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Connected subgroups of SO(2, n) acting irreducibly on R
2,n

Antonio J. Di Scala∗ and Thomas Leistner†

Abstract

We classify all connected subgroups of SO(2, n) that act irreducibly on R
2,n. Apart

from SO0(2, n) itself these are U(1, n/2), SU(1, n/2), if n even, S1·SO(1, n/2) if n even
and n ≥ 2, and SO0(1, 2) for n = 3. Our proof is based on the Karpelevich Theorem
and uses the classification of totally geodesic submanifolds of complex hyperbolic space
and of the Lie ball. As an application we obtain a list of possible irreducible holonomy
groups of Lorentzian conformal structures, namely SO0(2, n), SU(1, n), and SO0(1, 2).

MSC: 22E46; 53C35; 53C40; 53C29; 53A30.

Keywords: Irreducible, orthogonal representations; Lie ball; complex hyperbolic space;
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1 Background, result, and applications

One of the results at the origins of modern differential geometry is Marcel Berger’s classifi-
cation of irreducible connected holonomy groups of complete semi-Riemannian manifolds.
The most striking feature of this Berger list is that it is rather short. This is more surpris-
ing in some signatures and more natural in others. For example, that the only possible
connected irreducible holonomy group of Lorentzian manifolds is SO0(1, n) is due to the
fact that there are no proper connected subgroups of SO0(1, n) that act irreducibly on
R

1,n [DSO01]. In Riemannian signature, on the other hand, it is more surprising that only
so few groups occur as holonomy groups, taking into account that any representation of
a compact group, in particular irreducible ones, is orthogonal with respect to a positive
definite scalar product. For a recent proof of Berger’s theorem for Riemannian manifolds
see [Olm05].

In this paper we consider the case of signature (2, n) and study connected subgroups
of SO(2, n) that act irreducibly on R

2,n. We give a classification of these groups:
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Theorem 1. Let G ⊂ SO(2, n) be a connected Lie group that acts irreducibly on R
2,n.

Then G is conjugated to one of the following,

1. for arbitrary n ≥ 1: SO0(2, n),

2. for n = 2p even: U(1, p), SU(1, p), or S1 · SO0(1, p) if p > 1,

3. for n = 3: SO0(1, 2) ⊂ SO(2, 3), .

Our interest in signature (2, n) is twofold. One aspect is the more general interest
in the Berger list. Our result shows that there is only one group, namely S1 · SO(1, n),
that does not appear in the Berger list, i.e. that is not a holonomy group for a metric of
signature (2, n).

More important is the relation to conformal Lorentzian structures. To a Lorentzian
conformal structure in dimension n, which is defined as an equivalence class Lorentzian
metrics differing by a scaling function, one may assume a conformally invariant Cartan
connection, the holonomy group of which is contained in SO(2, n). For the so-called con-
formal holonomy the algebraic restrictions are much more difficult to handle than the
Berger criterion in case of metric holonomy algebras. Hence, it was natural to ask first:
What are possible connected subgroups of SO(2, n) that act irreducibly on R

2,n? Our
answer to this question gives a list of possible candidates for special conformal Lorentzian
structures, a name which refers to — in analogy to special Riemannian structures —
Lorentzian conformal structures with irreducibly acting conformal holonomy group (for
indecomposable, non-irreducible Lorentzian conformal structures we refer the reader to
[Lei07]). Now, two of the groups Theorem 1 are known to be Lorentzian conformal holon-
omy groups, SO0(2, n) itself and SU(1, n/2), the first being the generic conformal holon-
omy, the second being that of a Fefferman space (see for example [Bau07]). In [Leit08]
it is proven that if a connected conformal holonomy group is contained U(1, n/2) then it
is already contained in SU(1, n/2). Hence, S1 · SO0(1, n/2) cannot occur as connected
conformal holonomy group of a Lorentzian conformal structure, because it is not contained
in SU(1, n/2). We get the following consequence.

Corollary 1. Let G ⊂ SO(2, n) be the connected conformal holonomy group of a Lorentzian
conformal structure. If G acts irreducibly on R

2,n, then

G = SO0(2, n), or G = SU(1, n/2) if n is even, or G = SO0(1, 2) if n = 3.

Unfortunately, we cannot yet exclude the exceptional case of SO0(1, 2) ⊂ SO(2, 3) as a
possible conformal holonomy of a 3-dimensional Lorentzian manifold. We only know that
SO(1, 2) does not define a conformal Cartan reduction in the sense of [Alt08, Section 3.3].
Such a conformal Cartan reduction of SO(p+1, q+1) to a group G ⊂ SO(p+1, q+1) exists
if and only if G acts transitively on the pseudo-sphere Sp,q = SO(p+1, q+1)/P , where P is
the parabolic subgroup defined as the stabiliser of a light-like line in R

p+1,q+1. Examples of
conformal Cartan reductions are given by SU(p+1, q+1) ⊂ SO(2p+2, 2q+2), see [Bau07]
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or [CG06], the non-compact G2(2) ⊂ SO(3, 4) in [Nur02, Nur08], and Spin(3, 4) ⊂ SO(4, 4)
in [Bry06], and they are linked to so-called Fefferman constructions. Now, the action of
SO0(1, 2) on S1,2 = SO(2, 3)/P is not transitive (see Appendix A.1) and hence does
not define a conformal Cartan reduction, but we do not know if this already excludes
SO0(1, 2) ⊂ SO(2, 3) as an irreducible conformal holonomy. To clarify this question lies
beyond the scope of this paper and will be subject to further studies.

Our proof of Theorem 1 is based on the Theorem of Karpelevich and Mostow.

Theorem 2. (Karpelevich [Kar53], Mostow [Mos55], also [DSO07]) Let M = Iso(M)/K
be a Riemannian symmetric space of non-compact type. Then any connected and semisim-
ple subgroup G of the full isometry group Iso(M) has a totally geodesic orbit G · p ⊂M .

We will apply this theorem to a connected subgroup G of SO(2, n) that acts irreducibly
on R

2,n and to the Riemannian symmetric spaces that are related to SO(2, n): the complex
hyperbolic space CHn = SU(1, n)/U(n) and the Grassmannian of negative definite planes
in R2,n given as SO0(2, n)SO(2) · SO(n) and as SO(2, n)/SO(2) · SO(n) if one considers
oriented negative planes. The latter has two connected components and can be realised
in CPn+1 as the submanifold of negative definite lines in C

2,n. Its connected component
is called Lie ball. In applying Karpelevich’s Theorem we have to deal with two difficulties
that are related to each other: First, we cannot assume that G is semisimple, and secondly,
if T is a totally geodesic orbit with isometry group H = Iso(T ) our group G in question
can be the product of H with the group I(T ) that is defined as

I(T ) := {A ∈ G | A|T = IdT }.

