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Abstract— This paper presents a solution to the
limited information rendezvous problem over dy-
namic interaction graphs. In particular, we show how
we, by adding appropriate weights to the edges in
the graphs, can guarantee that the graph stays con-
nected. In previous work on graph-based coordina-
tion, connectedness have been assumed, and this pa-
per thus shows how to overcome this limitation even
when the graphs are subject to dynamic changes.

I. Introduction

During the last decade, analysis and control of group
behaviors of teams of autonomous agents has attracted
significant interest due to the emergence of multi-agent
robotics applications, sensor and actuator networks,
and distributed embedded systems. What makes this
problem challenging is that the agents are subjected
to limitations on the available information, which has
made graph-based models useful and natural tools for
encoding these limitations [1], [5], [8], [9], [15], [17], [18],
[21].

The history behind this work can be traced back
to Reynolds’ ”boids” model [16], where three adhoc
protocols for autonomous agents, namely separation,
alignment and cohesion, were defined. A special case
of the ”boids” model was proposed by Vicsek et al.
[22], and an elegant example of graph-based control was
provided in [8], where directional cohesion was achieved
for Vicsek’s model.

Other notable contributions in this area were given
in [11] with an analysis of swarm stability with fixed
network topology. Moreover, in [6] social potentials
were used to instrument cohesion in swarms, while
flocking under switched topologies was studied in [17],
where a theoretical frame-work was proposed based on
graph theory. However, connectedness of the underlying
graphs had to be assumed, which was also the case in
[21], where stability of the flocking was proved by ana-
lyzing the algebraic connectivity of the induced graph.
Moreover, in [12], [13], state-dependent dynamic graphs
were studied from a combinatoric point-of-view.
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Alternative approaches to the coordination control
problem were presented in [20], while a leader-follower
assignment paradigm was studied in [3]. A model-
independent coordination strategy was moreover pro-
posed in [4], where a virtual leader was used to represent
the desired trajectory. Hybrid control frameworks were
proposed in [2] for multi-agent coordination control,
while the complexity of multi-agent coordinations was
studied in [14] from an information theoretic point-of-
view. These previous results all relied on the explicit as-
sumption of connectedness of the interaction graphs. To
the best of our knowledge, the connectedness problem is
left open so far in the literature. However, as it will be
shown later, this assumption is vulnerable under some
particular but not uncommon circumstances.

In this paper we will mainly focus on providing a
solution to the rendezvous problem, i.e. the problem
of driving the agents to a common point. It should be
noted that this problem is solved if either connectedness
is assumed [21], or connectedness is only required at
distinct times [10]. In this paper we show how to make
the graph stay connected for all times, and the system
we are dealing with is continuous and deterministic. The
outline of the paper is as follows: In Section 2 we review
some previous results and recall some basic notions in
algebraic graph theory. In Section 3 we show how to
add weights in the static graph case, followed by the
dynamic case in Section 4. The paper concludes with a
collection of simulation results in Section 5.

II. Background

The graph Laplacian, as a pivotal property of graph
based control, has received extensive attention. Pi-
oneering work on consensus problems, or agreement
problems, utilizing graph Laplacian, can be found in
[5], [17], [18], [19]. Moreover interest on networks with
changing topology has been growing rapidly. In [12],
[13], a dynamic extension of graph theory is proposed
as a framework to address the network problem with
time varying topologies. [15] finds that under a dy-
namically changing interaction topology, if the union of
the interaction graph across some time interval has a
spanning tree frequently enough as the system evolves,
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an information consensus is still achievable. An average
consensus problem is solved for switching topology net-
works in [19]. A common Lyapunov function is obtained
for directed balanced graph based on the disagreement
function.

In this paper we will draw inspiration from this work
using graph Laplacians, and we first establish some
notation and review some previous results. Given N
agents x1, . . . , xN evolving in R

n, we assume that the
dynamics is simply given by

ẋi = ui. (1)

A fixed set of communication links is established be-
tween certain agents. By a Static Interaction Graph
(SIG) G = (V, E) we understand the graph where the
nodes V = {v1, . . . , vN} correspond to the different
agents. Moreover, the edge set E ⊂ V × V is a set of
unordered pairs of agents, with (vi, vj) = (vj , vi) ∈ E if
and only if a communication link exists between agents
i and j, and we will use V (G) and E(G) to denote
the node and edge sets respectively. Such graph-based
encodings of the coordination have proved to be useful,
and in particular algebraic graph-theory has provided
tools for controlling and analyzing the coordinations.
For example, an intuitive control law for handling the
rendezvous problem is given by:

ẋi =
∑

j∈N(i)

(xj − xi), (2)

where N(i) denotes the set of agents adjacent to agent
i, i = 1, 2, . . . , N .

