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Connected Shape-Size Pattern Spectra for
Rotation and Scale-Invariant Classification

of Gray-Scale Images
Erik R. Urbach, Student Member, IEEE, Jos B.T.M. Roerdink, Senior Member, IEEE, and

Michael H.F. Wilkinson, Senior Member, IEEE

Abstract—In this paper, we describe a multiscale and multishape morphological method for pattern-based analysis and classification

of gray-scale images using connected operators. Compared with existing methods, which use structuring elements, our method has

three advantages. First, in our method, the time needed for computing pattern spectra does not depend on the number of scales or

shapes used, i.e., the computation time is independent of the dimensions of the pattern spectrum. Second, size and strict shape

attributes can be computed, which we use for the construction of joint 2D shape-size pattern spectra. Third, our method is significantly

less sensitive to noise and is rotation-invariant. Although rotation invariance can also be approximated by methods using structuring

elements at different angles, this tends to be computationally intensive. The classification performance of these methods is discussed

using four image sets: Brodatz, COIL-20, COIL-100, and diatoms. The new method obtains better or equal classification performance

to the best competitor with a 5 to 9-fold speed gain.

Index Terms—Mathematical morphology, connected filters, scale spaces, multiscale analysis, shape filters, rotation-invariance,

diatoms, Brodatz textures, COIL-100 object library.

Ç

1 INTRODUCTION

PATTERN spectra [17], [30] are commonly used tools for
image analysis and classification, which can be com-

puted using a technique from mathematical morphology
[18] known as granulometries [3], [30] (for a review of
granulometries, see [40]). Intuitively, a size granulometry
can be considered as a set of sieves of different grades, each
allowing details of certain size classes to pass. More
formally, a size granulometry consists of an ordered set of
operators, each of which converts an image to a new image
in which features smaller than a particular size are absent.

Granulometries are computed using filters with structur-
ing elements (S.E.) or using connected filters [11], [20], [27],
[28], [33], [41]. Connected filters are shape preserving
because they never introduce new edges in images. Various
algorithms exist to compute pattern spectra efficiently, both
for structural [9], [32], [34], [35], [39] and connectivity-based
methods [3], [19], [20].

Breen and Jones [3] proposed a type of granulometry
based on attribute openings. These allow the use ofmany size
attributes other than width, such as area, length of the
diagonal of the minimum enclosing rectangle, moment of
inertia, etc., to define the “grades” of the morphological
sieves. They also put forward the idea of attribute thinnings
which allow image filtering based on shape, rather than size

attributes. An attribute that depends only on shape informa-
tion is called a strict shape attribute and the corresponding
granulometry a shape granulometry [38]. These the allow
extraction of pattern spectra based on shapes, rather than
sizes of details.

In a preliminary version of this study [37], gray-scale
multivariate pattern spectra computed from connected
operators, notably the joint shape-size pattern spectra, were
discussed together with the subtractive filtering rule for
filtering Max-trees. The time needed to compute pattern
spectra using this method does not depend on the number of
scales or shapes used. The main contributions of the present
paper are: 1) an extensive discussion of the theory behind
rotation-invariant and strict shape attributes and operators,
including new proofs of various theoretical properties, and
2) an extensive comparison of the classification performance
of several variations of our method and existing methods
using structuring elements (S.E. methods), similar to [1], [5],
using four different image sets: Brodatz texture database,
COIL-20, and COIL-100 object databases, and a diatom
database [6]. The new method obtains better or equal
performance to the best competitor with a 5 to 9-fold speed
gain and is considerably less sensitive to noise than any of the
existing methods used here.

In the following section, the theoretical background is
described, which is used to develop the new theory and
proofs of Section 3. The algorithms for computing size and
shape attributes, the computation of our joint shape-size
pattern spectrum, and some existingmethods using structur-
ing elements are discussed in Section 4. The classification
performance and computing time of these S.E. methods are
comparedwith our novel method using experiments on four
image sets in Section 5. The last section is devoted to some
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discussion and conclusions. For easy reference, an appendix
is included which contains a summary of symbols and
notational conventions used in this paper.

2 BACKGROUND

In the following, binary images X and Y are defined as
subsets of the image domain E � IRn or ZZn (usually n ¼ 2),
and gray-scale images are mappings from E to IR or ZZ. The
power set PðEÞ is the set of all subsets of E. As a
convention, operators producing binary images are denoted
here by a capital Greek letter; the corresponding lowercase
letter is used to denote the gray-scale version. When X � E,
we denote by Xx the translation of X over the vector x 2 E.

The theory of granulometries and connected filters is
presented only very briefly here. For more detail, the reader
is referred to [3], [18], [27], [30], [40].

2.1 Size Pattern Spectra

Definition 1. A binary size granulometry is a set of operators
f�rg with r from some totally ordered set � (usually, � � IR

or ZZ) with the following three properties:

�rðXÞ � X; ð1Þ

X � Y ) �rðXÞ � �rðY Þ; ð2Þ

�rð�sðXÞÞ ¼ �maxðr;sÞðXÞ; ð3Þ

for all r; s 2 �.

Since (1) and (2) define �r as antiextensive and increasing,
respectively, and (3) implies idempotence, it can be seen
that size granulometries are sets of openings. General-
ization to the gray-scale case f�rg is straightforward and has
been discussed in, e.g., [21], [22], [40].

Size pattern spectra were introduced by Maragos [17].
Essentially, they are a histogram containing the number of
pixels, or the amount of image detail, over a range of size
classes. If r is the scale parameter of a size granulometry
and X a binary image, the size class of a point x 2 X is the
smallest value of r for which x =2 �rðXÞ. The pattern
spectrum s�ðXÞ obtained by applying the size granulometry
f�rg to a binary image X is defined as

ðs�ðXÞÞðuÞ ¼ �
d�ð�rðXÞÞ

dr

�

�

�

�

r¼u

; ð4Þ

where � denotes some measure, for which the common
LebesguemeasureAðXÞ in IRn will be used here,which is just
the area if n ¼ 2. In the gray-scale case, the pattern spectrum
is usually defined by using the integralAðfÞ (sum of the gray
levels) of f over the image domain as the measure.

In the discrete case, we can compute a pattern spectrum of
a gray-scale image by repeatedly filtering by each �r, in
ascending order of r. After each filter step, the sum of gray
levelsSr of the resulting image�rðfÞ is computed. Thepattern
spectrum value at r is computed by subtracting Sr from Sr� ,
with r� the scale immediately preceding r. In practice, faster
methods for computing pattern spectra can be used [3], [19],
[21], [22], see also Section 4.2. These methods do not apply
each �r separately. However, for methods using structuring
elements in gray-scale, this is usually unavoidable.

2.2 Grains, Flat Zones, and Connected Filters

By a grain of a binary image X, we mean a connected
component of X. The ith grain of X is denoted by CX

i ,
where i runs over some index set IX.

A flat zone LhðfÞ of a gray-scale image f is a connected
component of the level set VhðfÞ ¼ fx 2 EjfðxÞ ¼ hg. At
each gray level, there may be multiple flat zones, which are
denoted by Lk

hðfÞ, with k some index variable. Similarly, a
peak component P k

h ðfÞ, where k runs over some index set Ifh ,
is defined as the kth connected component or grain of the
threshold set T hðfÞ of image f , which is defined as

T hðfÞ ¼ fx 2 EjfðxÞ � hg: ð5Þ

(We will often suppress the image argument f of flat zones
and peak components when no confusion arises.) Connected
filters only merge flat zones, or change their gray level, but
never split nor deform them. This means no new edges are
introduced. More formally, for any image f , the flat zones
define a partition f�ig of the image domain E. A filter � is
connected if the partition f�jg defined by �ðfÞ is always
coarser than f�ig, for any image f [28]. By coarser, we mean
that, for any �i, there exists a �j such that �i � �j [28].