I(T ) is a normal subgroup in Iso(T ). We know that G is reductive but it may be that
its semisimple part does not act irreducibly. On the other hand, it might happen that T
is the orbit of a group H that does not act irreducibly but that I(T ) ·H acts irreducibly.
Overcoming these difficulties, our proof will consist of three main steps:

1. Show that if G ⊂ SO0(2, n) acts irreducibly, then it is simple or contained in U(1, n).

2. Classify connected subgroups of U(1, n) acting irreducibly on R
2,n using:

(a) G is reductive with possible centre S1,

(b) By Karpelevich’s Theorem applied to CHn, the orbits T of the semisimple part
are isometric to either CHk or to real hyperbolic spaces RHk for k ≤ n.

(c) I(T ) can be calculated.

3. If G is not in U(1, n), G is simple and we apply Karpelevich’s Theorem to the Lie ball
SO0(2, n)/SO(2) · SO(n). Then we use the classification of totally geodesic orbits
in the complex quadric SO(n + 2)/SO(2) · SO(n) by [Kle08], transfer it by duality
to the Lie ball and obtain G as isometry group of these orbits. As G is simple, I(T )
can be ignored.
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2 Algebraic preliminaries

2.1 Irreducible representations of real Lie algebras

Most of the groups appearing in the theorem are well known. However, regarding S1 ·
SO0(1, p) we will make some remarks about irreducible representations of real Lie algebras
and about symmetric space which will be useful in what follows. The transition to Lie
algebras is justified by the restriction to connected subgroups of SO(2, n).

Let g be a real Lie algebra and E an irreducible real representation. We say that E is
of real type if EC := E ⊗ C is irreducible as well. Otherwise we say that E is not of real
type. In the latter case there is a splitting of EC as EC = V ⊕V where V is an irreducible
complex representation and V the conjugate representation w.r.t. the real form E ⊂ EC.
By the conjugate representation we mean the representation of g on V defined by

A · v := A · v.

In deed, if V is a complex invariant subspace of EC, the complex subspaces V + V and
V ∩V are invariant as well. On the other hand, they are equal to their complex conjugate,
and thus, complexifications of real invariant subspaces. As E is irreducible, we obtain that
V ⊕ V = EC.

On the other hand, it is (VR)C = V ⊕ V and multiplication with i defines an invariant
isomorphism J on VR and by complexification on (VR)C = EC that squares to −Id. Hence,
EC splits into the invariant eigen spaces w.r.t. i can and −i, which are given by V and V ,
respectively. Then

x ∋ E 7→ x− iJx 7→ x+ iJ ∈ V

gives an isomorphism of real representations E ≃ VR ≃ V R. Complex multiplication with
the imagninary unit on V induces an invariant complex structure J on E.

In the other case, where E is of real type, W := EC considered as a real vector
space, denoted by WR, is reducible, with invariant real form E. This is equivalent to W
being self-conjugate with a conjugation that squares to the identity. Recall that a complex
representation V of a real Lie algebra is self conjugate if W ≃W as a g-representation, i.e.
there exists an invariant isomorphism between W and W . In case of a representation of
real type, the invariant real form E then is given as the +1 eigen-space of this conjugation.

After this change of the viewpoint, it is natural to say that a complex irreducible repre-
sentation is of real type if it is self-conjugate with a conjugation squaring to one. Otherwise
it is called of non-real type. Examples of representations of real type are complexifications
of the standard representations of so(p, q) on R

p,q. Examples of representations of non-real
type are representations of u(p, q) and su(p, q) on C

p,q and R
2p,2q respectively.

For a complex irreducible representation V of g there is a further distinction beyond
being of real type or not. If V is not self-conjugate, then V is called of complex type.
If V is self-conjugate with respect to a conjugation C, then C2 is a C-linear invariant
automorphism of V . By the Schur lemma, it is a multiple of the identity, say C = λ·Id,
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with λ ∈ R because
λC(v) = C(λv) = λC(v).

By scaling C we can assume that λ2 = ±1. In one case, V was of real type, in the
case where C2 = −Id one says that V is of quaternionic type, because C defines another
complex structure which anti-commutes with the multiplication with i. To summarise
these standard facts, a complex irreducible representation is either of real, complex or
quaternionic type. If it not of real type, then VR is irreducible, if it is of real type, it is
the complexification of an irreducible real representation.

The following lemma is a standard result. We cite without proof.

Lemma 1. g ⊂ so(p, q) is of real type if and only if p and q are even and g ⊂ u(p/2, q/2).

We suppose that the next lemma is also a standard fact from representation theory.
Nevertheless, for the sake of being self-contained we prove it here.

Lemma 2. Let g be a real Lie algebra and V a complex irreducible representation of
quaternionic type and of complex dimension 2m.

1. If V is symplectic, then g ⊂ sp(p, q) ⊂ u(2p, 2q) with p+ q = m.

2. If V is orthogonal, then g ⊂ so∗(2m) ⊂ u(m,m).

Proof. Let J be the anti-linear invariant automorphism of V with J2 = −1, and let V be
of complex dimension 2m Assume that ω is an invariant symplectic form on V . First we
show that we can assume the following relation between ω and J :

ω(Jx, Jy) = ω(x, y) (1)

In fact, ω̂ := ω(J., J.) gives another invariant symplectic form on V . By the Schur lemma,
they are a complex multiple of each other, i.e. ω(J., J.) = λω for a λ ∈ C

∗. This implies
that

ω(J., J.) = λ ω(J2., J2.) = λλω(J., J.)

i.e. that λ = eiθ ∈ S1. Rescaling ω by e−i θ

2 enables us to assume equation (1). Now note
that equation (1) implies that ω(J., .) = −ω(., J.). This enables us to define an invariant
hermitian form 〈., .〉 on V via 〈x, y〉 := ω(x, Jy). This is in deed hermitian,

〈y, x〉 = ω(y, Jx) = −ω(Jy, x) = ω(x, Jy) = 〈x, y〉

and compatible with J ,

〈Jx, Jy〉 = −ω(Jx, y) = ω(y, Jx) = −ω(Jy, x) = ω(x, Jy) = 〈x, y〉.

This shows that g ⊂ u(2p, 2q) ∩ sp(m,C) = sp(p, q), with p+ q = m.
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Now assume that σ is an invariant symmetric bilinear form on V . By the same argu-
ment as in the symplectic case we get that

σ(Jx, Jy) = σ(x, y) and σ(Jx, y) = −σ(x, Jy).

