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Graph Searching

Goal

In a contaminated network,

an invisible omniscient arbitrary fast fugitive ;

a team of searchers ;

We want to find a strategy that catch the fugitive
using the fewest searchers as possible.

Motivations

network security, speleological rescue...

game related to well known graphs’parameters :
treewidth and pathwidth ;
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Search Strategy, Parson. [GTC,1978]

Sequence of three basic operations,. . .

1 Place a searcher at a vertex of the graph ;

2 Move a searcher along an edge of the graph ;

3 Remove a searcher from a vertex of the graph.

. . . that must result in catching the fugitive

The fugitive is caugth when it meets a searcher at a vertex or
in an edge of the graph.

We want to minimize the number of searchers.

Let s(G ) be the smallest number of searchers needed to catch
a fugitive in a graph G .
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Simple Examples : Path and Ring

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching



4/16

Simple Examples : Path and Ring

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching



4/16

Simple Examples : Path and Ring

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching



4/16

Simple Examples : Path and Ring

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching



4/16

Simple Examples : Path and Ring

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching



4/16

Simple Examples : Path and Ring

s(Path)=1

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching



4/16

Simple Examples : Path and Ring

s(Path)=1

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching



4/16

Simple Examples : Path and Ring

s(Path)=1

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching



4/16

Simple Examples : Path and Ring

s(Path)=1

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching



4/16

Simple Examples : Path and Ring

s(Path)=1

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching



4/16

Simple Examples : Path and Ring

s(Path)=1

s(Ring)=2
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Tree and Path Decompositions
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Tree and Path Decompositions

a tree T and bags (Xt)t∈V (T )
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Tree and Path Decompositions

a tree T and bags (Xt)t∈V (T )

every vertex of G is at
least in one bag ;
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Tree and Path Decompositions

a tree T and bags (Xt)t∈V (T )

every vertex of G is at least in one
bag ;

both ends of an edge of G
are at least in one bag ;
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Tree and Path Decompositions

a tree T and bags (Xt)t∈V (T )

every vertex of G is at least in one
bag ;

both ends of an edge of G are at
least in one bag ;

For any vertex of G , all bags that
contain it, form a subtree.

Width = Size of largest Bag -1

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching



5/16

Tree and Path Decompositions

a tree T and bags (Xt)t∈V (T )

every vertex of G is at least in one
bag ;

both ends of an edge of G are at
least in one bag ;

For any vertex of G , all bags that
contain it, form a subtree.

Width = Size of largest Bag -1

treewidth of G

tw(G ), minimum width
among any tree-decomposition
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Tree and Path Decompositions

a path P and bags (Xt)t∈V (P)

every vertex of G is at least in one
bag ;

both ends of an edge of G are at
least in one bag ;

For any vertex of G , all bags that
contain it, form a subpath.

Width = Size of largest Bag -1

pathwidth of G

pw(G ), minimum width
among any path-decomposition
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Relationship between search number and pathwidth

Ellis, Sudborough and Turner. [Inf. Comput.,1994]

For any graph G , vs(G ) ≤ s(G ) ≤ vs(G ) + 2

Kinnersley. [IPL.,1992]

For any graph G , vs(G ) = pw(G )

For any n-node graph G :

pw(G ) ≤ s(G ) ≤ pw(G ) + 2
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Connected Graph Searching

Limits of the Parson’s model

Searchers cannot move at will in a real network ;

It would be better to let searchers be grouped.

Connected Search Strategy

At any step, the cleared part of the graph must induced a
connected subgraph.
Let cs(G ) be the connected search number of the graph G .
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Cost of connectedness : case of trees

Barrière, Flocchini, Fraigniaud and Santoro. [SPAA, 2002]

Linear Algorithm

Barrière, Fraigniaud, Santoro and Thilikos. [WG, 2003]

For any tree T , s(T ) ≤ cs(T ) ≤ 2 s(T )− 2.
Moreover, these bounds are tight.
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Cost of connectedness : case of arbitrary graphs

Seymour and Thomas. [Combinatorica, 1994]

Bond Carving

Fomin, Fraigniaud and Thilikos. [Technical repport, 2004]

Using a branch-decomposition, polynomial constructive
algorithm that computes a connected search strategy.