2.3 Attribute Operators

Binary attribute openings and thinnings are based on binary
connected openings. The binary connected opening �xðXÞ of
X at point x 2 E yields the grain (connected component) ofX
containingx ifx 2 X, and ;otherwise. Breen and Jones [3] use
the concept of a nonincreasing criterion T to accept or reject
grains. Formally, a criterion T is a mapping of sets to
Booleans, i.e., T : PðEÞ ! ffalse; trueg. A criterion T is
increasing if the implication (T ðCÞ ) T ðDÞ) holds whenever
C � D.

The trivial thinning �T of a grain C with criterion T is
just the set C if C satisfies T , and the empty set otherwise.
Furthermore, �T ð;Þ ¼ ;.

Definition 2. The binary attribute thinning �T of a set X with
criterion T is given by

�T ðXÞ ¼
[

x2X

�T ð�xðXÞÞ: ð6Þ

Though it was called an attribute thinning in [3], a better
name is perhaps an antiextensive, nonincreasing grain filter
[11]. This, however, is rather cumbersome, so we will stick
to the name attribute thinning. What (6) says is that the
attribute thinning is equivalent to performing a trivial
thinning on all grains in the image, i.e., removing all grains
which do not meet the criterion. Note also that (6) defines a
binary attribute opening when the criterion T is increasing.

Various gray-scale generalizations of these filters are
compared in [16], [27]. An efficient algorithm for computing
these filters based on a so-called Max-tree of flat zones in
the image was put forward in [27]. The filtering is reduced
to different methods of “pruning” this tree structure. In the
following, this algorithm and various thinnings based on
different pruning strategies are discussed.

2.4 The Max-Tree

The Max-tree representation [27] separates the filtering
process into three steps: construction, filtering, and restitu-
tion. It is a tree where the nodes represent sets of flat zones.
The Max-tree node Nk

h consists of the subset of P k
h with gray
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level h. The root node represents the set of pixels belonging
to the background, which is the set of pixels with the lowest
intensity in the image. Each node has a pointer to its parent,
i.e., the nodes corresponding to the components with the
highest intensity are the leaves (see Fig. 1). Conversely, a
tree in which the leaves correspond to the minima is called
a Min-tree and can be used for attribute closings or
thickenings. During the construction phase, the Max-tree
is built from the flat zones of the image.

After this, the tree is processed during the filtering
phase. Based on the attribute value �ðP k

h Þ of a node Nk
h , the

algorithm takes a decision on whether to preserve or to
remove it. This is done by associating a criterion T to the
attribute function � .

Definition 3. We call a criterion T on subsets of E associated
to � when T ðXÞ ¼ �ð�ðXÞÞ with � : IR ! ffalse; trueg for all
X � E.

For example, we often use the criterion T ðCÞ ¼ ð�ðCÞ < rÞ,
where r is a scalar value.

Two classes of strategies exist: 1) pruning strategies,
which remove all descendants of Nk

h if Nk
h is removed, and

2) nonpruning strategies in which the parent pointers
of children of Nk

h are updated to point at the oldest
“surviving” ancestor of Nk

h . If T is nonincreasing, such
as T ðCÞ ¼ ðP ðCÞ < rÞ, where P denotes perimeter, pruning
strategies must either remove nodes which meet T or keep
nodes which do not. Salembier et al. [27] describes four
different rules to filter the tree: the Min, Max, Viterbi, and
Direct rule. The first three are pruning strategies. In addition
to these, we describe a new, nonpruning strategy: the
Subtractive rule. The decisions of these rules are as follows:

. Min. A node Nk
h is removed if �ðP k

h Þ < r or if one of
its ancestors is removed.

. Max. A node Nk
h is removed if �ðP k

h Þ < r and, for all
its children, Nj

h0 , �ðP
j
h0Þ < r holds.

. Viterbi. The removal and preservation of nodes is
considered as an optimization problem. For each leaf
node, the path with the lowest cost to the root node
is taken, where a cost is assigned to each transition.
For details, see [27].

. Direct.AnodeNk
h is removed if �ðP k

h Þ < r; its pixels are
lowered in gray level to the highest ancestor which
meets T , and while its descendants are unaffected.

. Subtractive. As above, but the descendants are
lowered by the same amount as Nk

h itself.

Let fC
T hðfÞ
i g be the set of grains contained in any of the

threshold sets of some digital image f , with T hðfÞ the
threshold set at gray level h 2 fhmin þ 1; hmin þ 2; . . . ; hmaxg,
and, for every fixed h, i is from some index set Ifh . These

grains correspond to the peak components of f , that is,

C
T hðfÞ
i ¼ P i

hðfÞ. Note that, for any two sets X, Y 2 fC
T hðfÞ
i g

either X � Y , Y � X, or X \ Y ¼ ;. Furthermore, let �

denote the characteristic function for a binary image X:

ð�ðXÞÞðxÞ ¼
1 if x 2 X
0 otherwise:

�

We define the subtractive filter formally as follows:

Definition 4. The gray-scale attribute thinning by the
subtractive rule is defined by

�T ðfÞ ¼ hmin þ
X

hmax

h¼hminþ1

X

i2If
h

� �T C
T hðfÞ
i

� �� �

: ð8Þ

What this equation says is that the result �T ðfÞðxÞ of the
attribute thinning at every pixel x can be obtained by

initializing it with a value hmin, considering all gray levels in

turn, and, at each gray level h, adding a value of 1 for every
grain C

T hðfÞ
i which satisfies T and contains x.

Fig. 1 shows the peak components of a 1D gray-scale

image, their (fictitious) attribute values, and the corre-

sponding Max-tree. The results of applying the Min, Max,

Direct, and Subtractive rules on this image with r ¼ 10 are
shown in Fig. 2.

3 SHAPE-SIZE PATTERN SPECTRA

Below, granulometries and pattern spectra based on strict
shape attributes will be defined. These are used to develop
the novel joint 2D shape-size pattern spectrum.

3.1 Shape Operators

Let the scaling of set X by a scalar factor t 2 IR be denoted
by tX, which is

tX ¼ fx 2 IRnjt�1x 2 Xg: ð9Þ

Likewise, a scaling tf of a gray-scale image f is defined as

ðtfÞðxÞ ¼ fðt�1xÞ 8t�1x 2 E: ð10Þ

A binary operator � or gray-scale operator � is said to be
scale-invariant if

�ðtXÞ ¼ tð�ðXÞÞ or �ðtfÞ ¼ tð�ðfÞÞ ð11Þ

for all t > 0. A scale-invariant operator is therefore sensitive
to shape rather than to size. If an operator is scale, rotation
and translation invariant, we call it a shape operator; if it is
also idempotent, it is a shape filter. Note that, if E � ZZn, scale
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Fig. 1. (a) The peak components of a gray-level image X, (b) the
corresponding fictitious attributes, and (c) the Max-tree. Fig. 2. Result after filtering the image in Fig. 1 with four different decision

rules, using a value of 10 as the attribute threshold.



invariance can only be attained approximately because in
general, t�1x =2 ZZn, so one has to apply rounding to the
nearest element of ZZn.

The hit-or-miss transform X �B, with B ¼ ðB1; B2Þ a pair
of nonoverlapping structuring elements, can be used to
define the thinning X � B:

X �B ¼ ðX �B1Þ \ ðXc �B2Þ; ð12Þ

X � B ¼ X n ðX �BÞ; ð13Þ

in which Xc is the complement of X, X n Y is the set
difference, and X �B is the erosion of X with structuring
element (S.E.) B.

