
1/16

Connected Treewidth and Connected Graph

Searching

Pierre Fraigniaud1 Nicolas Nisse2

CNRS, LRI, Université Paris-Sud, France.

LRI, Université Paris-Sud, France.

LATIN 05, March 21th, 2006

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

2/16

Graph Searching

Goal

In a contaminated network,

an invisible omniscient arbitrary fast fugitive ;

a team of searchers ;

We want to find a strategy that catch the fugitive
using the fewest searchers as possible.

Motivations

network security, speleological rescue...

game related to well known graphs’parameters :
treewidth and pathwidth ;

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

2/16

Graph Searching

Goal

In a contaminated network,

an invisible omniscient arbitrary fast fugitive ;

a team of searchers ;

We want to find a strategy that catch the fugitive
using the fewest searchers as possible.

Motivations

network security, speleological rescue...

game related to well known graphs’parameters :
treewidth and pathwidth ;

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

3/16

Search Strategy, Parson. [GTC,1978]

Sequence of three basic operations,. . .

1 Place a searcher at a vertex of the graph ;

2 Move a searcher along an edge of the graph ;

3 Remove a searcher from a vertex of the graph.

. . . that must result in catching the fugitive

The fugitive is caugth when it meets a searcher at a vertex or
in an edge of the graph.

We want to minimize the number of searchers.

Let s(G) be the smallest number of searchers needed to catch
a fugitive in a graph G .

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

3/16

Search Strategy, Parson. [GTC,1978]

Sequence of three basic operations,. . .

1 Place a searcher at a vertex of the graph ;

2 Move a searcher along an edge of the graph ;

3 Remove a searcher from a vertex of the graph.

. . . that must result in catching the fugitive

The fugitive is caugth when it meets a searcher at a vertex or
in an edge of the graph.

We want to minimize the number of searchers.

Let s(G) be the smallest number of searchers needed to catch
a fugitive in a graph G .

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

3/16

Search Strategy, Parson. [GTC,1978]

Sequence of three basic operations,. . .

1 Place a searcher at a vertex of the graph ;

2 Move a searcher along an edge of the graph ;

3 Remove a searcher from a vertex of the graph.

. . . that must result in catching the fugitive

The fugitive is caugth when it meets a searcher at a vertex or
in an edge of the graph.

We want to minimize the number of searchers.

Let s(G) be the smallest number of searchers needed to catch
a fugitive in a graph G .

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

3/16

Search Strategy, Parson. [GTC,1978]

Sequence of three basic operations,. . .

1 Place a searcher at a vertex of the graph ;

2 Move a searcher along an edge of the graph ;

3 Remove a searcher from a vertex of the graph.

. . . that must result in catching the fugitive

The fugitive is caugth when it meets a searcher at a vertex or
in an edge of the graph.

We want to minimize the number of searchers.

Let s(G) be the smallest number of searchers needed to catch
a fugitive in a graph G .

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

4/16

Simple Examples : Path and Ring

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

4/16

Simple Examples : Path and Ring

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

4/16

Simple Examples : Path and Ring

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

4/16

Simple Examples : Path and Ring

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

4/16

Simple Examples : Path and Ring

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

4/16

Simple Examples : Path and Ring

s(Path)=1

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

4/16

Simple Examples : Path and Ring

s(Path)=1

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

4/16

Simple Examples : Path and Ring

s(Path)=1

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

4/16

Simple Examples : Path and Ring

s(Path)=1

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

4/16

Simple Examples : Path and Ring

s(Path)=1

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

4/16

Simple Examples : Path and Ring

s(Path)=1

s(Ring)=2

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

5/16

Tree and Path Decompositions

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

5/16

Tree and Path Decompositions

a tree T and bags (Xt)t∈V (T)

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

5/16

Tree and Path Decompositions

a tree T and bags (Xt)t∈V (T)

every vertex of G is at
least in one bag ;

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

5/16

Tree and Path Decompositions

a tree T and bags (Xt)t∈V (T)

every vertex of G is at least in one
bag ;

both ends of an edge of G
are at least in one bag ;

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

5/16

Tree and Path Decompositions

a tree T and bags (Xt)t∈V (T)

every vertex of G is at least in one
bag ;

both ends of an edge of G are at
least in one bag ;

For any vertex of G , all
bags that contain it, form
a subtree.

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

5/16

Tree and Path Decompositions

a tree T and bags (Xt)t∈V (T)

every vertex of G is at least in one
bag ;

both ends of an edge of G are at
least in one bag ;

For any vertex of G , all bags that
contain it, form a subtree.

Width = Size of largest Bag -1

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

5/16

Tree and Path Decompositions

a tree T and bags (Xt)t∈V (T)

every vertex of G is at least in one
bag ;

both ends of an edge of G are at
least in one bag ;

For any vertex of G , all bags that
contain it, form a subtree.

Width = Size of largest Bag -1

treewidth of G

tw(G), minimum width
among any tree-decomposition

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

5/16

Tree and Path Decompositions

a path P and bags (Xt)t∈V (P)

every vertex of G is at least in one
bag ;

both ends of an edge of G are at
least in one bag ;

For any vertex of G , all bags that
contain it, form a subpath.

Width = Size of largest Bag -1

pathwidth of G

pw(G), minimum width
among any path-decomposition

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

6/16

Relationship between search number and pathwidth

Ellis, Sudborough and Turner. [Inf. Comput.,1994]

For any graph G , vs(G) ≤ s(G) ≤ vs(G) + 2

Kinnersley. [IPL.,1992]

For any graph G , vs(G) = pw(G)

For any n-node graph G :

pw(G) ≤ s(G) ≤ pw(G) + 2

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

7/16

Connected Graph Searching

Limits of the Parson’s model

Searchers cannot move at will in a real network ;

It would be better to let searchers be grouped.