Under this control law, it can be shown that all agents
approach the same point asymptotically, provided that
the SIG is connected. Even though this is not a new
result, see for example [9], we will here sketch a proof
based on algebraic graph theory.

First, we need to introduce an orientation associated
with the SIG G, i.e. a declaration of direction to each
edge σ : E(G) → {−1, 1} such that if (vi, vj) ∈ E(G)
then σ(vi, vj) = −σ(vj , vi). Using this orientation, we
can form the oriented graph Gσ by associating the
orientation σ with G. If now E(G) = {e1, . . . , eM} then
the N×M incidence matrix of Gσ is I(Gσ) = [bij ], where

bij =

⎧⎨
⎩

1 if vi is the head of ej

−1 if vi is the tail of ej

0 otherwise.
(3)

Through the incidence matrix, we can now define the
orientation-independent Laplacian as follows:

Definition 2.1: Given G = (V, E) together with an
arbitrary orientation σ of G, the Laplacian L(G) ∈
N

N×N is given by

L(G) = I(Gσ)I(Gσ)T . (4)

The Laplacian has a number of well-studied properties,
found for example in [7], including

1) I(Gσ)I(Gσ)T = I(Gσ′
)I(Gσ′

)T for all orientations
σ, σ′, i.e. the Laplacian is orientation-independent.

2) L(G) is symmetric and non-negative definite.
3) Let {λi}N

i=1 be the sorted eigenvalues of L(G), then
0 ≤ λ1 ≤ λ2 · · · ≤ λN . Moreover, λ1 = 0 and
λ2 > 0 if G is connected.

4) If G is connected then the set of eigenvectors
ν1, . . . , νN form an orthogonal basis in R

N , and
ν1 = 1/

√
N1, where 1 denotes the vector with ev-

ery entry equal to one. In other words, if G is con-
nected then the null-space N (L(G)) = span{1}.

If we denote component xi as xi = (xi,1, . . . , xi,n)T

and let xT = (xT
1 , . . . , xT

N ), we can define the
component-wise operator c(x, j) = (x1,j , . . . , xN,j)T ∈
R

N , j = 1, . . . , n, and note that along each component,
the control law given in Equation 2, becomes

d

dt
c(x, j) = −Lc(x, j). (5)

Here we have dropped L’s explicit dependence on G,
which we will continue to do whenever this dependence
is clear from the context.

Now, as pointed out in [9], [7], if G is connected
then the eigenvector corresponding to the semi-simple
eigenvalue 0 is 1. This, together with the non-negativity
of L and the fact that span{1} is L-invariant, is enough
to show that c(x, j) approaches span{1} asymptotically.

However the main reason why graph-based abstrac-
tions are useful is that they can encode the dynamic
aspects of the communication exchange in a very natural
manner. Since all real sensors and transmitters have
finite range, information exchange links may appear
or be lost as the agents move around. If we let the
maximal distance at which two agents can be separated
and still exchange information be given by ∆, then
we can form the Dynamic Interaction Graph (DIG)
G(t) = (V, E(t)), where (vi, vj) = (vj , vi) ∈ E(t) if
and only if ‖xi(t) − xj(t)‖ ≤ ∆. Note here that the
edge set might be time-varying. However, the previously
mentioned stability result is still useful in that it holds
for all connected graphs. Moreover, since c(x, j)T c(x, j)
is a Lyapunov function to the system in Equation 5, for
any connected graph G, the control law

d

dt
c(x(t), j) = −L(G(t))c(x(t), j) (6)

drives the system to span{1} asymptotically as long as
G(t) is connected for all t ≥ 0.

This is a very intriguing result and it shares the
common feature with other graph-based results, e.g. [8],
[21], in that it hinges on the connectedness assumption.
Unfortunately, this property has to be assumed rather
than proved, and in Figure 1 an example is shown when
connectedness is lost when using Equation 6 to control
the system.

94



−10 −5 0 5 10
−2

0

2
initial position with particle

−5 0 5
−2

0

2 0.1sec

−5 0 5
−2

0

2 0.2sec

−5 0 5
−2

0

2 0.3sec

−5 0 5
−2

0

2 0.4sec

−5 0 5
−2

0

2 0.5sec

−5 0 5
−2

0

2 0.6sec

−5 0 5
−2

0

2 0.7sec

−5 0 5
−2

0

2 0.8sec

−5 0 5
−2

0

2 0.9sec

Fig. 1. A progression is shown where connectedness is lost even
though the initial graph is connected (∆ = 4).

What we will do for the remainder of this paper
is to show how this assumption can be overcome by
modifying Equation 6 in such a way that connectedness
can be proved to hold for all times. This will close the
gap encountered in the literature on graph-based multi-
agent control.