Thinnings using structuring elements cannot be used as
shape filters, in part because they are not, in general,
idempotent but more importantly because they are not scale
invariant:

tðX � BÞ ¼ tX n ðtX � tBÞ 6¼ tX � B ð14Þ

in which tB ¼ ðtB1; tB2Þ.

Definition 5 (Grain Preservation). A binary image transfor-
mation � : PðEÞ ! PðEÞ is called grain preserving if each
grain of X � E is mapped uniquely to a single grain of �ðXÞ
(and vice versa).

This means that the set of grains fCX
i g of X and fC

�ðXÞ
i g

of �ðXÞ can be indexed using the same index set I, that is,

�ðCX
i Þ ¼ C

�ðXÞ
i ; i 2 I; ð15Þ

�ð;Þ ¼ ;: ð16Þ

Definition 6. A function � : PðEÞ ! ID, with arbitrary range
ID, is called invariant under a mapping � : PðEÞ ! PðEÞ if
�ðXÞ ¼ �ð�ðXÞÞ for all X � E.

Examples of such functions � are the attribute function � :

PðEÞ ! IR or the criterion function T : PðEÞ ! ffalse; trueg.

Proposition 1 (Attribute versus Operator Invariance). If the
attribute � : PðEÞ ! IR is invariant under a grain-preserving
image transformation�, so are�T and�

T , whereT is a criterion
associated to � .

Proof. Let � : PðEÞ ! IR be some attribute function and let
C � X be a grain. If � is invariant under �, i.e.,

�ðCÞ ¼ �ð�ðCÞÞ; ð17Þ

and � : IR ! ffalse; trueg be any mapping from real
values to Booleans, then a criterion T of the form T ðCÞ ¼
�ð�ðCÞÞ satisfies

T ðCÞ ¼ �ð�ðCÞÞ ¼ �ð�ð�ðCÞÞÞ ¼ T ð�ðCÞÞ; ð18Þ

so T is also invariant under �.
Furthermore, the trivial thinning �T is also invariant

under �, i.e.,

�T ð�ðCÞÞ ¼ �ð�T ðCÞÞ: ð19Þ

To prove this, note that

�ð�T ðCÞÞ ¼
�ðCÞ if T ðCÞ
; otherwise

�

ð20aÞ-ð20bÞ

through the definition of trivial thinnings and (16),
whereas

�T ð�ðCÞÞ ¼
�ðCÞ if T ð�ðCÞÞ
; otherwise

�

ð21a-21bÞ

can be rewritten as (see (18)),

�T ð�ðCÞÞ ¼
�ðCÞ if T ðCÞ
; otherwise;

�

ð22a-22bÞ

which, combined with (20), proves (19).
The invariance of�T to� also implies invariance of the

attribute thinning �T of (6), which can also be written as

�T ðXÞ ¼
[

i2I

�T CX
i

� �

: ð23Þ

To prove this, we first note that

�

�

[

i2I

�T ðC
X
i Þ

	

¼
[

i2I

� �T CX
i

� �� �

: ð24Þ

To show this, let I 0 � I be the index set of all grains of X
which satisfy T and let X0 ¼

P

i2I 0 C
X
i so that CX0

i ¼ CX
i

for i 2 I 0. Then,

�

�

[

i2I

�T CX
i

� �

	

¼ �

�

[

i2I 0
CX

i

	

¼ �ðX0Þ

¼
[

i2I 0
C

�ðX0Þ
i ¼

[

i2I 0
� CX0

i

� �

¼
[

i2I 0
� CX

i

� �

¼
[

i2I

� �T CX
i

� �� �

;

where we used that � is grain-preserving in the sense of

(15). Using this formula, and the invariance of�T , we find

�ð�T ðXÞÞ ¼ �

�

[

i2I

�T CX
� �

	

ð25Þ

¼
[

i2I

� �T CX
i

� �� �

¼
[

i2I

�T � CX
i

� �� �

ð26Þ

¼
[

i2I

�T C
�ðXÞ
i

� �

¼ �T �ðXÞð Þ; ð27Þ

which proves the invariance of �T to �. tu

For example, if � is a scaling and the connectivity used is
scale invariant, i.e., scaling is grain preserving in the sense
of (15), scale invariance of the attribute implies scale
invariance of the attribute filter. Examples of connectivities
for which this holds are four and eight connectivity in the
digital case, or path connectivity in the continuous case.
Note that scale invariance in the discrete case cannot always
be ensured for objects that contain some thin paths when
the resolution is decreased.

3.2 Shape Granulometries

Below, we use the theory of size granulometries to define
shape granulometries, which are invariant to scale. To
exclude sensitivity to size, the operators used can generally
not be increasing, as we will be show below. Therefore, if
we wish to define sets of shape filters analogous to size
granulometries, we must omit property (2), but include
scale invariance. This motivates the following definition:
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Definition 7. A binary shape granulometry is a set of operators
f�rg with r from some totally ordered set �, with the
following three properties:

�rðXÞ � X; ð28Þ

�rðtXÞ ¼ tð�rðXÞÞ; ð29Þ

�rð�sðXÞÞ ¼ �maxðr;sÞðXÞ; ð30Þ

for all r; s 2 � and t > 0.

Thus, a shape granulometry consists of operators which are
antiextensive, idempotent, and scale invariant. As in the
case of size granulometries, translation and rotation
invariance are not demanded in this definition, though
these operators are often desirable. Extension to gray-level
operators is straightforward.

We now show that antiextensive shape operators are
generally not increasing. As a first example, suppose we
have two binary images, X and Y , with X � Y . Further-
more, suppose there exists a t such that tY � X. Let � be a
binary shape operator such that �ðXÞ ¼ ; and �ðY Þ 6¼ ;.
Then, according to (11), �ðtY Þ 6¼ ;, which means �ðtY Þ 6�
�ðXÞ and � is not increasing. A more general result is given
in the next proposition.

Proposition 2 (Scale Invariance versus Increasingness).
Any antiextensive and scale and translation-invariant opera-
tor � : PðEÞ ! PðEÞ is nonincreasing if there exists a
bounded set X, for which �ðXÞ is nonempty, and there exists
a ball Bx

r of radius r and centered on x 2 E which is
completely contained in the difference set X n�ðXÞ.

Proof. We first note that Bx
r � X, but Bx

r \�ðXÞ ¼ ;.
Because X is bounded, there exists a ball BR such that
X � BR. Let Y ¼ ð rRXÞx. Then,

Y �
r

R
BR

� �x
¼ Bx

r � X:

Since � is scale and translation invariant,

�ðY Þ ¼ �
r

R
X

� �x� �

¼
r

R
�ðXÞ

� �x
;

so �ðY Þ is not empty since �ðXÞ is not empty. Because �
is antiextensive,

�ðY Þ � Y � Bx
r :

Since Bx
r is disjoint from �ðXÞ and �ðY Þ is not empty,

�ðY Þ 6� �ðXÞ. Thus, we have Y � X but �ðY Þ 6� �ðXÞ,
which proves that � is not increasing. tu

In the digital case, we always have bounded images and
any meaningful antiextensive operator will remove a ball of
some finite size (if only a pixel), and leave some part of the
image intact. As exceptions, there are two straightforward,
but not useful, antiextensive operators which do combine
scale and translation invariance with increasingness, and
these are the identity operator I for which IðXÞ ¼ X for any
X 2 PðEÞ and “null” operatorOdefined byOðXÞ ¼ ; for any
X 2 PðEÞ.