A hermitian form is now defined by 〈x, y〉 := iσ(x, Jy). The compatibility with J is given
by

〈Jx, Jy〉 = −iσ(Jx, y) = iσ(x, Jy) = −〈x, y〉,
which shows that 〈., .〉 has neutral signature (m,m) and that an orthonormal basis of σ is a
light-like basis of 〈., .〉. A calculation in a basis then shows that g ⊂ u(V, 〈., .〉)∩so(2m,C) =
so∗(2m), which is defined as follows

so∗(2m) :=

{(
A B

−Bt
A

t

)
| A ∈ so(m,C), B = B

t
}

(see [Hel78, p. 446]).

2.2 Irreducibility of S1 · SO0(1, n)

In this section we explain that S1 · SO0(1, n) ⊂ U(1, n) ⊂ SO(2, 2n) acts irreducibly.

Proposition 1. Let g ⊂ so(p, q) act irreducibly on R
p,q. This representation is of real

type if and only if g̃ := i · R ⊕ g acts irreducibly on C
p+q as real representation.

Proof. If the representation of g on R
p,q is of real type then its complexification is still

irreducible, and so is the representation of g̃ on C
p+q. But by definition, there is no

conjugation that is invariant under g̃, and thus the representation of g̃ on C
p+q is of

complex type, which means that it is still irreducible as a real representation.
On the other hand assume that C

p+q is irreducible as real and therefore as a complex
representation of g̃. Assume furthermore that the representation of g on R

p,q is not of
real type. By the remarks in the previous section, this is equivalent to the existence of
a g-invariant complex structure J on R

p,q and to the existence of a complex g-invariant
subspace V ⊂ C

p+q. Extending J complex linear gives an invariant complex structure on
C

p+q. Note that J 6= i·Id, because otherwise g̃ could no longer act irreducibly on C
p,q.

Hence, I := i ·J is g̃-invariant, satisfies I2 = Id and is not a multiple of the identity. Hence,
it has non-trivial invariant eigen spaces to the eigen values ±1. But this again contradicts
to the irreducibility of C

p,q under g̃. Therefore, R
p,q must be of real type for g.

This gives the following conclusion in the case p = 1.

Corollary 2. For n > 1, S1 ·SO0(1, n) is an irreducible subgroup of U(1, n) ⊂ SO0(2, n),
is not contained in SU(1, n), and has no further irreducible subgroups.
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Proof. From the previous section we know that irreducible representations of non-real type
are unitary, but this is not possible for g ⊂ so(1, n). In fact, there is no proper irreducibly
acting subalgebra of so(1, n), see [DSO01]. But so(1, n) is of real type, and the result
follows from the proposition.

For the minimality assume that g ⊂ iR ⊕ so(1, n) acts irreducibly. But then the
projection of g onto so(1, n) acts irreducibly and thus has to be equal to so(1, n). But this
implies so(1, n) = [g, g] ⊂ g ⊂ iR · so(1, n). Hence, g = iR · so(1, n). That S1 × SO(1, n) is
not contained in SU(1, n) is obvious.

2.3 Reduction to simple Lie algebras

In this section we show that an irreducible subalgebra of so(2, n) is either contained in
u(1, n/2) or simple.

First, we have to recall some more general facts about representations of real Lie al-
gebras. Let g be a real Lie algebra and V an irreducible complex representation. We have
seen that V is of real type if and only if there is a g-invariant existence of a invariant
conjugation squaring to one. Furthermore, on says that a complex irreducible represen-
tation V that is not self-conjugate is of of complex type, and if V is self-conjugate with a
conjugation squaring to −1 it is called of quaternionic type. Based on this distinction and
on the description of the center in [DLN05] we proved the following:

Proposition 2. Let G ⊂ SO0(p, q) a connected Lie subgroup of SO0(p, q) which acts irre-
ducibly. If G is not semisimple, then p and q are even and G is a subgroup of U(p/2, q/2)
with centre U(1). In particular, if G ⊂ SO(2, n), then G ⊂ U(1, n/2) or semi-simple.

Here we will strengthen this result for the case G ⊂ SO(2, n) by replacing “semi-simple”
by “simple”. This will be based on the following general fact on complex irreducible rep-
resentation of semi-simple complex Lie algebras (for a reference, see for example [Oni04,
p. 11]):

Fact. If g = g1 ⊕ g2 is a semi-simple Lie algebra decomposing into non-trivial ideals g1

and g2. Then V is a complex irreducible representation of g if and only if V = V1 ⊗ V2

where Vi are irreducible representations of gi.

Lemma 3. Let g⊕h be semi-simple and W = U⊗V an irreducible complex representation.
Then W is self-dual if and only if both, U and V are self-dual. The invariant isomorphisms
are related by ψ = ψ1 ⊗ ψ2.

Proof. The ‘if’-direction is obvious, ψ = ψ1 ⊗ ψ2 defines the required invariant isomor-
phism.

For the other direction we consider the identification τ : U ≃ U⊗v0 for a fixed v0 ∈ V .
τ is not only an isomorphism of vector spaces but also of representations of g, i.e.

A(τ(u)) = A(u⊗ v0) = Au⊗ v0 = τ(Au).
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Let ψ : W ≃W ∗ be the the isomorphism yielding the self-duality of W . This implies that
there are u0, û0 ∈ U and v1 ∈ V such that

[ψ(u0 ⊗ v0)] (û0 ⊗ v1) 6= 0.

Otherwise, u0 ⊗ v0 would be in the kernel of ψ. Hence by defining

[ψ1(u)] (û) := [ψ(u⊗ v0)] (û⊗ v1)

we obtain a g-invariant homomorphism ψ1 : U ≃ U∗ which is non trivial. By the Schur
lemma, ψ1 is an isomorphism. Obviously, for V one can proceed in the same way. The
Schur-lemma also gives the uniqueness of the invariant structures and the relation between
them.

Lemma 4. Let g ⊕ h be semi-simple and W = U ⊗ V an irreducible complex self-dual
representation. Then W is self-conjugate if and only if both, U and V are self-conjugate.
The invariant isomorphisms are related by ψ = ψ1 ⊗ ψ2.

Proof. As W is self-dual, both U and V are self dual. Hence, U ≃ U
∗

and V ≃ V
∗
. If

ψ : W ≃ W ∗ and C : W ≃ W , analogously as in the proof of the previous lemma, one
defines φ1 : U → U

∗
via

[φ1(u)] (û) := [ψ(u ⊗ v0)] (C(û⊗ v1)).

