST that link neighboring palniss significantly
reducing the modeling ambiguity about their spatial laydaotleed, the two CSTs representing objects A and B differeiighmbor links
marked bold(b) Our approach: Training images containing faces are reptegéy CSTs which capture the recursive containment (black
edges) and neighbor relationships (red edges) of regiomslaBcommon subgraphs of the CSTs (faces), are regisarddused into the
category modelj. CST of a new image is matched wi¢hto simultaneously detect, recognize, segment, and exfdaaoccurrences.
“Explanation” refers to the ability to recursively backteathe results of recognition to the recognition of constitufacial parts (which
objects in their own right) and their spatial relationships

usually leads to infeasible learning and inference, faycin natural properties of real-world objects, such as spatial ¢
these approaches to resort to restrictive assumptiong abothesiveness and relative locations. The exact learning of
(). For example, the constellation [10] and k-fan [8] mod- CSTs is computationally feasible. The requirement for un-
els have a pre-specified, small number of parts, configuredsupervised learning is that the training images should con-
in a pre-specified planar-graph structure. The hierarthica tain frequent occurrences of a category, although not reces
models of, e.g., [4, 13, 11, 18, 15, 9] capture only (1)+(3), sarily in every training image.

by allowing an object part to appear alternatively as a set of

subparts. The hierarchy underlying these models is usually3 Erom Image to CST

constrained for tractability, e.g., by assuming a fixed num-

ber of object parts, depth, or branching factor. The (1)+(3) This section presents Step 1 of our approach (Sec. 1).
based model of [6], and (2)+(3) based model of [19, 3] relax The CST is derived from the ST of the image. ST captures
the restrictive assumptions of their peer models; however,the recursive embedding of smaller regions within larger
either approach misses to jointly encode (1) and (2), i.e.,ones, obtained from the multiscale segmentation algorithm
the complete spatial information about object’s structure  of [2]. In ST, the total number of nodes=60), branching
p-factor, and depth=10) are all automatically determined

ject into parts while retaining lateral relations among the PY the image at hand. The ST is transformed into CST

parts themselves. For example, the And-Or graph [7] speci-by introducing lateral edges connecting neighboringsili

fies a context sensitive grammar that uses both Markov treg'des under every node in ST. Below, we first present our
and Markov random fields to arrange user-specified tem-&/gorithm for the computation of region neighbors and their

plates. Also, the model used in [14] captures the object- strengths, and then review the region properties assdciate

characteristic blobs and their containment, and subse-With nodes in CST which completes the representation.

guently their pairwise contiguity relationships. In cast, ] )
our definition of neighbors allows even non-contiguous re- 3-1. Neighbors of a Region

Only a few approaches recursively decompose an o

gions as neighbors, and we@multaneouslydentify object- While many approaches have been proposed to de-
characteristic regions, and their containment and neighbo ¢, neighbors of points in a point pattern [1], the defi-
relationships. nition of neighbors for nonpoint objects has received lit-

CSTs inherit a number of attractive properties from STs tle attention in the literature. To define a region’s neigh-
[19, 3]. Since region boundaries coincide with object con- bors as well as the strength of their neighborliness, we
tours, the use of CST results in simultaneous object recog-generalize the Voronoi diagram for point patterns to re-
nition and segmentation. The use of regions and their twogions. The Voronoi diagram of a point patterri asso-
types of relationships by CST helps efficiently model the ciates with each poinfPe.” a cell Vp which is the re-
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gion closer toP than to any other poinQc., Vp =
{T:'TeR™,VQe.”,d(Q,T)>d(P,T)}. Thus, for any non-
degenerate distribution of points, the Voronoi diagrars tes
sellates the space into a set of cells. For the 2D case here,
the cells belonging to the interior a# are convex poly-
gons, each containing exactly one of the points in the pat-
tern. The points at the boundary of have incomplete
cells, extending to infinity in the directions of no neigh&or
The intuition underlying our extension of the Voronoi di-
agram to regions is that regions are exposed to each other :
through their nearby boundary segments. If parts of the Figure .2. A generalized. Voronoi polygon .(red) is the union of
borders of two regions are visible to and near each other,vor_ono' polygons of 6.‘" p|xels_along the region's boundat_uju(a);
and are sufficiently far from other region boundaries, then regions are called neighbors if their generahzeq Vororuﬂ)ygpns
the two regions are called neighbors. Thus, the exposur touch. Itis correctly captured that the two relatively eaegions