Note that, in the extensive case, the situation is different.
Let � be a Minkowski addition with a ball BrðXÞ as a
structuring element, in which rðXÞ is a linearly increasing
translation-invariant measure of X, i.e.,

Y � X ) rðY Þ 	 rðXÞ; rðtXÞ ¼ t rðXÞ; rðXhÞ ¼ rðXÞ: ð32Þ

Examples of such measures are the erosion width of the
largest grain ofX or a fixed fraction of the square root of the
area of X. Let Y � X, with rðY Þ ¼ �rðXÞ with 0 < � 	 1. We
now have

�ðXÞ ¼ X 
BrðXÞ ¼
[

x2X

Bx
rðXÞ ð33Þ

and

�ðY Þ ¼ Y 
BrðY Þ ¼
[

x2Y

Bx
rðY Þ: ð34Þ

Because Y � X and Bx
rðY Þ ¼ Bx

�rðXÞ � Bx
rðXÞ for any x, it is

clear that �ðY Þ � �ðXÞ, proving increasingness. Transla-
tion invariance is obvious as well, and scale invariance is
easily shown by observing that tBrðXÞ ¼ Bt rðXÞ ¼ BrðtXÞ

and, therefore,

t�ðXÞ ¼ tX 
 tBrðXÞ

¼ tX 
BrðtXÞ ¼ �ðtXÞ:
ð35Þ

So, nontrivial operators exist which are both increasing and
satisfying the requirements of extensive shape operators,
i.e., scale and translation invariance.

3.3 Shape Pattern Spectra

Shape pattern spectra can be defined in a similar way [38] as
the size pattern spectra. If r is the shape parameter of a shape
granulometry andX a binary image, the shape class of x 2 X
is the smallest value of r for which x =2 �rðXÞ. The pattern
spectrum s�ðXÞ obtained by applying the shape granulome-
try f�rg to a binary imageX with measure � is defined as

ðs�ðXÞÞðuÞ ¼ �
d�ð�rðXÞÞ

dr

�

�

�

�

r¼u

: ð36Þ

Assume the criterion T ðCÞ can be written as �ðCÞ � r,
r 2 �, with � some scale-invariant attribute of the grain C.
Let the corresponding attribute thinnings be denoted by ��

r .
It can readily be shown that

��
rð�

�
sðXÞÞ ¼ �0

maxðr;sÞðXÞ: ð37Þ

Therefore, f��
rg is a shape granulometry, since attribute

thinnings are antiextensive, and scale invariance is pro-
vided by the scale invariance of �ðCÞ, see Proposition 1.
From the definition of pattern spectra, it is easy to obtain the
following result:

Proposition 3 (Invariance of Pattern Spectra). Any pattern
spectrum ðsðXÞÞðuÞ computed by a granulometry f��

rg and
measure �, which are both invariant under some grain-
preserving image transformation � : PðEÞ ! PðEÞ, is in-
variant to �, i.e., ðsðXÞÞðuÞ ¼ ðsð�ðXÞÞÞðuÞ.

Proof. This is obvious from (27) and the invariance of �
under �. tu

Examples of scale-invariant shape attributes are many.
Obvious choices are P 2=A, with P the perimeter, and A the
area of a grain, or I=A2, which is the ratio of the moment of
inertia I to the square of the area. These attributes attain
minimal values for discs and increase as the objects become
more elongated. For computational reasons, the latter shape
attribute is used, because both moment of inertia and area
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can easily and accurately be computed incrementally,
whereas that is more difficult with perimeter. A fuller
discussion of shape attributes is given in [3], [27].

3.4 Image Decomposition

To decompose an image f into its constituent components
based on shape rather than size, using a gray-scale attribute
thinning ��

r , we wish to split the image content into: 1) an
image ��

rðfÞ containing only peak components P k
h for which

�ðP k
h Þ � r and 2) a difference image f � ��

rðfÞ consisting of
those peak components P k

h for which �ðP k
h Þ < r holds. These

requirements now mean that all peak components of ��
rðfÞ

meet � , and all peak components of f � ��
rðfÞ do not. More

formally:

Definition 8 (Gray-Scale Shape Decomposition). A gray-
scale attribute thinning ��

r is a gray-scale shape decomposition
if, for any gray-scale image f and for all h, the following two
properties hold:

��
rðT hð�

�
rðfÞÞÞ ¼ T hð�

�
rðfÞÞ; ð38Þ

��
rðT hðf � ��

rðfÞÞÞ ¼ ;: ð39Þ

We will now show that, of the five filtering rules described
in Section 2.4, the subtractive rule alone can be used for
shape decomposition.

Proposition 4 (Pruning Strategies). No gray-scale attribute
thinnings based on Max-tree pruning strategies are gray-scale
shape decompositions.

Proof. Consider an image f with just three nested peak
components P 1

3 � P 1
2 � P 1

1 at gray levels 3, 2, and 1,
respectively. Furthermore, let �ðP 1

3 Þ � r, �ðP 1
2 Þ < r, and

�ðP 1
1 Þ � r. No pruning strategy can simultaneously

retain P 1
3 and P 1

1 while removing P 1
2 . This means it

cannot satisfy both (38) and (39). tu

Proposition 5 (Direct Rule). No gray-scale attribute thinnings
based on the (nonpruning) Max-tree direct rule are shape
decompositions.

Proof. Using the direct rule and the same image f as used
above, the difference f � �T

r ðfÞ will consist of a zero
background with one or more connected regions at gray
level 1, consisting of those pixels of P 1

2 which have gray
level 2, i.e., the members of N1

2 (which need not be
connected). In general, a peak component P k

h of this
difference image may satisfy T ðP k

h Þ ¼ ð�ðP k
h Þ � rÞ, in

which case, it violates (39). This would, for example, be
the case for an elongation criterion T that preserves
elongated components and removes everything else,
with P 1

2 a 3� 3 square and P 1
3 a 3� 2 rectangle. The

difference image f � �T
r ðfÞ will contain a 3� 1 elongated

component that is preserved by T . tu

Proposition 6 (Nonpruning Startegies). Gray-scale attribute
thinnings based on nonpruning strategies are gray-scale shape
decompositions if they are based on the subtractive rule.

Proof. Any image f can be reconstructed completely from
the set of grains fC

T hðfÞ
i g as follows:

f ¼ hmin þ
X

hmax

h¼hminþ1

X

i2If
h

� C
T hðfÞ
i

� �

; ð40Þ

where� is the characteristic function asdefined in formula
(4). Because the grains belonging to different threshold
sets are nested within each other, the definition of the
subtractive filter, (8), implies that the grains of threshold
sets of �T ðfÞ are those elements of fC

T hðfÞ
i g that satisfy

criterion T , which means (38) holds. Subtracting (8) from
(40) yields

f � �T ðfÞ ¼
X

hmax

h¼hminþ1

X

i2If
h

�ð�:T ðC
T hðfÞ
i ÞÞ ð41Þ

with :T the logical negation of criterion T . So, for all
grains of the threshold set T hðf � �T ðfÞÞ, the criterion T
is false. Therefore, (39) holds. tu

Because the subtractive rule alone satisfies both (38) and
(39), it is used in the following algorithm for 2D shape
pattern spectra.

4 ALGORITHM

4.1 Computation of the Attributes

Salembier et al.’s Max-tree algorithm [27] was used to
compute the pattern spectra. For each node Nk

h of the Max-
tree corresponding to peak component P k

h , two attributes
are computed: The area A as the size attribute and the
elongation measure I=A2, defined as the ratio between the
moment of inertia and the square of the area, as the strict
shape attribute. The Max-tree algorithm as described in [27]
already includes the computation of the area: Each time a
pixel is added to a node, the corresponding area attribute
value is incremented by one.

