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NEXTCAR project.

 C
onnected and Automated Vehicles 
(CAV) are emerging technologies that 
have a great potential to improve the 
safety, mobility, and energy efficiency 
of transportation systems. The 
U.S. Department of Transportation 

(DOT) and Department of Energy (DOE) have 
supported the research and development 
of CAV technologies in recent years to 
demonstrate the benefits of CAV technologies 
in real-world transportation systems. The 
authors of this article have participated in 
Michigan Technological University (Michigan 
Tech) NEXTCAR project funded by the DOE 
Advanced Research Projects Agency-Energy 
(ARPA-E). This article consists of three parts. 
First, the basic concept of CAV technology and 
the common methods to improve fuel economy 
are introduced. The effects of connectivity on 
vehicle/powertrain control and optimization are 
then discussed. Finally, Michigan Tech NEXTCAR 
project is presented to provide a more detailed 
view of predictive vehicle/powertrain control 
enabled by CAV technologies. 

OPTIMIZATION
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modes. The di erence between L3 and L4 vehicles is 
that L3 vehicles expect that a human driver will take 
over full control if it is required, but L4 vehicles work 
reliably even if a human driver does not respond ap-
propriately to a request for intervening. 

The U.S. Department of Transportation (DOT) 
and other federal/state funding agencies have sup-
ported research and pilot deployment e orts to 
develop crosscutting CV technologies and evaluate 
the e ectiveness of CV technologies in real-world 
transportation systems. One recent DOT award has 
been made to New York City Department of Trans-
portation (NY DOT), Tampa Hillsborough Express-
way Authority, and Wyoming Department of Trans-
portation (Wyoming DOT) to pilot next-generation 
connected vehicle technology [4]. The NY DOT pilot 
installs V2V technology in up to 8,000 city-owned 
vehicles that frequently travel in Midtown Manhat-
tan, as well as upgrades tra c signals and roadside 
units with V2I technology. The pilot in Tampa 
provides peak rush-hour congestion solutions and 
protects pedestrians by using smartphone com-
munication between pedestrians and vehicles. The 
Wyoming DOT project focuses on the e cient and 
safe movement of freight through the I-80 east-west 

FIGURE 2  Predictive powertrain control enabled by CAV technologies.

CONNECTED AND AUTOMATED VEHICLE TECHNOLOGY

Connected and automated vehicles are potentially paradigm-shift-
ing technologies for the improvement of safety, mobility, and ef-

ciency of transportation systems. Connected vehicles and automated 
vehicles are two di erent technologies. Connected Vehicles (CV) are 
able to communicate with nearby vehicles and roadway infrastructure 
through Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) 
communications. The V2V and V2I communications use wireless 
technology, such as Dedicated Short Range Communications (DSRC) 
[1] or cellular network (e.g., 4G/LTE). For Automated Vehicles (AV), 
the U.S. Department of Transportation (DOT) de nes AVs as [2] 
those in which at least some aspect of a safety-critical control function 

(e.g., steering, throttle, or braking) occurs without direct driver input.  
Based on the level of automation, the Society of Automotive Engineers 
(SAE) standard J3016 [3] de nes six levels of driving automation  
L0-No Automation, L1-Driver Assistance, L2-Partial Automation, L3-
Conditional Automation, L4-High Automation, and L5-Full Automa-
tion. L1 vehicles only have one automated control function (either 
steering or acceleration/deceleration) and L2 vehicles have two auto-
mated control functions (both steering and acceleration/deceleration). 
There is a key distinction between L2 and L3. For the levels below L2, 
a human driver performs part of the dynamic driving task while for L3 
or above, an automated driving system performs the entire dynamic 
driving task. L3 and L4 vehicles are capable of automated driving 
only for some driving modes, and L5 vehicles work for all the driving 
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corridor. By using V2V and V2I, the Wyoming DOT project will collect 
real-time tra c information and disseminate to vehicles that are not 
equipped with the new technologies.