A ) ] &hat can “see” each other only through a narrow gap C-D are not
of one region to another here means more than just line-of-peighhors, and that the two more distant regions are neighbo

sight connectivity. Neighbors are derived from the VOronoi- since they share the Voronoi segment AB. If the two smallaregi
relationships among the individual pixels along the region that are not neighbors come closer to each other along ségmen
boundaries. Given a set of regions, we first compute theCD, the neighborliness of the two elongated regions deeseas
point based Voronoi tessellation for all pixels along the re
gions’ boundaries (Fig. 2). Then, for each regignwe . . .
find the union of the Voronoi polygons of pixels along its 4. Learning Object Categories

boundary, thus obtaining a generalized Voronoi polygon of  This section presents Step 2 of our approach mentioned
the regionV, that defines the area of influencewfn the in Sec. 1 that discovers category occurrences in the train-
image. Generalized here means that the line segments conng setH={#,, ...k}, and then learns their models. To

necting the vertices of, are a sequence of short line seg- this end, the common subgraphs of all pairs of CSTs

ments, in general, not aligned with each other, thus resplti (1, 1/)eH xH are found as described below.
in a jagged edge between the vertices. Any such sequence

of line segments between two vertices)yf represents a 4.1, Matching CSTs
hared bord ith ther adj t pol , 6/g. be- . .
=nared border with another acjacent poygon, €:g.oe We here present a new matching algorithm that general-

longing to regiony’, which means that andv’ are neigh- . )
bors (Figs. 2). The relative degrees of exposure of a region'_Zes the max-cllque approaches [.1.9’ 12, 2.0’ 16]. Our algo-
ithm achieves robustness by pairing regions whose prop-

to all its neighbors are used as measures of the strengthg . ! .
of its neighborliness to these neighbors. The neighborli- erties (1)+(2)*+(3) (defined in Sec. 1) match, and the same

ness is in general asymmetric, by definition. Specifically, hplds for their nelghbors, and these “(VO cond|t|_ons recur-
given thatv andv’ are neighbors, the neighborliness seen sively hold for t.he|r embeQded subregions. I_n view of the
by v is defined as the length of their shared Voronoi edge lateral connections to neighbors, our matching is context
divided by the perimeter oF,. A value closer to 1 indi- sensitive, unlike is the case in [19] which involves con-
cates a stronger neighborhood relationship than thatrclose & free matching. Like [19], we also account for splits

to 0. The Voronoi diagram can be computed very efficiently W'tht'n rteg|onts_,, or, the pppoit?r,] rr;er(ﬁgrﬁ between Ic(;w—
(for n points, complexity is0(n log n)). contrast, contiguous regions, both of which may occur due

to changes, e.g., in illumination, viewpoint, and objedt or
entation as images are being acquired. This may cause a
node in one CST to split into multiple nodes at multiple
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3.2. Characterization of Nodes and Edges in CST

As for STs in [3], a vector of region propertigs,, e.g., levels. These potential structural changes of CSTs across
contrast, area, perimeter, etc., is associated with eatdwno  the images are addressed by considering matches of all de-
in CST, where the properties are specified relativedpar- scendants under a node, even when its direct children cannot

ent, to allow scale and rotation-in-plane invariance. Thus find a good match. Fig. 3illustrates our matching algorithm.
images are represented by CShs;(V, E, ¢, ¢), whereV Given two CSTs, they are first transformed into unweighted
andF are the sets of nodes and edges,@amahd¢ are func- CSTs, and then matched. Before we can present the algo-
tions that assignp, to veV, and weightsp, to e E. For rithm, we need the following five definitions.
ascendant-descendant edgeés<{0, 1} indicates the ab-  Def. 1. Unweighted CS[Th, is obtained from CSTh, by
sence/presence of region embedding. For a directed laterainserting between any two connected nodgs»€h a new
edge from node to nodev’, ¢.€0, 1] equals the strength  nodew, deleting the original edge=(v1, v2), and associat-

of their neighbor relationship seen by ing weighte, with w, 1, =¢.. h preserves the original con-
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nectivity among nodes in, replacing the weighted edges
(v1, v2) In h with unweighted pathévy, w, v2) (Fig. 3).