The elongation measure used is identical to the first
moment invariant I1 ¼ 	20 þ 	02 of Hu [12] and is computed
using the following four kinds of moments [10] on gray-
level image f :

Moments : mpq ¼

ZZ

IR
2
xpyqfðx; yÞ dx dy; ð42Þ

Central moments : 
pq¼

ZZ

IR
2
ðx� 	xÞpðy� 	yÞqfðx; yÞ dx dy;

ð43Þ

Normalized moments : npq ¼
mpq

m�
00

; ð44Þ

Normalized central moments : 	pq ¼

pq


�
00

; ð45Þ

where

	x ¼
m10

m00

; 	y ¼
m01

m00

; and � ¼
pþ q

2
þ 1:

Aswith [3], [27], gray-level information within each nodeNk
h

is ignored, and the moments of the characteristic function

�ðP k
h Þ of the corresponding peak component are computed.
If we consider I1 ¼ 	20 þ 	02 more closely, we find that I1

can be computed using only the following central moments:

00, 
20, and 
02, which can be defined in terms of moments
mpq [10] as follows:
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00 ¼ m00; ð46Þ


20 ¼ m20 � 	xm10; ð47Þ


02 ¼ m02 � 	ym01: ð48Þ

From (46), (47), and (48), it is easy to see that I1 can be
computed using the following moments: m00, m10, m01, m20,
and m02, where m00, m10, and m01 are also needed for the
computation of 	x and 	y. Thus, our elongation measure can
be computed incrementally during the construction of the
Max-tree, i.e., each time a pixel is added to a node, only a
constant number of operations are required for the
computation of the attribute. For example, let tpq be the
variable used to compute mpq; then, for each pixel pðx; yÞ
processed, tpq is incremented by xpyq.

4.2 Binned 2D Shape-Size Pattern Spectra

Suppose we have a gray-scale size granulometry f�rgwith r
from some finite index set �r and a gray-scale shape
granulometry f�sgwith s from some finite index set�s. With
these granulometries, we can compute a 2Dpattern spectrum
similar to that of Batman and Dougherty [1] and Ghosh and
Chanda [8]. We can then store this 2D pattern spectrum,
which contains both shape and size information in a 2D array
S, in which S½r; s� contains the sum of gray levels of those
features in the image which fall in the size class between r�

and r and shape class between s� and s. Here, r� and s� are
the members of �r and �s immediately preceding r and s,
respectively. The computation of a 2D pattern spectrum S
using binning is shown in Algorithm 4.1.

Algorithm 4.1 Computing 2D shape-size binned pattern
spectrumS usingMax-treewithNa shape andNb size classes.

. Set all Na �Nb elements of the array S to zero.

. ComputeaMax-treeaccordingto thealgorithmin[27].

. As the Max-tree is built, compute the area AðP k
h Þ and

moment of inertia IðP k
h Þ of each node Nk

h corre-
sponding to grain P k

h .
. For each node Nk

h :

– Compute the size class r from the area AðP k
h Þ.

– Compute the shape class s from IðP k
h Þ=A

2ðP k
h Þ.

– Compute the gray-level difference �h between
the current node and its parent.

– Add the product of �h and AðP k
h Þ to S½r; s�.

What remains to be specified is how to transform size
and shape attributes to size and shape bins. Let v be the
attribute value, c the class, Nc the number of classes, and D0

and D1 the lower and upper bounds of the range of interest
of the attribute value, respectively. Intuitively, one would
consider the size of, for example, dots, in terms of their
width or diameter, which can be expressed as logarithmic
functions of the area. For this reason, and because most of
the information about image details is concentrated in the
smaller peak components, we wish to have finer bins for
low attribute values than for high ones. Therefore, we use
the following heuristic to compute the class c:

c ¼
log2ðvÞ � log2ðD0ÞÞ

log2ðD1Þ � log2ðD0Þ
Nc


 �

; ð49Þ

where b  c denotes the floor function. The resulting pattern
spectrum is then mapped in lexicographic order into a
1D vector. The values for the parameters D0, D1, and Nc

depend on the application and will therefore be discussed in
Section 5.

4.3 Computing Moments from 2D Shape-Size
Pattern Spectra

Instead of binning to reduce the size of pattern spectra,
moments are also often used for that purpose [29]. Usually,
this is done by computing the first few moments from a
discrete (finely binned) pattern spectrum. Since floating
point values are used for the attributes in our Max-tree-
based method, we decided to implement a close approx-
imation of a continuous pattern spectrum by computing
these moments directly using the nondiscrete attribute
values as shown in Algorithm 4.2.

Algorithm 4.2 Computing M �N shape-size pattern

spectrum moments S using Max-tree.

. Set all M �N elements of the array mpq to zero.

. ComputeaMax-treeaccordingto thealgorithmin[27].

. For each node Nk
h corresponding to grain P k

h :

– Compute area x ¼ AðP k
h Þ.

– Compute moment of inertia y ¼ IðP k
h Þ=A

2ðP k
h Þ.

– Compute the gray-level difference �h between
the current node and its parent.

– Update each mpq, where fðx; yÞ is the product of
�h and AðP k

h Þ.
. Set each element S½p; q� according to (50) using the

computed values of mpq as defined in (42).

This method creates a 2D array S using the moment
functions. The normalized central moments are the most
appropriate to use, however, 	00 ¼ 1 and 	10 ¼ 
10 ¼
	01 ¼ 
01 ¼ 0, hence, they contain no information. Instead
of 	00, we will use the nonnormalized central moment 
00 ¼
m00 and, instead of 	10 and 	01, the normalized geometric
moments n01 and n10, respectively. Therefore, this method
computes S as follows:

S½p; q� ¼

m00 if p ¼ 0 and q ¼ 0;
n01 if p ¼ 0 and q ¼ 1;
n10 if p ¼ 1 and q ¼ 0;
	pq otherwise:

8

>

>

<

>

>

:

ð50Þ

Note that S is invariant under translation and rotation of the
input image since the computation of S can be modeled as
applying the moments function to a pattern spectrum,
which, in this case, is translation and rotation-invariant
according to Proposition 3.

4.4 Extracting Feature Vectors

To obtain features, array S is mapped lexicographically into
a vector vn. Now, vn contains information about bright
patterns in the image. To obtain information about the dark
patterns in a vector vi, antisize and antishape granulometries
are required. Instead of designing new algorithms for the
computation of pattern spectra based on these antisize and
antishape granulometries, these were implemented as the
computation of pattern spectra of inverted images. Since
many images are classified using both the bright and the
dark patterns, we decided to use vr, which is the concatena-
tion of vn and vi, as a combined feature vector.
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4.5 Pattern Spectra Based on Structuring Elements

Three existing types of size granulometries based on open-
ings X �Bi [30] with structuring elements Bi [1], [5] were
implemented for comparison purposes. These methods
compute pattern spectra using sequences fBig of S.E.s. Each
of these sequences is constructed by defining some basic
shape (generator) B1 and computing increasingly larger
versions Bi of it by dilation Bi ¼ Bi�1 
B1. The following
S.E. sequences were used: horizontal linear, vertical linear,
þ45-degree (positive diagonal) linear, �45-degree (negative
diagonal) linear), flat-top (square), cone-shaped, and (ap-
proximately) circle-shaped. While circular S.E.s can be used
efficiently for binary images [25], this becomes computa-
tionally expensive for the gray-scale case. So, for the circular
case, a polygonal approximation [34], [35] was used, since
we found that a direct implementation of a circular S.E. was
more than 50 times slower than the approximation, while no
improvement in classification performance was measured.