The concurrent development of connected and automated vehicle 
technologies is anticipated to provide synergistic bene ts [4] to 
improve tra c safety, mobility, and energy e ciency [5]. For vehicle 
fuel economy, the major factors that increase vehicle fuel consumption 
are rapid acceleration/deceleration, number of stops, tra c conges-
tion, and bad road conditions. CAV technologies are being investigated 
to properly control these factors to reduce fuel consumption [6, 7], 
including Eco-routing [8], Speed Harmonization (SPD-HARM) [9], 
Eco-Approach and Departure (Eco-A/D) [10, 11], Platooning [12], and 
Cooperative Adaptive Cruise Control (CACC) [13]. 

Eco-routing strategy selects routes with the objective of minimizing 
fuel consumption or emissions, as opposed to the traditional objective 
of minimizing travel times [8]. Speed harmonization is a method to re-
duce temporal and spatial variations of tra c speed to reduce conges-
tion and improve tra c performance [9]. The Eco-A/D approach aims 
to eliminate stop/start or achieve most e cient deceleration/accelera-
tion at signalized intersections. In Eco-A/D applications, Roadside 
Equipment (RSE) units at intersections broadcast Signal Phasing and 
Timing (SPaT) information and intersection geometry information to 
approaching vehicles [10]. Upon receiving this information, the Eco-
A/D algorithm determines the vehicle’s optimal speed pro le to pass 
through the intersection on a green light or to decelerate to a stop and 
launch the vehicle in the most eco-friendly manner [14, 15].

Platooning and CACC are cooperative CAV technologies for a 
platoon of vehicles to improve safety and throughput [16]. Both 
platooning and CACC are composed of a lead vehicle and several 
close-following vehicles through cooperative driving enabled by 
V2V communication. However, there are two di erences between 
platooning and CACC [17]. First, platooning is capable of both lateral 
and longitudinal control while CACC only provides longitudinal 
control. Second, the platooning system applies Constant Distance 
Gap (CDG) control strategy while CACC employs Constant-Time Gap 
(CTG) control strategy  the distance between vehicles in CACC sys-
tems is proportional to the speed [17]. The lead vehicle of a platoon 
communicates with the followers to provide its instantaneous loca-
tion, speed, and acceleration, which allows the followers to follow the 
leader safely with smaller inter-vehicle spacing. The cooperative driv-
ing of platooning/CACC enables a string of vehicles to reduce their 
combined aerodynamic drag and reduce the total fuel consumption 
of the cohort of vehicles.

EFFECTS OF CONNECTIVITY ON 

VEHICLE/POWERTRAIN CONTROL

Predictive Control

Connectivity makes increased real-time information available 
on-board in the vehicle through V2V and V2I communications. 

This useful information includes tra c and environmental conditions, 
topography, road surface conditions, and surrounding vehicles [18]. 

Synthesis of this information allows vehicle/pow-
ertrain control to be predictive and forward-looking. 
For example, a connected vehicle knows future 
power demand based on tra c and road conditions 
received from V2I communication. Given future 
power demand, the most e cient powertrain control 
law can be found through model predictive control. 
This is especially useful for complicated powertrains 
such as a multi-mode hybrid powertrain consist-
ing of multiple energy/power sources and sinks. In 
Eco-A/D applications, both V2I and V2V commu-
nications can be used for CAVs to collect tra c ow 
and tra c light data at intersections, and nearby 
vehicle operation information to generate optimal 
pro les of acceleration/deceleration and braking/re-
generation to go through the intersection during the 
green phase of the light. The optimized longitudinal 
vehicle control and powertrain control can reduce 
fuel consumption by avoiding unnecessary stops.

