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CONNECTEDNESS PROPERTIES OF LIMIT SETS

B. H. BOWDITCH

Abstract. We study convergence group actions on continua, and give a cri-
terion which ensures that every global cut point is a parabolic fixed point. We
apply this result to the case of boundaries of relatively hyperbolic groups, and
consider implications for connectedness properties of such spaces.

0. Introduction

In this paper, we prove a result concerning the nature of global cut points in
continua which admit certain kinds of convergence actions. One of the principal
motivations concerns the boundaries of one-ended hyperbolic groups. It was con-
jectured in [BeM] that such boundaries are locally connected, or equivalently, have
no global cut point. This was shown to be the case for strongly rigid groups in
[Bo3], [Bo5] and strongly accessible groups in [Bo6]. An ingenious idea of Swarup
showed how to adapt these arguments to deal with the general case [Sw]. Inspired
by this idea, we reset this result in a broader dynamical context, which will have
applications also to limits sets of relatively hyperbolic groups, and in particular
to geometrically finite groups. There are close connections between the algebraic
structure of such groups and the topology of their boundaries. In this, local and
global cut points play a major role. In particular, the main result given here is one
of the ingredients in proving that the boundary of a relatively hyperbolic group is
locally connected if it is connected (under mild constraints on the parabolic sub-
groups).

Before stating the main theorem, we need a few definitions. Convergence groups
were defined by Gehring and Martin [GeM]. (See also [T] and [Bo7] for some
discussion relevant to the present paper.) Let M be a continuum, i.e. a connected
compact hausdorff topological space. Suppose that Γ acts as a convergence group
on M . (Throughout this paper we use the term “convergence group” for what
was called a “discrete convergence group” in [GeM].) Such an action is minimal if
there is no proper non-empty closed invariant subset. A parabolic element of Γ is
an infinite order element with precisely one fixed point. If G is a two-ended (i.e.
virtually cyclic) subgroup of Γ, we write ηΓ(G) for the number of ends of the pair
(Γ, G). (Note that if Γ splits over G, then ηΓ(G) > 1.) A loxodromic subgroup, G,
of Γ is one whose limit set, ΛG, consists of precisely two points. Such a group is
necessarily two-ended, and (M \ΛG)/G is compact hausdorff. We write ηM (G) for
the number of connected components of (M \ ΛG)/G. If the dynamics of Γ on M
in some way reflects the intrinsic geometry of Γ, one might expect the quantities
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ηΓ(G) and ηM (G) to be somehow related. All we are really concerned about in this
paper is whether these numbers are equal to or greater than 1. (We do not assume
them to be finite.)

The statement of the main result is a little technical:

Theorem 0.1. Let Γ be a one-ended finitely presented group with no infinite tor-
sion subgroup. Let M be a metrisable continuum which admits a minimal conver-
gence action by the group Γ. Suppose that, for any loxodromic subgroup, G ≤ Γ,
with ηΓ(G) > 1, we have ηM (G) > 1. Then, every global cut point of M is a
parabolic fixed point.

In fact, we can get away with a little less. We only really need that if Γ splits
over a loxodromic group, G, then ηM (G′) > 1 for some finite index subgroup, G′, of
G. That some kind of “non-degeneracy” assumption of this nature is necessary is
apparent from the well-known examples of surface groups which act as convergence
groups on dendrites with no parabolics.

The main application of this result will be the following. Recall that a “relatively
hyperbolic group” consists of group, Γ, and a class, G, of preferred “peripheral”
subgroups such that Γ is “hyperbolic relative to” G. This notion was defined by
Gromov [Gr]. It is discussed further in Section 4. Associated to a relatively hy-
perbolic group, (Γ,G), is a canonical compact metrisable space, ∂(Γ,G), called the
“boundary” of (Γ,G). Now Γ acts as a convergence group on ∂(Γ,G) such that
the peripheral groups are precisely the maximal parabolic subgroups. In our nota-
tion, we shall frequently omit explicit reference to the peripheral structure, G. If
the peripheral structure is empty, we are reduced to the standard case of (word)
hyperbolic groups.