Efficient algorithms [32], [39] with a computing time
invariant to the size of the structuring element were used
for all openings and closings with structuring elements. The
following existing S.E. methods were used to compare with
our proposed Max-tree based approach:

. S.E. univariate (UV) [5]: For each of the seven
S.E. sequences Bi, a separate 1D (univariate) pattern
spectrum was computed using filter �tðfÞ ¼ f � tBi

for t > 0, after which these seven pattern spectra were
joined together. The pattern spectra ðsBi

ðfÞÞðuÞ were
computed by:

ðsBi
ðfÞÞðuÞ ¼

d½1�Að�tðfÞÞ=AðfÞ�

dt

�

�

�

�

t¼u

; ð51Þ

where AðfÞ is the sum over all gray levels of f .
. S.E. Euclidean [1]: A single pattern spectrum was

computed using (51) from five S.E. sequences (the
sevendescribed aboveminus the square and the circle
to avoid redundancy). For t > 0 and R0 	 t 	 R1, a
filter �tðfÞ ¼

Sn
i¼1 f � tBi was used to construct an

Euclidean granulometry.
. S.E. bivariate (BV): [1]Amultivariate pattern spectrum

was computed using the following granulometry:
�tðfÞ ¼

Sn
i¼1 f � tiBi, where t ¼ ft1; . . . ; tng. For com-

putational reasons, only the horizontal and the
vertical linear S.E. sequences were used, resulting
in a pattern spectrum S½h; v� ¼ 1�Að�th;vðfÞÞ=AðfÞ,
with th;v ¼ fth; tvg, 1 < h 	 H, and 1 < v 	 V . For
each element of the pattern spectrum, two values are
computed and stored in the feature vector: its
horizontal and its vertical derivative.

Similar to the Max-tree method, two versions exist for
the S.E. UV and the S.E. Euclidean methods: 1) one using a
coarsely binned pattern spectrum directly and 2) one using
moments of a finely binned pattern spectrum. For computa-
tional reasons, the moments version was not attempted for
the S.E. BV method.

Since these S.E. methods use openings, they can be used
to gather information about bright image structures. To
extract information about dark image structures, closings
are needed. Similar to the case of the Max-tree method
described earlier, two pattern spectra are computed, one
using openings and one using closings, which are then
combined into a single feature vector of size Nc.

5 EXPERIMENTS

5.1 Image Libraries

The classification performances of the Max-tree methods
were compared with existing S.E. methods using the
following image libraries, see also Table 1. All images were
converted to 8-bit gray-scale.

. Diatoms: Diatoms [36] are unicellular algae with
highly ornate silica shells, which consist of two
halves called valves. Examples of diatom valves are
shown in Fig. 3. Both the shapes of these shells and
the textures or ornamentation are distinctive char-
acteristics of individual taxa (species or varieties).
The methods described here compute the feature
vectors from the ornamentation only.

The classification resultswere computed on a set of
781 images of diatoms from the ADIAC database [6],
all of which are aligned manually by experts to the
same orientation. Each of the 37 distinct taxa was
represented by at least 20 images. These images were
obtainedusingbright-fieldmicroscopywitha 1; 018�
1; 018or 1; 312� 1; 312pixelCCD-camera. The images
were cropped to a region of about 600� 400 pixels, on
average, surrounding the diatom cells, which vary
from 5 to 200 
m in length. For each gray-scale image,
a binary image was available in which a single
foreground component indicates which pixels belong
to thediatomvalve.Thesegmentationmethod isgiven
in [14]. For diatoms, all methods described in this
papercomputepatternspectra thatarerestricted to the
valve pixels. The images of the ADIAC database
are obtainable from http://www.ualg.pt/adiac/
pubdat/pubdat.html.

. COIL: The Columbia Object Image Library (COIL)
exists in three versions on the Web http://
www1.cs.columbia.edu/CAVE/research/softlib/):
COIL-20 (unprocessed), COIL-20 (processed), and
COIL-100. All three sets were created by taking
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72 pictures of each object on a turntable, i.e., for
every 5 degrees of rotation, one picture was taken.
The COIL-100 and COIL-20 (processed) libraries
contain images which are histogram stretched and
resized to 128� 128 pixels, while preserving the
aspect ratio. The COIL-20 (unprocessed) set contains
only five classes, and was therefore not used.

. Brodatz: The Brodatz texture database can be
obtained from http://www.ee.oulu.fi/research/
imag/texure/image_data. Using the same experi-
mental set-up as [15] images of 256� 256 pixels were
divided into 16 disjoint squares of size 64� 64, and,
for each of these smaller images, three additional
versions were created by one of the following
transformations: 1) 90 degrees rotation, 2) scaling
the 45� 45 subimage in the center to 64� 64, or 3) a
combination of 1) or 2).

5.2 Classification and Statistical Analysis

The classification technique we used is based on decision
trees built with the C4.5 algorithm [24]. We do not use
single decision trees for classification, but use bootstrap
aggregation or bagging [4] to increase the stability of the
decision tree classifier. The procedure is as follows:

1. Randomly divide the data representing N images
into a training set (Ntrain images) and a test set (Ntest

images), ensuring that the test set contains, for each
class, at least 25 percent of the images.

2. Construct 25 new training sets by drawing a number
ofNtrain images from the initial training set randomly
with replacement (bootstrapping), and build decision
trees with each of them.

3. Evaluate each of the decision trees by computing its
accuracy acci and take a majority vote on the
outcomes of each tree (aggregation).

4. Repeat Steps 2 and 3 of this procedure Nruns ¼ 10

times to obtain the classification performance and an
error estimate (cross validation).

The classification performance can be computed as
follows: Let V be the space of unlabeled instances (images),
and Y the space of classes. For each run i 2 1; 2; . . . ; Nruns (in
our case, Nruns ¼ 10), we obtain a bagging classifier Ci

which maps unlabeled instances vk 2 V to Y . Let the test set
in run i be denoted as Di

test � V � Y . The elements of Di
test

are denoted by hvk; yki, with vk the image and yk the class it
belongs to (ground truth). The accuracy of a single bagging
classifier Ci on a test set is computed as

acci ¼
1

Ntest

X

hvk;yki2Di
test

MatchðCiðvkÞ; ykÞ; ð52Þ

in which Matchðyk; ylÞ ¼ 1 if yk ¼ yl, and 0 otherwise. The
classification performance is the average accuracy over the
10 runs.

5.3 Parameters

TheparametersD0 andD1 for theMax-tree-basedmethods,as
defined in (49), were determined for both size and shape
classes. We decided that image details with minimum
attribute values should also contribute to the pattern
spectrum. Thus, D0 ¼ 1 for the size class and, for the shape
class,D0 ¼ 1=2�. Theupperboundof the rangeof interestwas
tested for all image sets with different values. For the image

sets diatoms, Brodatz, COIL-20, and COIL-100, the best
classification performances were achieved using upper
bounds for the size class of, respectively, 1; 5502, 1282, 1282,
and4362 andfortheshapeclass, respectively:52,70,53,and44.

For the S.E. methods, the openings and closings are
computed for S.E. lengths between R0 and R1. The smallest
S.E. used was set to R0 ¼ 7 pixels for all image sets. The best
classification performance was reached with R1 ¼ 447 for
S.E. UV and S.E. Euclidean and R1 ¼ 127 for S.E. BV. The
same lower and upper bounds were used for the methods
based on pattern spectrum moments as their binned
counterparts described above.