Again, by the Schur lemma, this is an isomorphism, yielding an isomorphism ψ1 : U ≃ U .
All invariant structures are uniquely defined.

Theorem 3. Let g ⊂ so(2, n) be an irreducibly acting Lie algebra. Then g ⊂ u(1, n/2) or
g is simple.

Proof. By Proposition 2 we can suppose that g is semisimple and that the representation of
g on R

2,n is of real type. Assume that g = g1 ⊕g2 is not simple. Then its complexification
is semisimple and not simple, and thus, the complexified representation C

n+2 of R
2,n is a

tensor product, C
n+2 = V1 ⊗ V2 of irreducible representations of g1 and g2. As C

n+2 is of
real type, the second lemma implies that V1 and V2 are either both of real type or both of
quaternionic type. Since g ⊂ so(n + 2,C), by the first lemma both are self-dual, defined
by either two complex linear symmetric or symplectic forms.

Assume first that both, V1 and V2 are of real type, i.e. Vi = EC
i where Ei are irreducible

real representations of gi. If gi ⊂ so(Vi), also both Ei are orthogonal, i.e. g1 ⊂ so(p, q)
and g2 ⊂ so(r, s) with 2 = ps+ qr. W.l.o.g. this yields two cases: The first is g1 = so(2)
and g2 ⊂ so(1, n/2) acting on R

2 ⊗ R
1, n

2 , or g1 = g2 = so(1, 1). But both cases contradict
to the assumption that g was semisimple.

Now we consider the case where the Vi’s and thus both Ei’s are symplectic repre-
sentations. In this case the defining scalar product on R

2,n has neutral signature, i.e.
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g ⊂ so(2, 2), and gi ⊂ sp(1,R) = sl(2,R) acting irreducible. Hence, gi either one-
dimensional and therefore Abelian, two-dimensional, and thus solvable, or equal to sl(2,R).
The first two possibilities are excluded by the semisimplicity assumption. We obtaining
that g is equal to sl(2,R) ⊕ sl(2,R) = so(2, 2).

Now we have to deal with the case where both representations, V1 and V2 are of
quaternionic type. As g ⊂ so(n+2,C), they are either both orthogonal or both symplectic.

Using Lemma 2 we can conclude the proof of the theorem: First consider the case
that g = g1 ⊕ g2 with gi ⊂ sp(pi, qi) ⊂ u(2pi, 2qi). The tensor product of the hermitian
forms on Vi defines a hermitian form of signature (4(p1q2 + p2q1), 4(p1p2 + q1q2)) on V =
EC. Since V is an irreducible representation of g, the space of hermitian forms on V is
one-dimensional. Hence, the defined hermitian form is a multiple of the hermitian form
obtained by extending the signature (2, n) scalar product on E to V . But 2 6= 4(p1q2+p2q1)
which excludes this case.

For the case gi ⊂ so∗(2mi) ⊂ u(mi,mi) we obtain that g ⊂ u(2m1m2, 2m1m2), which
implies mi = 1, Vi = C

2 and gi = so∗(2) = so(2) and g is no longer semisimple.

2.4 Duality for symmetric spaces and consequences

For a Riemannian symmetric space G/K given by the Cartan decomposition g = k ⊕ m,
i.e. by the Lie triple system m with the Lie bracket of g there is a corresondence between
totally geodesic submanifolds and Lie subtriples,

{totally geodesic submanifolds G′/K ′ of G/K} ≃ {Lie subtriples m′ ⊂ m} (2)

On the other hand there is the dualtity between compact and non compact symmetric
spaces. If g = k ⊕ m is a Cartan decomposition defining a Riemannian symmetric space,
then the one defines the Lie algebra g∗ := k ⊕ m∗ by setting

m∗ := m with Lie bracket [X,Y ]∗ := −[X,Y ]

and all the other commutators are the same as in g. In other words, g∗ = k ⊕ i · m with
complex linearly extended commutator. Then g∗ defines the dual symmetric space. We
get the following correspondence

{totally geodesic submanifolds of G∗/K} ≃ {totally geodesic submanifolds of G/K}

≃ ≃

{Lie subtriples in m∗} ≃ {Lie subtriples in m}.

Hence, a totally geodesic submanifold in a compact Riemannian symmetric space G/K
is a compact Riemannian symmetric space H/L, and the corresponding totally geodescic
submanifold in the non-compact dual G∗/K is given by H∗/L. For more details we refer
the reader to [BCO03, Chapter 9].
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This correspondence will enable us to describe totally geodesic submanifolds in the
Lie Ball SO0(2, n)/SO(2) × SO(n) with the help of totally geodesic submanifolds in the
complex quadric Qn = SO(n+ 2)/SO(2) × SO(n).

We can now apply Karpelevich’s Theorem 2 to what we have obtained so far.

Theorem 4. Let G ⊂ SO0(2, n) be a connected irreducibly acting subgroup. Then G ⊂
U(1, n) or G is simple and equal to the effectively acting isometry group of a totally geodesic
submanifold in the non-compact symmetric space SO0(2, n)/SO(2) × SO(n).

Proof. Let G ⊂ SO0(2, n) but G 6⊂ U(1, n). From the previous section we know that G is
simple. By Karpelvich’s Theorem 2 it follows that G has a totally geodesic orbit T in the
non-compact symmetric space Ln := SO0(2, n)/SO(2) × SO(n). The subgroup

I(T ) := {A ∈ G | Ap = p for all p ∈ T }

is a normal subgroup in G. As G is simple, I(T ) is trivial and G acts effectively on
T . Hence, T = G/K ⊂ Ln is a non-compact symmetric space with K ⊂ G maximally
compact.

In the next section we will determine all irreducibly acting groups G ⊂ U(1, n) by
applying Karpelevich’s theorem to the complex projective space. In the last section we will
then use a classification of totally geodesic submanifolds in Qn = SO(n+2)/SO(2)×SO(n)
by [Kle08] and the just explained duality to determine the remaining G’s.

3 Irreducible subgroups of U(1, n) and complex hyperbolic
space

Using Karpelevich’s Theorem in this section we will proof the following statement.

Theorem 5. Let G ⊂ U(1, n) ⊂ SO(2, 2n) be a connected subgroup that acts irreducibly
on R

2,2n. Then SU(1, n) ⊂ G or G = S1 · SO0(1, n).

To this end we consider the complex vector space C
n+1 =: C

n,1 endowed with the
Hermitian form Q:

Q = −|z0|2 + |z1|2 + |z2|2 + · · · + |zn|2 .
Let us denote by U(1, n) ⊂ GL(n + 1,C) the subgroup that preserves Q.