Def. 2. Saliencyr, of nodewv in h is defined as follows.
If v is a node inserted according to Def. 1, therfy,,

which is the weight of the edge between the corresponding

regions inh. If v is the original node (i.e., region) fror
thenr, 2|4, ]|1.

Def. 3. (Consistency ~") Let h and /' be unweighted
CSTs, and nodes,, voch and v}, vheh’. (v1,vs) is con-
sistent with(v, v5), (v1, v2)~(v], v4), if: (i) v; andv) are
exclusively regions, or containment relationship, or heig
bor relationship, in the original CSTsandh’, and the same
holds forv, andvj; AND (ii) there is a directed path be-
tweenv; andvs, and the same holds fef andvs.

Def. 4.  (Consistent subgraph isomorphisniet
h=(V,E,v) and h'=(V', E’,4’) be unweighted CSTs,
and f:U—U’ be a bijection between two subsets of nodes
UCV andU’CV’in h andk’. f is consistent subgraph iso-
morphism if for any(vl,vg)eU connected with a directed
path hOldS(Ul , ’UQ)N(f(’Ul), f(’UQ))

Def. 5. (Matching algorithm Given two unweighted CSTs,
h and 7/, the matching algorithm finds a consistent sub-
graph isomorphismyf, which maximizes their similarity
measures;;,, defined as

S = m};}x Z(v,v’)ef(2 min(ry, 7y ) — max(ry, 1y )+1).

1)
From (1), the algorithm seeks consistent matches amon
both regions and their relationships whose saliencies ar

is small. To satisfy the consistency constraints (Def.I18), t
algorithm matches regions with regions, and separately re
gion relationships with corresponding relationships, le/hi
preserving the original topology of and »’. This is
done by constructing an association graph(Va, E 4, s),
whereV,=V xV" is the set of node pairg, v’) from &
and 7/, representing all possible region matches or rela-
tionship matches.FE 4 is the set of edges connecting only
consistent vertice& y={(a, b):a£beVy4, a~b}. Note that
while constructingA, we account for structural changes in
CSTs, sincell4 connects all descendants under a visited
node, and thus allows their matching: assigns weight
Sy =2min(r,, r,)— max(r,, 7y )+1 to each(v, v')eVy.
Given A, the next theorem fully specifies the algorithm.
Theorem 1 The maximum similarity, consistent, subgraph
isomorphismf betweerk and/’ is equivalent to the maxi-
mum weight clique ofA.

Proof: Follows directly from the construction of. m

To compute the maximum weight clique df, we use
the well-known replicator dynamics approach of [16]. The
resulting maximally matching subgraphs s and g’'ch’

$
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Figure 3. Matching algorithm: edges of CST are represenyed b
new nodes in the resulting unweighted CST, and then regiods a
their relations that preserve the original topology areamed.

serted nodes with weighted, directed edges. Complexity of
matching isO((|V |+|E|)?), and a MATLAB implementa-
tion takes about 10s on a 2.8GHz, 2GB RAM PC for two
CSTs with approximately 50 nodes each.