The optimal value for theparameter controlling the sizeNc

of the feature vector was determined for all methods by
computing the classification performance of pattern spectra
for increasing values of Nc until the classification perfor-
mance was maximal. We found that, except for the shortest
feature vectors (i.e., less than five classes per attribute/
S.E. shape), the length of the feature vector does not influence
the classification performance significantly. Although a very
large value could be chosen forNc, thiswould beundesirable,
since the computational cost of the classifier increases with
the length of the feature vector andat somepoint the “curse of
dimensionality” [13] is to be expected.

5.4 Results

In this section, we present the experimental results. First,
we compute the classification performance on the diatom
set to determine the best methods. Then, for the best two
methods found, we determine the classification perfor-
mance on all data sets. Next, we consider the behavior
under image rotation and the influence of noise. Finally,
computational efficiency and memory usage is discussed.

5.4.1 Classification Performance on the Diatom Set

The classification performance of our method on the
Diatom set using the Max-tree algorithm is compared with
the S.E. methods in Table 2. The length of the feature
vectors for the methods is shown in the second column.
Since the S.E. methods use normalized pattern spectra, the
performance of our Max-tree method was tested for pattern
spectra with and without normalization.

The results show that, on the original diatom set, the
binned methods give the best results. The best two methods
(S.E. BVbinnedandMax-tree) reach to aperformance slightly
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above 90percent.When theMax-treemethod is limited to use
only size information,which is similar to theS.E.methods, the
performance drops to 83.8 percent; the shape-only version of
the Max-tree classified 83.0 percent correctly. It should be
noted that there is no noticeable difference in computing time
between these two Max-tree versions based on 1D pattern
spectra and our proposed method based on 2D pattern
spectra. The classification performance of several other
methods were compared earlier [6]. It was then found that
the best two performing ornamentation-based methods on
the same diatom set were a combination of gray-level co-
occurrencematrix (GLCM)andGaborwavelets (84.3percent)
and a preliminary version of the Max-tree method described
here (81.4 percent). Furthermore, Jalba et al. [15] reported
another ornamentation-based method with a 88.1 percent
classification performance on this set.

As Table 2 shows, normalization lowers the classification
performance of the Max-tree methods on this set by roughly
10 percent. It reduces the sensitivity to difference in contrast
and illumination. If contrast information contains mean-
ingful information (as in the case of diatoms, where the
contrast of certain features with respect to the background
can differ between species), normalization leads to de-
graded performance. On the other hand, it also makes the
method less sensitive to blurring (which tends to reduce
contrast as well) caused, e.g., by artificial rotation.

5.4.2 Classification Performance of Best Two Methods

on All Sets

The classification performance and the corresponding stan-
dard deviation of S.E. BV and Max-tree binned for the four
image sets used are shown in Table 3. As can be seen, the
performance of these two methods is similar, except in the
Brodatz case, where the Max-tree method significantly
outperforms the S.E. BV method. In the other cases, the
differences are not significant. We assume the reason for the
different behavior of the methods on the Brodatz set is that
these texture images often contain very long, but curly fiber-
like structures which make it hard for methods that try to fit
these “fibers” with S.E.s, whereas this does not pose a
problem for connectivity-basedmethods. On the other hand,
image details that are sometimes, but not always, connected
(like somepatterns in the diatom images), form a problem for
the latter methods. This can be solved by using second-
generation connectivities [2], [23], [31].

Recently, another texture-basedmethodwas described by
Jalba et al. [15] that, on the Brodatz data set, achieved a
93.5 percent classificationperformance,which is highbut still
below thatof theMax-treemethodobtainedhere.Thebest out
of six other methods compared in [15] has a performance of
93.9 percent on the Brodatz set, also below our method.

5.4.3 Rotation-Invariance

In practical diatom analysis, diatom images are not aligned.
Aligning every image manually to the same orientation (as
was done for the diatomdata set) is labor intensive.Although
many diatom valve images could be aligned automatically,
this causes problems for diatomswith a circular or triangular
contour, but with nonsymmetric ornamentation patterns,
like the one shown in Fig. 3a. Another problem is diatom
shells as in Fig. 3b, where more than one orientation can be
found in a single image. Preferably, a features used for
classification should be invariant to rotation. In Fig. 4a, the
performance of themethods is shown for images rotated over
different angles only during the test phase. As can be seen,
while the methods using the Max-tree algorithm with
rotation-invariant attributes perform well for any rotation
angle, the S.E. methods only perform well for the original
image set, and due to the symmetry of most diatoms, also on
180 degree rotated images. S.E. Euclidean, which computes
pattern spectra using a union of openings with five
structuring elements, including four linear at 0, 45, 90, and
135 degrees, also performs well at those angles.

We rotated all diatom images digitally, which can
introduce some blurring, possibly affecting the classification
performance. This probably causes the residual rotation
sensitivity seen in the plot for the nonnormalized Max-tree
method. To estimate the significance of this effect, the
methods were also applied by training on the original image
set and using a test set whose images were blurred with a
5� 5 averaging kernel to simulate the blurring caused by
rotation. Note that this 5� 5 kernel creates much more
distortion than any single rotation. This blurring caused the
following performance drops: the Max-tree method from
89.8 to 74.4 percent, S.E. BV from 92.4 to 74.6 percent, S.E. UV
from 87.6 to 55.8 percent, and S.E. Euclidean from 75.8 to
24.1 percent. Thus, the influence of orientation on the
performance for the Max-tree is probably caused by the
blurring effect. This might also hold for the S.E. Euclidean,
but not for the S.E. UV and the S.E. BV methods, since their
performances are better with the heavily blurred test set than
with the slightly blurred rotated test set.

To reduce the sensitivity of the S.E. methods to
orientation, we used a training set of images rotated over
angles: 0, 5, 10, 15, 30, 45, and 90 degrees. Fig. 4b shows that
the S.E. methods perform well around the angles available
in the training set, but their performances are low
otherwise. The performance of the S.E. BV method for
nonrotated images was reduced to 87 percent, i.e., below
that of the Max-tree trained on the original set.

5.4.4 Influence of Noise

The influence of noise on the classificationperformance of the
methods was measured by evaluating image sets created
from the original image set by adding Gaussian noise with
standard deviations between  ¼ 0:01 and 0:64. In Fig. 5a, the
classification performance of the methods trained on the
original and tested on the noisy image set is shown.We tried
to reduce the effect of noise through various standard
smoothing techniques, of which the blur 5� 5 averaging
filter gave the best result. The results of using that
preprocessing operator is shown in Fig. 5b. Notice in both
columns that, although normalization slightly lowers the
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TABLE 3
Classification Performances (%) on All Data Sets

Between brackets the corresponding standard deviations for the best
two methods.



performance on (nearly) noise-free images, it clearly im-
proves the performance for noisy images.

The performance of the methods on a noisy training and

a noisy test set with the same  is shown in Fig. 6. It can

clearly be seen that the Max-tree methods are much more

robust to noise than the S.E. methods. This can be explained

by the fact that the noise affects mainly the low-area bins of

the pattern spectrum in the Max-tree case, but it affects far

more bins in the S.E. case. As an illustration, let image f

contain a large white square. Placing black noise pixels in

the square and white pixels outside it creates singleton sets

to appear in the lowest area bin of the area pattern

spectrum. Unless the binning of the spectrum is very fine,

the large square should stay in the same bin of the area

spectrum. By contrast, in the case of pattern spectra

computed using a linear, horizontal S.E., if a black noise

pixel appears at some fraction � of the width w of the

square, the signal from the bin corresponding to w will be

moved to bins corresponding to ð1� �Þw and �w. Given

spatially uniformly distributed noise pixels, this will lead to

a uniform distribution of signal over bins below that

corresponding to w, apart from the additional noise at the

smallest widths caused by white pixels in the background.