Theorem 0.2. Suppose that Γ is a relatively hyperbolic group whose boundary, ∂Γ,
is connected. Suppose that each peripheral subgroup is finitely presented, either one-
ended or two-ended, and contains no infinite torsion subgroup. Then every global
cut point of ∂Γ is a parabolic fixed point.

This result has two immediate corollaries. The first, in the case where there are
no peripheral subgroups, gives us:

Corollary 0.3. The boundary of a one-ended hyperbolic group has no global cut
point.

As mentioned above, this has been obtained by Swarup [Sw], using results of
[Bo3], [Bo6] and [L]. It follows, by [BeM], that such a boundary is locally connected.
Thus, for example such a group is semistable at infinity [M], and one can derive the
JSJ splitting of Sela [Se] from the local cut point structure of the boundary [Bo4].

The second application is the special case of limit sets of geometrically finite
groups in pinched negative curvature [Bo2]. In this case, peripheral subgroups
are finitely generated virtually nilpotent [Bo3], and hence automatically satisfy the
hypotheses of Theorem 0.2.

Corollary 0.4. Suppose a group Γ acts as a geometrically finite group on a com-
plete simply connected manifold of pinched negative curvature. If the limit set, ΛΓ,
is connected, then every global cut point is a parabolic fixed point.

Now, given the result of Theorem 0.2, it’s not hard to see that, if Γ has a global
cut point in its boundary, it must split over a parabolic subgroup relative to the
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peripheral subgroups. (This is discussed in [Bo10].) An alternative dynamical
approach to this is given in [BoS] in the case where all peripheral groups are one-
ended. These results form part of the larger project of showing that the boundary
of a relatively hyperbolic group, satisfying the same hypotheses as Theorem 0.2, is
locally connected. An overview of this project is described in [Bo9] and [Bo10]. In
particular, this shows that the boundary of a geometrically finite kleinian group is
locally connected if it is connected. The 3-dimensional case is described in [AnM].
The higher-dimensional case seems to call for a completely different approach, and
has been open for some time. The case of kleinian groups is discussed in [BoS].

For the purposes of exposition, we shall first give direct proofs of the two corol-
laries. The proof of the second corollary can be adapted easily to prove Theorem
0.2, as we discuss in Section 4. Since this calls for additional background mate-
rial, as set up in [Bo8], we give the main argument in the more familiar context of
pinched hadamard manifolds.

Most of this paper was prepared at the University of Melbourne. I am indebted
to Walter Neumann and Craig Hodgson for inviting me to take part in the Special
Year in geometric group theory, and to the other members of the geometry group
for stimulating discussions.

1. Proof of the main theorem

We shall need the following observation, which appears to be folklore. (A proof
of the analogous result for the finiteness property FPn is given in [Bi].)

Lemma 1.1. Suppose Γ is a finitely presented group which splits as a finite graph
of groups all of whose edge groups are finitely presented. Then, all the vertex groups
are finitely presented.

Proof. Let (V,E) be the graph of groups. Given v ∈ V and e ∈ E, we write
Γ(v) and Γ(e) respectively for the vertex and edge groups. We choose simplicial
complexes, K(v) and K(e), with fundamental groups Γ(v) and Γ(e). We take
all the edge complexes, K(e), to be finite. Moreover, if e is incident on v, we can
suppose thatK(v) contains an embedded homeomorphic copy,K(v, e) ofK(e), such
that the inclusion induces the given edge-to-vertex group inclusion on the level of
fundamental groups. We can assume that the complexes K(v, e) are disjoint, as e
ranges over the set, E(v), of edges incident to v, and also that each K(v, e) has an
embedded product neighbourhood, K(v, e) × [0, 1], in K(v). We form a complex,
K, by identifying K(v, e) with K(w, e) whenever v and w are the endpoints of some
edge e. In this way we get π1(K) ∼= Γ.

Now, let L be a finite complex with π1(L) ∼= Γ. Let f : L −→ K be a simplicial
map inducing an isomorphism of fundamental groups. We can assume that f is
injective. (For example, by replacing K by K ×Q, where Q is a cone over L, and
replacing f by a diagonal map.) Identifying L with its image under f , we can
assume that L is a subcomplex of K. In fact, we claim that we can choose the pair
K,L so that, for each e ∈ E, the complex L ∩K(e) is connected and carries all of
Γ(e) = π1(K(e)). (The only reason for modifying K in this process is to ensure
that L remains embedded.)