Let N := {p ∈ C
n,1 : Q(p) < 0} be the set of negative points. Notice that N is a

cone preserved by the U(1, n)-action. Let us call CHn the projectivization of N . Thus,
by taking z0 = 1 we can see that CHn is identified with the unit ball of C

n. Namely,

CHn ∼= {Z ∈ C
n : |Z|2 < 1} .
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It is standard to see that the Hermitian formQ induces on CHn a U(1, n)-invariant Rie-
mannian metric of constant holomorphic curvature. Indeed, we get CHn ∼= SU(1, n)/U(n)
as symmetric space of rank one. Notice that the U(1, n)-action on CHn is not effective since
the matrices eiθId ∈ U(1, n) leaves invariant any complex line. Recall also that the presen-
tation CHn ∼= SU(1, n)/U(n) as symmetric quotient is unique. Namely, if CHn ∼= G/K
where G is semisimple (connected and simply connected) and K ⊂ G maximal compact
then G = SU(1, n) and K = U(n).

The following fact about totally geodesic submanifolds of CHn can be found in [Gol99,
pp. 74], for example.

Proposition 3. Let T ⊂ CHn be a complete totally geodesic submanifold. Then T is
either a totally real submanifold or a complex submanifold. In the totally real case T is
isometric to real hyperbolic space, otherwise T is biholomorphic and isometric to a lower
dimensional complex hyperbolic space. In particular, there exists a real vector subspace
V ⊂ C

n,1 such that T = V
⋂

CHn.

Now we are ready to deduce Theorem 5 from Karpelevich’s Theorem.

Proof of Theorem 5. Let H ⊂ U(1, n) be connected and acting irreducibly on R
2,2n then

H is reductive, i.e. H = Z · S where Z is the centre and S semisimple. According with
Proposition 2 we know that the centre Z is trivial or equal to S1. Hence, the semisimple
part S cannot be trivial.

Now, according to Karpelevich’s Theorem S has a totally geodesic orbit T of CHn. If
T is a complex submanifold then Proposition 3 implies that S must be transitive on CHn

since otherwise the complex subspace V associated to T is invariant by S and Z = S1.
Thus H can not be irreducible. So S is transitive and we get by the uniqueness of the
representation of the symmetric quotient that SU(1, n) = S.

Assume now that T is not a complex submanifold. Then, the classification of totally
geodesic submanifolds of CHn imply T ∼= RHn. Otherwise T is contained in a proper
complex totally geodesic submanifold of CHn and this imply that H is not irreducible as
above. Thus, T is a totally real totally geodesic submanifold. Without lost of generality
we can assume that T = RHn where RHn = {Z ∈ R

n ⊂ C
n : |Z|2 < 1}. Notice that the

Lie algebra of the group I(T ) is trivial. Indeed, if u ∈ Lie(I(T )) then the tangent space
to T at 0 ∈ R

n ⊂ C
n is contained in the kernel of u. Since T is totally real and u ∈ u(1, n)

we get that also the normal space of T at 0 is contained in the kernel of u. Thus u vanish.
Since I(T ) is trivial we get that S = SO0(1, n) ⊂ SU(1, n). Now the center must be S1

and so H = S1 · SO0(1, n).
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4 The Lie ball and its totally geodesic submanifolds

4.1 The projective model of the Lie ball.

Let R
2,n the real vector space R

n+2 endowed with the quadratic form

q(X,Y ) := 〈X,Y 〉 := −x0y0 − x1y1 +
n+1∑

j=2

xjyj,

where X = (x0, · · · , xn+1) and Y = (y0, · · · , yn+1). Let Π ⊂ R
2,n be a 2-dimensional

subspace. The 2-plane Π is called negative if q|π is negative definite. Let us define the
Lie ball Ln as one connected component of the set of oriented negative definite 2-planes
of R

2,n. For more details about this model see [Sat80, p. 285, §6] or [Wol72, p. 347].
Note that SO(2, n) acts transitively on the oriented negative definite 2-planes, and that
SO0(2, n) acts transitively on Ln.

Let C
2,n be the complexification of the R

2,n, i.e. q becomes

q(Z,W ) = −z0w0 − z1w1 +

n+1∑

j=2

zjwj,

where Z = (z0, · · · , zn+1) and W = (w0, · · · , wn+1). Let Π = spanR{A,B} ⊂ R
2,n,

A,B ∈ R
2,n, be an oriented negative definite 2-plane. We can assume that 〈A,B〉 = 0 and

q(A,A) = q(B,B) < 0. Put Z = A+ iB ∈ C2,n . Then it is not difficult to see that

Z ∈ Q2,n := {Z = (z0, · · · , zn+1) ∈ C
2,n | −z2

0 − z2
1 +

n+1∑

j=2

z2
j = 0}

and that q(Z,Z) < 0. Call Q2,n
+ the subset of Q2,n of negative points, i.e.

Q2,n
+ = {Z = (z0, · · · , zn+1) ∈ C

2,n | −z2
0 − z2

1 +

n+1∑

j=2

z2
j = 0 and q(Z,Z) < 0}.

It follows that we can identify the Lie ball Ln with a subset of the projective space
CPn,1, namely, with a connected component of the image of the canonical projection
π : C

n+2 \ 0 → CPn,1. Thus, we have homogeneous coordinates1 [z0 : z1 : · · · : zn+1] to
work with the Lie ball Ln.

Let Π0 = spanR{e0, e1} be the “canonical” negative definite 2-plane. From now on we
will assume that the Lie ball Ln is the connected component of Π0. Then Π0 corresponds
to the point Z0 = e0 + ie1 = (1, i, 0, . . . , 0). Thus Π0

∼= [1 : i : 0 : . . . : 0] ∈ π(Q2,n
+ ) ∼= Ln.

The isotropy group at Π0 is SO(2) × SO(n).

1In the appendix an explicit bi-holomorphism with the classical Cartan’s domain of type IV is given.
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4.2 Lifting submanifolds, full submanifolds, and irreducible actions

Let M ⊂ Ln be a subset. We will denote L(M) ⊂ R
2,n the subset defined as follows:

L(M) :=
⋃

Π∈M

{p ∈ Π}

We call L(M) the lift of M . Let M ⊂ R
n be a submanifold. The M is said to be full if

M is not contained in a proper affine subspace of R
n. A submanifold M ⊂ Ln of the Lie

ball is called full if its lift L(M) is full in R
2,n. The following is a well-known property.

Proposition 4. Let G ⊂ GL(R, n) be a connected Lie subgroup. Assume that G acts
irreducibly on R

n. Then any G-orbit G.p, p 6= 0, is a full submanifold of R
n.