For any connected graph G ,
cs(G ) ≤ s(G ) (2 + log |E (G )|).
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Connected Treewidth

Connected e-cut of a tree-decomposition (T , X )

The edge e is said connected if both G [T1(e)] and G [T2(e)]
induced connected subgraphs of G .

Connected tree-decomposition (T , X )

For any e ∈ E (T ), e is connected.

Connected treewidth, ctw(G )

1T  (e)

e

T  (e)2
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Connected Treewidth

For any connected graph G , ctw(G ) = tw(G )

Golumbic. Algorithmic graph theory and perfect graphs

A “clique tree” of a minimal triangulation H of a connected
graph G is an optimal tree-decomposition of G .

Parra and Scheffler. [DAM 1997]

A “clique tree” of a minimal triangulation H of a connected
graph G is a connected tree-decomposition of G .
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Results (1)

Theorem 1 : new proof

For any connected graph G , ctw(G ) = tw(G )

Constructive proof

Given a tree-decomposition of width ≤ k of a connected graph
G with n vertices, our algorithm computes a connected
tree-decomposition of width ≤ k of G , in time O(n.k3).
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Results (2)

Theorem 2

For any connected graph G , cs(G ) ≤ s(G ) (1 + log2 |V (G )|).

Constructive proof

Given a tree-decomposition of a graph G , our algorithm
computes a connected search strategy for G , using at most
tw(G ) log |V (G )| searchers, in polynomial time.
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Squetch of the proof of Theorem 2

For any connected n-node graph G , cs(G ) ≤ s(G ) (1 + log2 n)

proof by induction on n

Robertson and Seymour. Graph Minors II. Algorithmic
Aspects of Tree-Width. J. of Alg 7, 1986.

For any tree-decomposition (T ,X ) of a n-node graph G ,
there are one (or two adjacent vertices) of T such that :
for any 1 ≤ j ≤ r , |G [Tj ]| ≤ n/2

1 iT T
...

TT i+1 r1 i rT T T
... ... ...
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Squetch of the proof of Theorem 2

Starting from a connected tree-decomposition of G

T1 Ti Tr

... ...

For any 1 ≤ i ≤ r , G [Ti ] is a connected subgraph with at
most n/2 vertices.

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching



15/16

Squetch of the proof of Theorem 2

Starting from a connected tree-decomposition of G

<  tw(G) (log(n/2)+1) searchers

T1 Ti Tr

... ...

There is a connected search strategy for G [T1], using at most
tw(G )(log(n/2) + 1) searchers.
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Squetch of the proof of Theorem 2

Starting from a connected tree-decomposition of G

<  tw(G) (log(n/2)+1) searchers

<  tw(G) searchers

T1 Ti Tr

to avoid recontamination

... ...

At most tw(G ) searchers are required to protect G [T1] from
recontamination from the remaining part of G .
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Squetch of the proof of Theorem 2

Starting from a connected tree-decomposition of G

<  tw(G) (log(n/2)+1) searchers

<  tw(G) searchers

T1 Ti Tr

to avoid recontamination

... ...

Then we can terminate the clearing of G [T1].
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Squetch of the proof of Theorem 2

Starting from a connected tree-decomposition of G

<  tw(G) searchers

<  tw(G) (log(n/2)+1) searchers

T1 Ti Tr

to avoid recontamination

... ...

Then we can use our tw(G )(log(n/2) + 1) searchers to clear
another subgraph G [Ti ], and so on...
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Squetch of the proof of Theorem 2

Starting from a connected tree-decomposition of G

<  tw(G) + tw(G)(log(n/2)+1) searchers

T1 Ti Tr

... ...

Connected search strategy using at most tw(G )(log n + 1)
searchers. Thus, cs(G ) ≤ s(G )(log n + 1)
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Conclusion and Further Work

Cost of connectedness

new upper bound of the ratio cs(G )/s(G )

constructive algorithm

Open problems

What is the optimal bound ?
In trees : cs(T )/s(T ) ≤ 2 and this bound is tight
[Barrière et al.].
If the fugitive is visible : cs(G )/s(G ) ≤ log n and this
bound is tight.

Is the problem of computing cs(G ) NP-complete ?
It is known to be NP-hard.
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