4.2. From Category Instances to their Model

To extract category occurrences from the trainingtset
we match all pairs of CSTé&h, h')eH xH using the algo-
rithm of Sec. 4.1. Specifically, we match all subgraphs
and ), rooted at regionsv, v’')ehxh/, and thus compute
the similarity measuré,,,/, given by (1), of every region
air (v,v")eHxH. SinceS measures the similarity of re-
ions in terms of (1)+(2)+(3), th& values of matches be-
onging to a category are expected to be more similar than
the S values of matches belonging to different categories.
Therefore, categories and their occurrences can be discov-
“ered by clustering region paifs, v) €H x H with respect to
their associated,, values. The choice of a suitable clus-
tering algorithm for this purpose depends on the degree of
supervision available in training. In our experiments, we
use the standard N-cuts clustering algorithm, since ttaé tot
number of categories presenthihis known. In case this in-
formation is unknown, one can use any other algorithm that
does not require the number of clusters as an input parame-
ter, but requires the level of sensitivity to inter-clustee.,
inter-category) differences. Each cluster of matching sub
graphs of CSTsG={¢1,...,gn}, represents a discovered
category, defined by the cluster properties.

The clusterG may contain complete views of category
instances, but it may also contain partial views, because:
some parts of the category are occluded, or because some
of the regions split or merge due to segmentation instabili-
ties, causing structural changes in CSTs (e.g., due tessplit
or mergers of low-contrast regions under different lightin
or viewing conditions). A minimum-size model, that rep-
resents the entire category and with which both entire and

can be easily transformed into the corresponding weightedpartial object views can be registered, is the union of ggaph

subgraphg Ch andg’Ch’, by replacing the previously in-

in G. To find the union ofG, G=(Vg, Eg, ¥, ¢), and thus
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derive the category model, we use an approach similar to
that presented in [19]. The main difference is that their al- [0 L
gorithm learns an unweighted, acyclic tree-union, whereas SESSSEE
our graph-union is cyclic and contains weighted edges cap-#&: |
turing the strength of both containment and neighbor rela- [
tionships among nodes ii#. We construct; sequentially.
Namely, in each iteration, G(™) is constructed by matching | Ehellai shid
G(7=1 with a new graplyeG, and then by adding and ap-  Figure 4. Samples from Hoofed Animals (left) and LabelMe
propriately connecting the unmatched node§t ). For  (right). Segmentation results of CST are overlaid on theiioa.
matchingg andG("—1), we use the algorithm of Sec. 4.1. Different colors denote recognized categories. CST sstuis
In the resultingg(f), multiple parent nodes may share the resolves small differences between the categories shelegoaits.
same children, as illustrated in Fig. 1.

As in [3], the vectorap, associated with nodesG are
defined asy,£mediar{,} of all nodesv’€G that got M images from the corresponding dataset. To recognize
matched withveG. Similarly, for all edgeg in G, we define  and segment any category occurrences in a test image, the
p.=mediar{ ¢, } of all edgese’cG that got matched with  learned category model is matched with CST of the im-
e. The result of learning are graph-union models that cap-age. The matched subtrees (i.e., detections) whose simi-
ture the canonical properties (1)+(2)+(3) of regions defini  larity measure is larger than a threshold are adjudged as de-

each category present in the training set. tected objects. Results shown in tables and figures are ob-
tained for the threshold that yields equal error rate. We use
5. Results the following definitions of detection (DE), and segmenta-

tion (SE) errors. LeD denote the area that a detection cov-

Experimental evaluation presented in this section ers in the test image, ar@ denote the ground-truth object
demonstrates that the proposed CST model possesses the

D XOR(D,G L
desired characteristics (1), (1), and (l11), stated in Seand area. Th‘?F" D.E Dgg’ and SE%' A deteqt_|on ISa
o . : false positive if DE<0.5, otherwise it is a true positive (TP).