Cooperative Control

Advancement in connectivity and automation also 
allows CAVs to cooperate with surrounding vehicles 
in platooning and CACC driving modes. Coopera-
tive driving is a promising driving pattern to signi -
cantly improve transportation e ciency and reduce 
fuel consumption by utilizing information exchange 
among vehicles in addition to on-board sensor 
measurements. However, cooperative driving is 
vulnerable to unreliable vehicular communications 
such as packet loss and transmission delay when 
vehicular kinetic information or control commands 
are disseminated among vehicles [19]. If wireless 
communication fails, CACC would automatically 
degrade to conventional Adaptive Cruise Control 
(ACC), leading to a signi cant increase in minimal 
time headway to maintain string-stable behavior 
[20]. Tradeo s between CACC performance and 
network speci cations need to be made to achieve 
desired overall control performance under network 
constraints [21]. Due to the nature of cooperative 
driving in platooning/CACC, control approaches 
such as consensus control and distributed multi-
agent coordination have been investigated from a 
networked control system perspective [12, 19, 22]. 
The major factors in platooning/CACC control 
systems include vehicle dynamics, the information 
to be exchanged among vehicles, the communica-
tion topology describing the connectivity structure 
of vehicular networks, and the control law to be 
implemented on each vehicle in order to de ne the 
car-following rule [19].
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Integrated Vehicle Dynamics and Powertrain Control

Conventional powertrain control is mostly reactive to current driving 
information. With V2V and V2I communications, look-ahead trip data 
will be made available to on-board vehicle/powertrain controllers. This 
will allow an integrated vehicle-level dynamics and powertrain control 
to achieve better fuel economy. The ARPA-E NEXT-Generation Energy 
Technologies for Connected and Automated on-Road Vehicles (NEXT-
CAR) Program recently funded 10 awards for the development of new 
vehicle dynamics and powertrain (VD&PT) control technologies [23]. 
The overall objective of the NEXTCAR Program is to develop opti-
mized and coordinated VD&PT control technologies that improve the 
energy e ciency of connected and automated vehicles. The program 
promotes collaboration among vehicle dynamics control, transporta-
tion analytics and powertrain control engineers to formulate solutions 
that use real-time information available via connectivity for the vehicle 
operation either in isolation or in cooperation with nearby vehicles. 

MICHIGAN TECH NEXTCAR PROJECT: 

Connected and Automated Control for Vehicle 
Dynamics and Powertrain Operation on a 
Light-Duty Multi-Mode Hybrid Electric Vehicle

W ith funding from the ARPA-E NEXTCAR program, Michigan 
Tech in collaboration with GM is developing and demonstrat-

ing the bene t of CAV technologies and powertrain optimization using 
a eet of eight 2017 Chevrolet Volts and a Mobile Lab (ML). The ML 
hosts a connected and automated vehicular tra c simulation platform, 
which provides optimal eco-route and velocity bounds to a vehicle 
dynamics and powertrain model/controller for a range of CAV ap-
plications. The model-based predictive controller (MPC) encompasses 
a real-time VD&PT dynamic model leveraging vehicle connectivity 
(V2X) with real-time tra c modeling and predictive speed horizons 
and eco-routing. The objective is to achieve 20% reduction in energy 
consumption (electric + fuel) through the real-time implementation 
and connection of CAV control strategies and powertrain energy man-
agement MPC algorithms.  Connectivity data from vehicles, infrastruc-
ture, and cloud server combined with a dynamic model of the vehicle 
powertrain system allow the prediction of the vehicle’s future speed 
pro le and enable forward-looking optimization of powertrain mode 
selection, energy utilization from the battery and fuel source, and dis-
tribution of propulsive torque from the electric motors and/or internal 
combustion engine. Development and testing will be performed with a 
completely integrated vehicle and tra c simulation model.