Proof. Let Sp = spanR{G.p} ⊂ R
n be the linear span of a G-orbit G.p, p 6= 0. If Sp is not

full from some p then Sp lies inside of hyperplane 〈·, v〉 = const., for some v 6= 0. By taking
derivatives we get that the Lie algebra g := Lie(G) leaves the subspace Ω = {x : 〈x, v〉 = 0}
invariant. Since G is connected we get that Ω is G-invariant.

The following application is also interesting.

Proposition 5. Let G ⊂ SO(2, n) be a connected Lie subgroup and let Π ∈ Ln be a point.
Let G.Π be the orbit of G through Π in the Lie ball. If the lift L(G.Π) is not full then G
do not acts irreducibly on R

2,n.

Proof. Just notice that the G-orbit of any point p ∈ Π is contained in the same proper
affine subspace that the lift L(G.Π). Then apply the above proposition.

In the following we will classify full totally geodesic submanifolds in the Lie ball. This
is (almost) equivalent to the classification of maximal totally geodesic submanifolds in the
classical sense (see Sebastian Klein’s table at page 11 of [Kle08]). We will then check
whether the corresponding isometry groups are in our list of irreducible subgroups of
SO0(2, n), respectively, weather or not they are simple (which is the remaining possibility
after the previous sections. But first we have to recall the classification of totally geodesic
submanifolds in the compact situation, i.e. for the complex quadric Qn.

4.3 The complex quadric and its totally geodesic submanifolds

The complex quadric Qn = SO(n + 2)/SO(2) × SO(n) can be viewed in to ways. First,
as the Grassmannian of Z(oriented 2-planes in R

n+2. Secondly, taking into account its
complex nature, one can view it as a complex hypersurface in complex projective space,
namely as

Qn :=

{
[z0 : . . . : zn+1] ∈ CPn+1 |

n+1∑

k=0

(zk)2 = 0

}
.
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The subgroup of SU(n+2) acting on C
n+2 and thus on CPn+1 that leaves invariant Qn is

SO(n+ 2) with isotropy group SO(2)×SO(n). The correspondence to the Grassmannian
is given by

P = span(x, y) 7→ π(x+ iy) ∈ CPn+1

where π : C
n+2 → CPn+1 is the canonical projection.

Now we will list the totally geodesic submanifolds in Qn and their isometry groups as
classified in [CN77] and [Kle08, Theorem 4.1 and Section 5]. Apart from geodesics, there
are the following types:

(I1,k) for 1 ≤ k ≤ n/2: This orbit is defined by the following totally geodesic isometric
embedding

CP k ∋ [z0 : . . . : zk] 7→ [z0 : . . . : zk : iz0 : . . . : izk : 0 : . . . : 0] ∈ Qn.

Its image is a maximal totally geodesic submanifolds if 2k = n and n ≥ 4. Its
isometry group is SU(k + 1) and the totally geodesic submanifold is isometric to
SU(k + 1)/U(k).

(I2,k) for 1 ≤ k ≤ n/2: Here the embedding is give by the restriction of the map for type
(I1,k) to real projective space RP k in CP k. Hence, it is never maximal. Nevertheless,
it will be interesting for our purposes. It is isometric to O(k + 1)/O(k).

(G1,k) for 1 ≤ k ≤ n− 1: This is the embedding of a lower dimensional quadric Qk into
Qn,

Qk ∋ [z0 : . . . : zk+1] 7→ [z0 : . . . : zk+1 : 0 : . . . : 0] ∈ Qn.

It is maximal for k = n− 1 ≥ 2. Its isometry group is SO(k + 2) and it is isometric
to SO(k + 2)/SO(2) × SO(k).

(G2,k1,k2) for 1 ≤ k1 + k2 ≤ n: This is a totally geodesic isometric embedding of a
product of two spheres with radius 1/

√
2 and of dimension k1 and k2 given by

((x0, . . . , xk1
), (y0, . . . , yk2

)) 7→ [x0 : . . . : xk1
: iy0 : . . . : iyk2

: 0 : . . . : 0] ∈ Qn

This orbit is maximal for k1 + k2 = n ≥ 3. Its isometry group is given by SO(k1 +
1) × SO(k2 + 1).

(G3) The quadric Q2 is isometric to CP 1 ×CP 1 i.e., CP 1 ×CP 1 ≡ Q2 . Let C = RP 1 ⊂
CP 1 be the trace of a closed geodesic in CP 1. Then the map

CP 1 × C → CP 1 × CP 1 ≡ Q2 → Qn

where the last embedding represents the embedding of type (G1,2) described above.
So the embedding CP 1 × C →֒ Qm is maximal only for n = 2.
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(P1,k) for 1 ≤ k ≤ n. This is given as the embedding of type (G2, k1, k2) for k1 or
k2 equal to zero. Its image is maximal for k = n. The isometry group is given as
SO(k + 1).

(P2) This is the embedding of type (G1, k) for k = 1. It is maximal only for n = 2 and
its isometry group is SO(3).

(A) The totally geodesic submanifold is isometric to the 2-sphere of radius
√

10/2. It is
maximal only for n = 3 and its isometry group is given by SO(3).

4.4 Totally geodesic submanifolds of the Lie ball

We will now use Cartan’s duality (as explained in Section 2.4) and Klein’s classification
as listed in the previous section. In the following, the immersions u will be equivariant.
So they are useful to compute the corresponding immersion of the group into SO(2, n).

Type (I1,k) Here we have 1 ≤ k ≤ n/2. Let us consider the following map,

u : [z0 : . . . : zk] −→ [z0 : iz0 : . . . : zk : izk : 0 : . . . : 0].