5.4.5 Computation Time

The average computation time of the binned methods (with

optimal parameters and compiled with the same compiler

settings) on a 2.8 GHz Pentium4 PC is shown in Fig. 7 for two

image sets: the ADIAC set of diatom images and the Brodatz

set. As can be seen, the two methods with the highest

classification performance (S.E. BV andMax-tree binned) are

also the fastest. Furthermore, it is clear that, for the Max-tree

methods, the time needed to compute a feature vector is

independent of the size of the pattern spectrum and, thus, of

the feature vector length, as opposed to the S.E.methods. The

average computation time per pixel for the Max-tree and

S.E. BV method with optimal feature vector length on the

diatom setwas 0.8 
s and 7.1 
s, respectively. For the Brodatz

set this was, respectively, 1.3 
s and 6.5 
s. The computation

time of the S.E.-methods is independent of image content,

which is not the case for the Max-tree methods.

5.4.6 Memory Usage

For an input image containingN pixels, our currentMax-tree

implementation uses a pixel queue and a status array, both

containingN elements. Furthermore, for every peak compo-

nent, a node is used that contains the corresponding parent

pointer, intensity level, and the attribute values A and I=A2.

Besides the input image, OðNÞ integers and OðNÞ floats are

used. The S.E. methods use an output image. For the S.E. UV

and the S.E. Euclideanmethods,OðM þW þHÞ integers are

needed for the dilation and erosion algorithm,whereM is the

maximum of the width W and the height H of the image.

Furthermore, in the implementation of these methods, an
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Fig. 4. Performance on rotated diatom images: (a) trained using aligned image set and (b) trained using rotated images, where the bars denote the
angles used for training.



auxiliary image is used to save some computations. The

S.E. BV method uses OðMÞ integers and, for faster computa-

tion, wþ h auxiliary images for a w� h pattern spectrum. To

avoid clipping problems with dilations and erosions using

nonflat S.E., the S.E. methods use 32-bit signed integer gray-

scale images insteadof the 8-bit gray-scale imagesusedby the
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Fig. 6. Performance on noisy diatom training and test sets with identical noise level.

Fig. 5. Performance on noisy test set using the original training diatom set. (a) Noisy test set and (b) noisy test set blurred with a 5� 5 averaging filter.

Fig. 7. Computation time per pixel versus length of feature vector for the binned methods. (a) Diatoms. (b) Brodatz.



Max-tree method. Thus, the S.E. UV and the S.E. Euclidean

generally use the leastmemory.Memory-efficient implemen-

tation of S.E. BV leads to a strong increase in computing time.

6 DISCUSSION AND CONCLUSIONS

Pattern spectra for the computation of feature vectors are
very suitable for image classification. In this paper, we
introduced a multiscale and multishape morphological
method for pattern-based analysis and classification of
gray-scale images using connected operators, and an
efficient implementation using Salembier’s Max-tree algo-
rithm. Our method performs a global analysis of the
patterns in an image. This type of information can be of
use in many other applications, such as content-based
image retrieval, soil analysis [33], or the classification of
pollen grains [26], where all grains are more or less round,
but whose patterns are not always symmetric.

We compared our new method with existing methods
using structuring elements (S.E. methods). Methods using
moments of pattern spectra were outperformed by methods
using binned pattern spectra. This may be due to the
sensitivity of moments (in particular, with high order) to
outliers in the distribution. For image sets where the images
are symmetrical or manually aligned to have the same
orientation, our method was never significantly worse than
the best S.E. competitor, and, in one case, significantly better
(Brodatz). When rotation-invariance is desired, like in the
case of images with different orientations, our method with
its rotation-invariant attributes is preferable over methods
based on linear structuring elements, since the latter are not
invariant to rotation. Although rotation-invariance can be
approximated by using linear structuring elements at many
orientations, this leads to a sharp increase in computation
time, which is not desirable when large sets of images are
used. A further advantage of our method is the separation of
size andshape information,whichmeans that a class of image
components with similar shape, but varying size, can now be
treated as one class for filtering or analysis. Furthermore,
when pattern spectra with a large number of size or shape
classes need to be computed, our method is also preferable
sincemethods based on structuring elements need to filter an
image for every class used,while the time needed to compute
a pattern spectrum using our method is independent of the
size of that pattern spectrum. In the current setting, a speed
gain of between 5 and 9-fold per image set was obtained.
Also, it was shown that our method is significantly less
sensitive to noise than any of the compared S.E. methods.

In future work, we will investigate other attributes such
as moment invariants of Hu [12] or the affine moment
invariants of Flusser and Suk [7], which may improve the
performance of our method further. For texture segmenta-
tion of images, local texture measures are necessary, and
adaptations of our method are needed.

APPENDIX

The following list summarizes the notational conventions
used in this paper:

- E: image domain (IRn or ZZn).
- PðEÞ: power set (set of all subsets) of E.
- X: binary image.
- f : gray-scale image.

- Xh: translate of set X � E by vector h.
- Xc: complement of set X � E.
- tX: scaling of X by factor t 2 IR.
- t f : scaling of f by factor t 2 IR.
- Bx

r : ball of radius r and center x.
- S.E.: structuring element
- X 
B: dilation of X by B.
- X �B: erosion of X by B
- X �B: opening of X by B.
- X �B: closing of X by B.
- X �B: hit-or-miss transform of X by B ¼ ðB1; B2Þ.
- X �B: thinning of X by B ¼ ðB1; B2Þ.
- AðXÞ: Lebesgue measure (area, volume) of X.
- AðfÞ: integral (sum of gray levels) of f .
- �: totally ordered set (e.g., IR or ZZ).
- VhðfÞ: level set of f : fx 2 EjfðxÞ ¼ hg.
- T hðfÞ: threshold set of f : fx 2 EjfðxÞ � hg.
- flat zone connected component of VhðfÞ
- Ifh : index set of flat zones of f at level h.
- Lk

hðfÞ kth: flat zone of f at level h.
- P k

h ðfÞ kth: peak component (connected component
of T hðfÞ).

- Nk
hðfÞ: Max-tree node corresponding to P k

h ðfÞ (sub-
set of P k

h with gray level h).
- grain(ofabinaryimageX):connectedcomponentofX.
- grain (of a gray-scale image f): peak component of f .
- CX

i ith: grain of X.
- C

T hðfÞ
i ith: grain of T hðfÞ (i.e., P

i
hðfÞ).

- f�rgr2�: binary size granulometry.
- f�rgr2� gray-scale size granulometry.
- s�ðXÞ: pattern spectrum of X corresponding to

binary size granulometry f�rg.
- s�ðfÞ: pattern spectrum of f corresponding to gray-

scale size granulometry f�rg.
- �xðXÞ: connected opening of binary image X at

point x 2 E (Section 2.3).
- T ðCÞ: criterion T applied to grain C.
- �T ðCÞ: trivial thinning of grain C by criterion T .
- �T ðXÞ: binary attribute thinning of X by criterion T .
- �ðP k

h Þ: attribute value of P k
h .

- f�rgr2�: binary shape granulometry.
- f�rgr2�: gray-scale shape granulometry.
- f��

rgr2�: binary shape granulometry with criterion
T ðCÞ ¼ ð�ðCÞ � rÞ.

- f��
rgr2�: gray-scale shape granulometry with criter-

ion T ðP k
h Þ ¼ ð�ðP k

h Þ � rÞ.
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