quantifies the performance gains of modeling (1)+(2)+(3) Recognition is evaluated only on TP’s by visual inspection
vs. (2)+(3) and (1)+(3) for the tasks of object recognition ’
and segmentation. We consider 14 categories from fourQualitative evaluation — Segmentation:igs. 4-5 demon-
datasets: 435 faces, 800 motorbikes, 800 airplanes, 526trate high accuracy of simultaneous object detection and
cars (rear) from Caltech-101; 328 Weizmann horses; 15545€gmentation in images from LabelMe and Hoofed Ani-
images queried from LabelMe to contain cars, trees, andMals datasets, usiny/=50 training images. Each TP in
buildings together; and 200 images with 715 occurrencesthe figuresis correctly recognized. CSTs outperform STs in
of cows, horses, sheep, goats, camels, and deer from UIUCPOth object detection and segmentation, especially inscase
Hoofed Animals dataset. Caltech-101 images contain only©f partial occlusion (e.g., cars and cows in Fig. 5), and for
a single, prominently featured object from the category, ex objects defined rather as a region spatial layout than con-
cept for images of cars (rear) containing multiple, patial ta_inment (e.g.,_spottgd cows in Fig. 5). In these cases, mod-
occluded cars appearing at different scales, with low con-€ling of the region adjacency by CSTs proves advantageous.
trast against textured background. The Weizmann dataseBegmentation is good even in cases when object boundaries
contains sideviews of walking/galloping horses of differ- are jagged and blurred (e.g., trees in Fig. 4), and when ob-
ent breeds, colors and textures, with different objectarti Jects from the same category occlude each other, forming a
ulations in their natural (cluttered) habitat. LabelMe is a complex region topology with low-intensity contrasts (e.g
more difficult collection of real-world images which comtai ~ €ars in Fig. 4). Objects that are not detected, for the most
many other object categories along with the queried ones,Part, have low intensity contrasts with the surround, and
captured under different lighting conditions, and at vagyi ~ thus do not form category-characteristic subgraphs within
scales. The Hoofed Animals dataset presents the mentione§STs that can be matched with the category model.
challenges, and has higher complexity as it contains multi- Qualitative evaluation — Model: Fig. 6 illustrates the
ple instances of multiple very similar animal categoriess pe modelG obtained for the category horses, learned on six,
image, requiring high inter-category resolvability. randomly selected imagé3 from the Weizmann dataset.

The Caltech-101 and Weizmann categories are learnedNodesv in G, depicted as rectangles, contain regions from
one category at a time on the training set that consists ofD that got matched withv during learning. As can be
M, randomly selected examples showing the category, andseen, the structure ¢fcorrectly captures the recursive con-
M, >0 images from the background category in Caltech- tainment and neighbor relations of regions occupied by the
101 M=M,+M,). The LabelMe and Hoofed Animals horses inD. For example, nodesead neck andmaneare
categories are all learned together by randomly selectingfound to be children of nhodeead&neck and they are all
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the occluding patch covering 20% of the image. Invariance

o J o , J to in-plane rotation is tested by randomly rotating test im-

ﬁ:ﬂ & ages, as illustrated in Fig. 1b. Performance on these tbtate

sy images is the same as the one presented in Fig. 7. Mea-
suring the strength of neighborliness using the geneidlize
Voronoi diagram improves performance over the case when
s e the weights of links in CST are set to take only values 1
ém K7 o v or 0, referred to as CST-unweight. CST increases the area

under the RPC of CST-unweight %3 + 0.3%. Fig. 7
(right) shows recognition accuracy of CST and ST. A small
(a) original image (b) STs (c) CSTs increase inM,, does not downgrade the accuracy. &,

Figure 5. CSTs outperform STs in both detection and segitienta ~ becomes larger, objects belonging to other categories star
on samples from Hoofed Animals (top) and LabelMe (bottom). appearing more frequently, and thus get learned, making
Undetected image parts are masked out. the training set inappropriate. Increasihg, yields smaller
recognition error. CST outperforms ST in recognition, and
longer maintains high accuracy with the increas@®6f. In
general, the number of nodes in the model quickly reaches
saturation as new positive examples are added to the train-
ing set, and continues to very slowly increase, in part, due
to chance repetitions of background regions.