The image of u is contained in π(Q2,n). In order to see which point is taken by u to Ln it
is enough to see that

−|z0|2 − |iz0|2 +

n+1∑

i=1

(
|zi|2 + |izi|2

)
= 2

(
−|z0|2 +

n+1∑

i=1

|zi|2
)

Thus, u[z0 : . . . : zk : 0 : . . . : 0] ∈ Ln if and only if −|z0|2 +
∑n+1

i=1 |zi|2 < 0. Hence, u gives
an holomorphic immersion from the complex hyperbolic space CHk into our Lie ball Ln.
Namely, CHk is regarded as the projective submanifold of CP k,1 with −|z0|2+

∑n+1
i=1 |zi|2 <

02.
The group of isometries of CHk is SU(1, k) ⊂ SO(2, n) which acts irreducibly on R

2,n

only for k = n/2. To see this it is enough to identify R
2,n with C

1,n/2 endowed with

the quadratic form −|w0|2 +
∑n/2

i=1 |wi|2. The action of SU(1, n/2) is transitive on the
set of negative 2-planes of C

1,n/2 given by complex lines. For example, the complex line
generated by the vector (1, 0, . . . , 0) ∈ C

1,n/2 is a negative definite 2-plane3 of R
2,n. Let

w = (w0, . . . , wn/2) ∈ C
1,n/2 be a vector. Then the 2-plane generated by w, i.e. the

complex line, is given by the homogeneous coordinates [w0 : iw0 : . . . : wn/2 : iwn/2]. This
show that the image of our map u is the set of 2-planes coming from complex lines of
C

1,n/2. Thus, the image u(CHn/2) is the orbit of SU(1, n/2) through Π0.
Notice that the lift L(u(CHn/2)) of the totally geodesic submanifold u(CHn/2) is the

union of the points in all negative complex lines. Thus, such a subset is full in R
2,n and

this is consistent (indeed equivalent) to the fact that SU(1, n/2) acts irreducibly on R
2,n.

2To see CH
k as a ball in C

k just take z0 = 1, i.e. the affine chart.
3Actually, such a complex line is the 2-plane which we called Π0 in the first section.
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Type (I2,k) Here it is 1 ≤ k ≤ n/2. The map u is the “real form” of the above map:

[x0 : . . . : xk]
u→ [x0 : ix0 : . . . : xk : ixk : 0 : . . . : 0]

Thus we get an embedding of RHk (in the projective Klein model4) into the Lie ball.
Notice that the subgroup SO(1, k) ⊂ SU(1, n/2) acts reducibly on R

2,n, even for k = n/2.
In the light of Theorem 4 we do not get another irreducible subgroup of SO(2, n). But
we should point out that the group I(u(RHk)) i.e. the isometries that fix all points of
the image of u is given as I(u(RHk)) = SO(2) acting diagonally, i.e. SO(2) ∼= ei θId. For
k = n/2 this group makes G = I(u(RHk)) · SO(1, n/2) act irreducibly on R

2,n. G was
already on our list.

Type (G1,k) This is the embedding of a lower dimensional Lie ball. Its isometry group
is given by SO(2, k), which does not act irreducibly on R

2,n.

Type (G2,k1, k2) In this case 1 ≤ k1 + k2 ≤ n and the map u is given by:

([x0 : . . . : xk1
], [y0 : . . . : yk2

])
u7→ [x0 : iy0 : x1 : . . . : xk1

: iy1 : . . . : iyk2
: 0 : . . . : 0]

The image lies in Ln if and only if:

−x2
0 − y2

0 +

k1∑

i=1

x2
i +

k2∑

j=1

y2
j < 0

and

−x2
0 + y2

0 +

k1∑

i=1

x2
i −

k2∑

j=1

y2
j = 0.

Since the map is given in homogeneous coordinates we can assume that −x2
0 +

∑k1

i=1 x
2
i =

−y2
0+
∑k2

j=1 y
2
j which shows that the image of u is in the Lie ball if and only if [x0 : . . . : xk1

]
and [y0 : . . . : yk2

] lie in the real hyperbolic spaces of dimensions k1 and k2. Hence, u
is an embedding of RHk1 × RHk2 into the Lie ball. The isometry groups is given by
SO(1, k1) × SO(1, k2) ⊂ SO(2, k1 + k2) ⊂ SO(2, n). Thus, the isometry group of this
totally geodesic submanifold does not act irreducibly, since it fixes R

1,k1 and R
1,k2.

Type (P1,k) Here it it 1 ≤ k ≤ n and the embedding is given by the one of type (G2,
k1, k2) for k1 or k2 equal to zero. Hence, we can write it as

[x0 : . . . : xk] → [i : x0 : . . . : xk : 0 . . . : 0]

Thus we get an immersion from RHk (as in the usual Lorentzian model) into the Lie ball
Ln. The isometry group of the totally geodesic submanifold is SO(1, k) acting reducibly
even for k = n by fixing the first basis vector e0.

4Here we refer to Felix Klein.
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Type (P2) This is the embedding of type (G1, k) for k = 1 and thus the isometry group
of the totally geodesic submanifolds is given as SO(2, 1) ⊂ SO(2, n) acting reducibly by
fixing e3, . . . , en+1.

Type (G3) This totally geodesic submanifold is a Riemannian product. Then its isom-
etry group G is not simple. Thus this case reduce to the case of G ⊂ U(1, n).

Type (A) Here it is n ≥ 3. This is an embedding of 3-dimensional real hyperbolic space
into the Lie ball. The only irreducible acting (simple) subgroup of SO(2, n) which did not
appear as isometry group of a totally geodesic orbit in the Lie ball is SO(1, 2) ⊂ SO(2, 3).
Thus we conclude that this embedding of SO(1, 2) gives the isometry group of a totally
geodesic orbit of type (A) for n = 3. For n > 3 it is reducible, of course. For details on
this case please refer to Appendix A.1.

We conclude that the only irreducibly acting simple proper subgroups of SO(2, n) that
appear as isometry group of a totally geodesic submanifold in the Lie ball are the following

SU(1, n/2) and SO(1, 2) ⊂ SO(2, 3).

5 Proof of Theorem 1

Let G ⊂ SO(2, n) be a connected subgroup whose action on R
2,n is irreducible. Assume

that G 6= SO0(2, n). If G is not simple then Theorems 4 and 5 imply that G is one of
the groups in our list. Namely, n = 2p and either G = U(1, p) or G = S1 · SO0(1, p) if
p > 1. If G is simple then (up to conjugation) G is the group of isometries of one of the
totally geodesic submanifolds of the Lie ball Ln listed in the previous section. Thus, either
G = SU(1, n/2) or G = SO0(1, 2) ⊂ SO(2, 3). This completes the proof. 2

A Appendix

A.1 so(1, 2) acting irreducibly on R2,3 and orbits of type (A)

In this section we want to describe the irreducible injections of so(3) and so(1, 2) into
so(5) and so(2, 3), respectively, and to describe the Lie subtriples in the complex quadric
and the Lie ball corresponding to them.

The irreducible injection of so(3) ⊂ so(5) corresponds to an irreducible symmetric
space of type AI for n = 3, which we will describe in the non-compact setting. To this
end split sl(3,R) as

sl(3,R) = so(3) ⊕ sym0(3)

where sym0(3) denotes the trace free, symmetric 3 × 3 matrices. This splitting provides
symmetric data, since

[so(3), so(3)] ⊂ so(3), [so(3), sym0(3)] ⊂ sym0(3), [sym0(3), sym0(3)] ⊂ so(3).
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The adjoint representation of so(3) on the five-dimensional space sym0(3) is orthogonal
with respect to the Killing form of sl(3,R), which is positive definite on sym0(3). Hence,
the above splitting defines an irreducible 5-dimensional Riemannian symmetric space with
isotropy group so(3) ⊂ so(5), irreducibly.