III. Weighted Graph-Based Feedback

In this section we will draw inspiration from the
previous section and modify the control law in Equation
6 in order to ensure that the graph stays connected.
However, this modification must be structured in such a
way that the control laws stay distributed. One obvious
choice is to let

ẋi = di

∑
j∈N(i)

wij(xj − xi), (7)

where wij = wji. In this case we get

d

dt
c(x, j) = −DIσWIσT c(x, j), j = 1, . . . , n, (8)

where D = diag(d1, d2, . . . , dn) ∈ R
N×N and

W =diag(w1, . . . , wM ) ∈ R
M×M (M = |E(Gσ)|) are

positive definite (as long as di, wij > 0) weight matrices.
The interpretation is that D associates a weight with
each node while W associates a weight with each edge.

We will see that we, in fact, can let D = I and still
guarantee connectedness, and we define the weighted
Graph-Laplacian as

Lw � IσWIσT ,

where as before W ∈ R
M×M is a diagonal matrix with

each element corresponding to an edge. These weights
can either be time dependent or time independent.

Since the main problem that must be dealt with is
to ensure that no connections are lost we focus on the
individual inter-agent distances. Given an ordering σ of
G (connected SIG), and an edge (vi, vj) ∈ E(G) such
that σ(vi, vj) = 1, we let lσij denote the edge vector
between the agents i and j, i.e. lσij = xi − xj . Hence, if
we let ∆ be the critical cut-off distance, we propose to
use the following control strategy:

ẋi(t) =
∑

j∈N(i)

(xj(t) − xi(t))
(‖lσij(t)‖ − ∆)2‖lσij(t)‖

. (9)

Along individual dimensions, the dynamics of the group
then becomes

d

dt
c(x(t), j) = −Lw(t)c(x(t), j), j = 1, 2, . . . n

(10)
where

W (t) = diag(wk(t)), k = 1, 2, . . . |E(G)| ,
wk(t) =

1
(‖lσk (t)‖ − ∆)2‖lσk (t)‖ .

(11)

Here we have arranged the edges such that wk and
lk correspond to edges weight k and edge vector k
respectively. We will use this notation interchangeably
with wij , lij whenever it is clear from the context.

For the purpose of analysis, we first define the interior
of the valid edge set as D := {x ∈ R

n×N | (vi, vj) ∈
E(G) ⇔ ‖lij‖ < ∆}, then define the edge tension
function Vij : D → R:

Vij(x) =

{
1

∆−‖lσij(t)‖ if ‖lσij(t)‖ < ∆
0 otherwise,

(12)

and the total tension energy of the graph V : D → R:

V (x) =
1
2

N∑
i=1

N∑
j=1

Vij(x). (13)

Lemma 3.1: Given an initial position x(0) ∈ D corre-
sponding to a connected SIG and 0 < V0 < ∞, the set
Ω := {x(t) | V (x) ≤ V0, t ≥ 0} is an invariant set to the
system under the control law in Equation 9.
Proof :
With the definition of the tension energy, Equation 9
can be rewritten as:

ẋi = −
∑

j∈N(i)

∂Vij

∂xi
= − ∂V

∂xi
= −∇xi

V (x).
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Therefore the time derivative of V is

V̇ (x) = ∇xV (x)ẋ(t)T

= −
N∑

i=1

ẋT
i ẋi

= −
n∑

j=1

c(x(t), j)TL2
wc(x(t), j).

(14)

From the definitions, Vij(x), V (x) ∈ C1(D). Also, due
to the finite initial value and to the fact that V̇ (x) is
nonpositive, the invariancy and the proof follow.

Being positive, Vij is also bounded from above by V0,
i.e. Vij ≤ V0, since given x(t) ∈ D, it is easy to show
that 0 ≤ Vij ≤ V ≤ V0.

Theorem 3.2: Given a connected SIG G, the multi-
agent system (1) with the control law (9) asymptotically
converges to the centroid x̄, which is static.
Proof :
The proof of convergence is based on LaSalle’s invari-
ance theorem. Let D, Ω be defined as before and let
E :=span{1}. From Lemma 3.1, we know that Ω is pos-
itive invariant with respect to (9). Moreover V̇ (x) ≤ 0,
with equality only when c(x(t), j) ∈ E , ∀j. Furthermore,
E itself is Lw invariant from which convergence follows.
(It is worth noticing that even though Ω is not compact
in this case, the set E is totally enclosed in Ω, i.e. E ⊂ Ω
and ∂Ω̄∩ ∂Ē = Φ, where ∂S denotes the boundary of S
and S̄ denotes its closure, so LaSalle’s theorem is still
applicable.)