Michigan Tech ML is used as the control center, vehicle to cloud 
communication hub, coordinated vehicle center, and mobile charg-
ing station for the eet of modi ed Gen2 Volts as shown in Figure 
1. The ML serves as a mobile computing center in this program to 
enable real-time tra c simulation, eco-routing, and V2V and V2I 
communication. The selected vehicle, the Gen2 MY17 Volt, contains 
unique powertrain architecture that can operate as Electric Vehicle 
(EV), Hybrid Electric Vehicle (HEV), and Plug-in Hybrid Electric 
Vehicle (PHEV). The vehicle enables ve distinct operating modes, 

including one-motor EV mode (EV I), two-motor 
EV mode (EV II), Low Extended Range (LER) 
mode, Fixed Ratio Extended Range (FER) mode, 
and High Extended Range (HER) mode. The project 
conducts research to 1) understand the e ects of all 
major powertrain/vehicle dynamics on the transient 
performance of connected EVs/PHEVs/HEVs, 2) 
design and implement real-time mode selection and 
MPC torque split control strategies that incorporate 
transient characteristics of the vehicle powertrain 
(engine, clutches, e-motors, etc.) for connected EVs/
PHEVs/HEVs, and 3) develop multi-scale (EV, 
PHEV, HEV) VD&PT control strategies in platoon-
ing/CACC and Eco-A/D applications with di erent 
CAV technology penetration rates.

The model-based VD&PT predictive powertrain 
control system is designed as shown in Figure 2. 
The control system utilizes the information pro-
vided by the vehicle connectivity and incorporates 
vehicle/powertrain dynamics for making the con-
trol decisions on vehicle operating mode selection 
and powertrain energy management to split power 
among two motors and the IC engine. The control 
system has three basic control/optimization objec-
tives: 1) optimization of vehicle velocity and power 
trajectory, 2) energy optimization algorithm to 
select vehicle operating mode, and 3) model predic-
tive control for optimal powertrain energy manage-
ment. The control system consists of two layers. 
The upper layer determines optimal vehicle velocity 
and power trajectory based on speed bounds from 
real-time tra c simulation, road grade, V2V/V2I 
data, and the current state of vehicle/powertrain 
dynamics. Di erent from the optimal reference 
speed pro le purely generated from tra c simula-
tion, this layer of optimization considers the fuel/
energy penalty associated with vehicle/powertrain 
dynamics and powertrain physical constraints. The 
optimization algorithm calculates the optimal ve-
hicle velocity trajectory that minimizes the energy/
fuel consumption for the next prediction horizon. 
Then, the projected torque/power request for the 
vehicle is determined using the projected velocity 
trajectory and forecasted road grade.

The model predictive powertrain control and en-
ergy e cient model selection are implemented in the 
second layer. The MPC controller for real-time pow-
ertrain control incorporates full system dynamics 
and transient behavior of engine, drive unit, mode 
switching, electric machines, power inverter and 
battery. It manages powertrain energy distribution 
to achieve desired vehicle velocity within the predic-
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tion window while maximizing fuel economy and satisfying physical 
and drivability constraints. The MPC controller solves optimal control 
actions, the optimal operation mode and required power/torque from 
engine and two motors, for the control horizon to achieve desired 
vehicle velocity and torque request derived by the velocity optimizer 
at the end of the prediction window while maximizing fuel economy 
and satisfying physical constraints. The optimization cost function is 
designed to track reference velocity pro le and minimize energy con-
sumption. The energy cost includes energy consumed by the engine 
and electric motors. The electrical energy is converted to an equivalent 
fuel consumption by an equivalence factor considering the e cien-
cies of battery, charger and electric motors. The energy cost function 
also incorporates dynamic fuel penalty, which re ects the impact of 
vehicle/powertrain dynamics and mode switching. To reduce the dy-
namics caused by control actions, the cost function also minimizes the 

change rate of control inputs. The integration of this 
two-layer control enables powertrain optimization 
that incorporates information on tra c, infrastruc-
ture, and road conditions.

CONCLUSION

Increased CAV technologies are being deployed 
in real-world transportation systems. This article 

provides an overview of the impact of CAV technolo-
gies on vehicle/powertrain control and highlights 
that the rich information provided by connectivity 
and the capability of on-board intelligent control 
are shifting reactive and isolated vehicle/powertrain 
control to predictive, cooperative, and integrated 
vehicle dynamics and powertrain control. 
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