In order to write down so(3) in 5 × 5 matrices, we identify the standard basis in R
5

with the following matrices which are orthogonal under the Killing form of sl(3,R):

e1 = S12, e2 = S13, e3 = diag(−1, 1, 0), e4 = S23, e5 =
1√
3

diag(−1,−1, 2),

where Sij denotes the symmetric matrix with 1 at the (i, j)-th spot. Acting via the adjoint
representation, the standard basis of so(3)

U = D12 , V = D13 , and W = D23

is given as follows

U =




0
−2 0 0
0 −1 0

2 0
0 1
0 0

0




, V =




0
0 −1 0

−1 0 −
√

3

0 1
1 0

0
√

3

0




and

W = [U, V ] =




0 −1
1 0

0

0

0 −1 0

1 0 −
√

3

0
√

3 0




One verifies that

[V,W ] = U and [W,U ] = V,

which are the commutator relations of so(3).
Regarding the complex quadric Qn = SO(n+ 2)/SO(n), the Cartan decomposition of

the Lie algebra so(n+ 2) is given by

k := so(2) ⊕ so(n) =

{(
A 0

0 B

)
| A ∈ so(2), B ∈ so(n)

}

m :=






 0

−ut

−vt

u v 0


 | u, v ∈ R

n





Now, for n ≥ 3, n = span(U, V ) defines a Lie sub-triple of the Lie triple corresponding to
the complex quadric, with isometry algebra so(3) = [n, n] ⊕ n ⊂ so(5) ⊂ so(n + 2). The
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totally geodesic orbit corresponding to this Lie subtriple is of type (A), see [Kle08, page
85].

Now we transfer this situation to the Lie ball with Cartan decomposition

so(2, n) = k ⊕ m∗ with m∗ :=






 0

ut

vt

u v 0


 | u, v ∈ R

n





Here the totally geodesic orbits of type (A) are given by the Lie subtriple

n∗ = span(U∗, V ∗)

where U∗ and V ∗ are as above, but symmetric instead of skew symmetric. Here we have
that

−W = [U∗, V ∗]

and again
[V ∗,W ] = U∗ and [W,U∗] = V ∗.

These are the commutator relations of so(1, 2) ≃ sl(2,R). Again, the irreducible represen-
tation so(1, 2) ⊂ so(2, 3) comes from the irreducible symmetric space of signature (2, 3)
given by

sl(3,R) = so(1, 2) ⊕ t

where t is a five-dimensional complement of so(1, 2) in sl(3,R), consisting of trace-free
matrices with the right symmetries.

Finally, in order to verify a remark in the introduction, we want to show that SO0(1, 2)
does not act locally transitively on S1,2 = SO0(2, 3)/P where P is the parabolic subgroup
given as the stabiliser of a light-like line. For general (p, q), the Lie algebra of P is given
as p = (R ⊕ so(p, q)) ⋉ R

p,q ⊂ so(p + 1, q + 1). A group G ⊂ SO(p + 1, q + 1) acts locally
transitively on Sp,q = SO(p+ 1, q + 1)/P if

so(p + 1, q + 1) = g + p

where g ⊂ so(p+1, q+1) is the Lie algebra of G (for details see [Alt08]). For g = so(1, 2) ⊂
so(2, 3), irreducibly, this sum has to be direct since the parabolic p is 7-dimensional in this
case. But U∗ ∈ so(1, 2) fixes the line spanned by the light-like vector vector e1+e3. Hence,
so(1, 2) ∩ p 6= {0} and thus, this action of SO(1, 2) on S1,2 is not locally transitively.

A.2 A biholomorphism between the Lie ball and Cartan’s bounded do-
main of type IV

In this appendix we give an explicit bi-holomorphism between the Lie ball Ln and (the
classical) Cartan’s bounded domain of type IV in C

n. Let f be the map given as follows:
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f(z1, · · · , zn) = [i(Λ − 1) : Λ + 1 : 2z1 : · · · , 2zn] ,

where Λ := z2
1 + · · · + z2

n. Thus, f : C
n → CP 1,n. Let us show that f(Cn) ⊂ Q2,n.

Indeed,
(2z1)2 + · · · + (2zn)2 − (i(Λ − 1))2 − (Λ + 1)2 =

4Λ + (Λ − 1)2 − (Λ + 1)2 = 4Λ + (Λ − 1 − Λ − 1)(Λ − 1 + Λ + 1) =

= 4Λ − 4Λ = 0

Let us characterize when a point z = (z1, · · · , zn) is take by f to a point in the Lie
ball L. By definition f(z) ∈ Ln if and only if the following condition holds:

|2z1|2 + · · · + |2zn|2 − |i(Λ − 1)|2 − |Λ + 1|2 < 0

Notice that f(0) = [−i : 1 : 0 : · · · : 0] = [1 : i : 0 : · · · : 0] = Π0 satisfy such a
condition. Thus, we are interested in the connected component of 0 ∈ C

n satisfying such
a condition. A simple calculation shows that the above condition is equivalent with:

2(|z1|2 + · · · + |zn|2) − |z2
1 + · · · + z2

n|2 − 1 < 0

Notice that |z2
1 + · · · + z2

n|2 ≤ (|z1|2 + · · · + |zn|2)2. So let z(t) be a continuous curve
starting at 0 (i.e., z(0) = 0) and satisfying the above condition. Then at each t we get

2(|z1|2 + · · · + |zn|2) − 1 < |z2
1 + · · · + z2

n|2 ≤ (|z1|2 + · · · + |zn|2)2

So
2(|z1|2 + · · · + |zn|2) − 1 < (|z1|2 + · · · + |zn|2)2

−(|z1|2 + · · · + |zn|2 − 1)2 < 0

Thus the curve z(t) remains inside the unit ball |z| < 1.

This shows that f takes the bounded domain Ω ⊂ C
n given by the inequalities:

|z| < 1

and

2(|z1|2 + · · · + |zn|2) − |z2
1 + · · · + z2

n|2 − 1 < 0

into the Lie ball Ln. Notice that Ω is indeed the classical Cartan’s bounded domain of
type IV . Actually, f is just the stereographic projection of the quadric −w2

1 −w2
0 +w2

1 +
· · · + w2

n = 0 regarded as an affine sphere in the chart w0 = 1 of CP 1,n.
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