Next we need to show that the agents converge to the
centroid. The centroid is denoted as

x̄ =
1
N

N∑
i=1

xi,

and the component-wise dynamics of the centroid is

d

dt
c(x, j) =

1
N

1T d

dt
c(x, j) = − 1

N
1TLwc(x, j).

Now since, 1TLw = (Lw1)T = 0, we directly have that
˙̄x = 0 and thus xi(t) → Bε(x̄), where Bε(x̄) denote the
ball centered at x̄ with radius ε.

Note that we still have extra freedom available to us
by using the additional weight matrix D as

ẋ = −DLwx.

As long as D is diagonal and positive definite
N (DLw) = span{1} and the controller still drives
the system to span{1} without loosing connectedness.
However, in this case xi → x̄w where x̄w is given by

x̄w =
1

tr(D−1)

N∑
i=1

(d−1
i )xi(0) (15)

where di is the ith diagonal element of D, and tr(D)
denotes the trace of matrix D. The proof is similar to
the above one except that this time the relation is

c(x, j) =
1

tr(D−1)

N∑
i=1

d−1
i ξj = ξj

∑N
i=1 d−1

i

tr(D−1)
= ξj

That concludes this section, where a SIG was always
assumed. In what follows we will show that the same
strategy remains valid even if the graph is allowed to
change as the agents move around in the environment.

IV. Dynamic Graphs

As already pointed out, as the agents move, the
interaction graph G may change. Whether or not the
previous stability result still holds in this case will be
the focus of this section. Since

lim
‖lij‖↑∆

Vij(‖lij‖) = ∞

we can not simply add new edges as soon as they are
encountered. Instead we need a protocol for adding
edges. As the dynamic interaction graph, DIG, evolves,
an edge is added to E if (vi, vj) was previously not an
edge and ‖lij‖ ≤ (∆ − δ), where δ > 0 is the switching
threshold. In this way, we have built in some hysteresis
into the system, which allows us to state the following
theorem.

Theorem 4.1: Following the control law (9), a group
of agents starting from a connected graph will stay
connected and a common Lyapunov function can be
found under the above protocol for adding new edges.
Proof :
We claim that W = 1

2xT x is a Lyapunov function for
the controlled system (9) since

Ẇ = ∇Wẋ

= −
n∑

j=1

c(x, j)TLwc(x, j) ≤ 0,

(16)

given a connected SIG G.
The equality is valid only when c(x, j) ∈ N (L) =

span{1} for all j. Consider the result from the previous
section, in which the centroid is proved to be static and
to be the rendezvous point. We can thus conclude that
W is a valid Lyapunov function, for static graph.

Since W does not depend on the structure of the
graph, it is in fact a common Lyapunov function for
arbitrary connected graphs, which means that stability
is guaranteed as far as the graphs stay connected. (Note
that a similar argument was presented in [9], based on
the connectedness assumptions.)

Since no edges will be lost, as already proved in
the previous section, and by the protocol for adding
new edges, there are no infinite jumps in the total
tension function V (x). Hence connectedness will not
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be lost during switching either. Hence (5) also preserve
connectedness in the dynamic case.

V. Examples

Here we will show simulations describing rendezvous
behavior under different control laws. In the simula-
tions, ∆ = 4, δ = 0.05. Figure 2 shows the movement
with D = I, i.e. Equation 9, while Figure 3 shows
the movement of the rendezvous with a weight matrix
D = diag([1 1 1 1 1 0.5 0.5 0.5 0.5]). The trajectories
are shown in Figure 4. From the simulation, we find
that the connectedness is maintained even under very
pathological setups. Moreover, the weighted rendezvous
is converging to a weighted centroid, as per Equation
15. Because the weights are symmetrically distributed
about y axis, so the rendezvous point is still on x-axis,
but shift toward right side where the agents are weighted
heavily.
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Fig. 2. A progression is shown where connectedness is maintained
during the rendezvous maneuver, with D = I. Depicted are the
positions of the agents and the edges in the DIG as a function of
time.

VI. Conclusion

A graph-based nonlinear feedback control law is stud-
ied for distributed coordination control of multi agent
system. The nonlinear feedback law is based on weighted
graph Laplacians and it is proved to solve the ren-
dezvous problem. Furthermore, the proposed control
law is also proved to be able to guarantee that the
connectedness is not lost during maneuvers. As to our
knowledge, this is the first time that a general result is
given on dynamic graphs.
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Fig. 3. A progression is shown where connectedness is maintained
during the rendezvous maneuver, with D �= I.
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Fig. 4. Trajectory for (a) nonweighted and (b) weighted ren-
dezvous.
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