Table 1 summarizes detection recall, and segmentation
and recognition errors obtained for the equal error rates on
LabelMe and Hoofed Animals datasets. For Hoofed Ani-
mals, CST outperforms ST in detection recall by 7.5%, seg-
mentation by 10.7%, and recognition by 8.6%. For compar-
ison, we obtained SE6.5% on a relatively simple UIUC
(multiscale) car dataset, using the same set-up as in [11],
while their result is SE7.9%. The other hierarchical ap-
proaches cited here use non-benchmark datasets, or report
a single retrieval result for the entire Caltech-101, belyon
the focus of this paper. Non-hierarchical approaches that
model objects using image segments obtained at only one
pre-selected scale, report the following state-of-theer
sults: [17] =S E=47% for buildings, ands E=79% for cars
of LabelMe; [21] — SE=7% for Weizmann horses; and [5]

— SE=18.2% for Weizmann horses. In comparison with
these approaches, Table 1 indicates that the CSTs yield bet-
ter, or, in only a few cases, very similar performance. Re-
garding recognition accuracy, Fig. 7 shows that we outper-

identified as neighbors. Also, it is correct thaad&neck ~ form by 1.8 + 0.3% the recognition rate of 94.6% of [5]
andtail are not neighbors. Similar background regions that ©n the four Caltech-101 categories. Other approaches cited
co-occur with horses iB may also be included in the model  here use a different, less demanding recognition evaluatio
(e.g., nodes correspondingfencd. Typically, the percent- based on classﬁylng either the entire images or bounding
age of background nodes out of the total number of modelP0OXes around objects.

nodes is small (3-5%). The presented results demonstrate that our approach is
Quantitative evaluation: Fig. 7 (left) presents the recall- invariant with respect to: (i) translation, in-plane radat
precision curves (RPC) of detection for the Caltech-101 and object articulation, since CST itself is invariant tega
categories using CSTs and STs. Detection performance inchanges; (ii) certain degree of scale changes, since match-
the presence of occlusion is tested by masking out a ran-ng is based on relative properties of regions; (iii) ocias
domly selected rectangular area in the image, and replacin the training and test sets, since graph-union registers t
ing this area with a patch from the background category entire (unoccluded) category structure from partial viefs

of Caltech-101. CST increases the area under the RPC obccurrences in the training set, while subgraphs of visible
ST by 6.5 + 0.3%, and by3.1 + 0.2% in the presence of  object parts in the CST of a test image can still be matched

Figure 6. CST-based model of Weizmann horses.
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LabelMe Trees LabelMe Buildings LabelMe Cars Weizmann Horses

Horses

Cows Deer Sheep Goats Camels

Recall 47.6+6.9 92.6+6.9 67.6+6.9 91.94+5.2 81.24+10.3 78.4+4.2 88.14+6.9 81.24+5.3 78.24+8.6 89.94+7.2
Seg. error 41.6+7.9 34.6+13.4 32.5+8.2 7.2+2.5 15.9+5.3 17.1+£4.6 11.1+£8.4 24.84+7.2 20.148.1 11.5+5.1
Rec. error 19.743.8 11.6+2.9 12.944.8 7.94+4.1 7.84+4.2 6.5+6.2 7.7+3.4 7.84+4.1 12.24+5.4 3.2£3.9

Table 1. Detection recall, segmentation and recognitioorei(in %) using the same number of training and test imagés @7, 21, 5].

Caltech-101: Faces+Planes+Mbikes+Cars Recognition on Caltech-101: 4 categories
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Figure 7 (left) Detection recall-precision curves: “CST-unweight”

(5]

(6]
(7]

(8]

means that edges in CST are not weighted. 20% is the size of a

rectangular occlusion w.r.t. the image si2¢,=10, M,=10. ST
is the method of [19].(right) Recognition accuracy of CST and
ST for the varying ratio of\/,, and M., in the training set.

with the model; (iv) minor depth rotations of objects caus-

ing their shape deformations, because structural ingabil

of CSTs (e.g., due to region splits/mergers) is accounted fo
during matching; and (v) clutter, since clutter regions are

not frequent and thus not learned.

6. Conclusion

(9]

[10]

[11

—_—

[12]

[13]

We have presented what we believe is the first attempt[14]

to jointly learn a canonical model of an object in terms
of photometric and geometric properties, and containment

and neighbor relationships of its parts. As other funda- [15]

mental contributions, the paper proposes: (1) A geneidlize

Voronoi diagram over regions, which is used for finding a [16]

region’s neighbors, and measuring the strength of region
neighborliness; and (2) A new max-clique based algorithm

for matching graphs with weighted edges and nddes.
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