Connected Search Strategy

At any step, the cleared part of the graph must induced a
connected subgraph.
Let cs(G) be the connected search number of the graph G .

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

7/16

Connected Graph Searching

Limits of the Parson’s model

Searchers cannot move at will in a real network ;

It would be better to let searchers be grouped.

Connected Search Strategy

At any step, the cleared part of the graph must induced a
connected subgraph.
Let cs(G) be the connected search number of the graph G .

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

8/16

Cost of connectedness : case of trees

Barrière, Flocchini, Fraigniaud and Santoro. [SPAA, 2002]

Linear Algorithm

Barrière, Fraigniaud, Santoro and Thilikos. [WG, 2003]

For any tree T , s(T) ≤ cs(T) ≤ 2 s(T)− 2.
Moreover, these bounds are tight.

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

9/16

Cost of connectedness : case of arbitrary graphs

Seymour and Thomas. [Combinatorica, 1994]

Bond Carving

Fomin, Fraigniaud and Thilikos. [Technical repport, 2004]

Using a branch-decomposition, polynomial constructive
algorithm that computes a connected search strategy.

For any connected graph G ,
cs(G) ≤ s(G) (2 + log |E (G)|).

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

10/16

Connected Treewidth

Connected e-cut of a tree-decomposition (T , X)

The edge e is said connected if both G [T1(e)] and G [T2(e)]
induced connected subgraphs of G .

Connected tree-decomposition (T , X)

For any e ∈ E (T), e is connected.

Connected treewidth, ctw(G)

1T (e)

e

T (e)2

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

11/16

Connected Treewidth

For any connected graph G , ctw(G) = tw(G)

Golumbic. Algorithmic graph theory and perfect graphs

A “clique tree” of a minimal triangulation H of a connected
graph G is an optimal tree-decomposition of G .

Parra and Scheffler. [DAM 1997]

A “clique tree” of a minimal triangulation H of a connected
graph G is a connected tree-decomposition of G .

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

12/16

Results (1)

Theorem 1 : new proof

For any connected graph G , ctw(G) = tw(G)

Constructive proof

Given a tree-decomposition of width ≤ k of a connected graph
G with n vertices, our algorithm computes a connected
tree-decomposition of width ≤ k of G , in time O(n.k3).

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

13/16

Results (2)

Theorem 2

For any connected graph G , cs(G) ≤ s(G) (1 + log2 |V (G)|).

Constructive proof

Given a tree-decomposition of a graph G , our algorithm
computes a connected search strategy for G , using at most
tw(G) log |V (G)| searchers, in polynomial time.

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

14/16

Squetch of the proof of Theorem 2

For any connected n-node graph G , cs(G) ≤ s(G) (1 + log2 n)

proof by induction on n

Robertson and Seymour. Graph Minors II. Algorithmic
Aspects of Tree-Width. J. of Alg 7, 1986.

For any tree-decomposition (T ,X) of a n-node graph G ,
there are one (or two adjacent vertices) of T such that :
for any 1 ≤ j ≤ r , |G [Tj]| ≤ n/2

1 iT T
...

TT i+1 r1 i rT T T
...

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

15/16

Squetch of the proof of Theorem 2

Starting from a connected tree-decomposition of G

T1 Ti Tr

... ...

For any 1 ≤ i ≤ r , G [Ti] is a connected subgraph with at
most n/2 vertices.

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

15/16

Squetch of the proof of Theorem 2

Starting from a connected tree-decomposition of G

< tw(G) (log(n/2)+1) searchers

T1 Ti Tr

... ...

There is a connected search strategy for G [T1], using at most
tw(G)(log(n/2) + 1) searchers.

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

15/16

Squetch of the proof of Theorem 2

Starting from a connected tree-decomposition of G

< tw(G) (log(n/2)+1) searchers

< tw(G) searchers

T1 Ti Tr

to avoid recontamination

... ...

At most tw(G) searchers are required to protect G [T1] from
recontamination from the remaining part of G .

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

15/16

Squetch of the proof of Theorem 2

Starting from a connected tree-decomposition of G

< tw(G) (log(n/2)+1) searchers

< tw(G) searchers

T1 Ti Tr

to avoid recontamination

... ...

Then we can terminate the clearing of G [T1].

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

15/16

Squetch of the proof of Theorem 2

Starting from a connected tree-decomposition of G

< tw(G) searchers

< tw(G) (log(n/2)+1) searchers

T1 Ti Tr

to avoid recontamination

... ...

Then we can use our tw(G)(log(n/2) + 1) searchers to clear
another subgraph G [Ti], and so on...

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

15/16

Squetch of the proof of Theorem 2

Starting from a connected tree-decomposition of G

< tw(G) + tw(G)(log(n/2)+1) searchers

T1 Ti Tr

... ...

Connected search strategy using at most tw(G)(log n + 1)
searchers. Thus, cs(G) ≤ s(G)(log n + 1)

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

16/16

Conclusion and Further Work

Cost of connectedness

new upper bound of the ratio cs(G)/s(G)

constructive algorithm

Open problems

What is the optimal bound ?
In trees : cs(T)/s(T) ≤ 2 and this bound is tight
[Barrière et al.].
If the fugitive is visible : cs(G)/s(G) ≤ log n and this
bound is tight.

Is the problem of computing cs(G) NP-complete ?
It is known to be NP-hard.

Pierre Fraigniaud, Nicolas Nisse Connected Treewidth and Connected Graph Searching