The proof of the claim relies on a variation of Stallings’s “binding tie” argument.
(A similar application of these ideas can be found in [BeF1].) Suppose that L∩K(e)
is disconnected. Let α be an arc inK(e) connecting distinct components of L∩K(e).
Since L carries all of π1(K), we can find an arc, β, in L which is homotopic to α
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relative to its endpoints. Thus α ∪ β spans a disc, D, in K, which we can assume
(modifying K if necessary) to be embedded and to satisfy L ∩ D = β. Moreover
we can assume that D ∩⋃

e∈E K(e) consists of a finite set of arcs. (We can easily
eliminate closed curves, given that each K(e) is π1-injective in K.) We now replace
L by L∪D. This reduces the total number of components of L∩⋃

e∈E K(e). Thus,
after a finite number of steps, we arrange that each complex L∩K(e) is connected.
To ensure that each L ∩ K(e) carries all of Γ(e), we carry out another sequence
of operations of this type. This time we choose the arcs α so as to generate what
remains of Γ(e), using the fact that the edge groups are finitely generated. This
proves the claim.

Now it’s a simple exercise to check that if v ∈ V , then L∩K(v) is connected. Let
L(v) = (L ∩K(v)) ∪⋃

e∈E(v)K(v, e). Again, it’s easily verified that the inclusion
of L(v) in K(v) induces an isomorphism of fundamental groups. In particular,
Γ(v) ∼= π1(L(v)) is finitely presented as required.

We shall need another lemma about splittings. Let Γ be a group. By a two-ended
splitting of Γ, we mean a representation of Γ as a finite graph of groups with each
edge group two-ended. Also, we shall not allow vertices of degree one with the
vertex group equal to the incident edge group. (On the level of trees, this means
we are only considering minimal actions.) We say this splitting is maximal if none
of the vertex groups split further (non-trivially over two-ended subgroups) relative
to the incident edge groups. Recall that a splitting is reduced in the sense of [BeF1]
if it contains no reducible vertices. A reducible vertex is a vertex of degree 2, such
that one of the incident edge groups is equal to the vertex group. If Γ is finitely
presented, then the result of [BeF1] puts a bound on the complexity of a reduced
small splitting of Γ, where complexity is measured by the number of edges in the
graph of groups. In particular, this deals with two-ended splittings.

We need a slight variation on this. The following result can be deduced from
the description of the JSJ splitting of a one-ended finitely presented group (see for
example [DS]). For completeness, we summarise the relevant part of the argument.

Lemma 1.2. Any one-ended finitely presented group admits a maximal two-ended
splitting.

Proof. Let Γ be a finitely presented one-ended group. We start with a reduced
two-ended splitting of Γ of maximal complexity, as given by [BeF1]. If it is possible
to split one of the vertex groups relative to the incident edge group, then we would
obtain a more complex graph of groups, which must therefore contain a reducible
vertex. If the theorem fails, then we can iterate this process indefinitely. We can
only ever introduce reducible vertices. (For if, at some point, we introduced a non-
reducible vertex, we could collapse back all the previously introduced reducible
vertices, to obtain a reduced graph of greater complexity than the original.) We
thus obtain a sequence of graphs of groups, with arbitrarily long chains of reducible
vertices inserted along the edges of the original graph. This subdivides any such
edge into “subedges”, where the subedge stabilisers each increase or decrease as
we move along the edge. Now we cannot have a subedge stabiliser with both
adjacent subedge stabilisers strictly smaller (since contracting this subedge to a
vertex would introduce a new non-reducible vertex). We are therefore quickly
reduced to worrying about the existence of arbitrarily long sequences of subedges
with either ascending or descending subedge stabilisers.
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Now, infinite ascending chains might indeed occur. However they do not concern
us here, since they correspond to splitting the vertex groups trivially relative to the
incident edge groups, and hence do not interfere with maximality, as we have defined
it. We thus only need to rule out the possibility of infinite descending chains. This
is based on Dunwoody’s track construction (cf. [D]).

For the purposes of the argument it is convenient to collapse all the irrelevant
parts of the graph of groups to vertices, so as to give us an amalgamated free product
or HNN extension over a two-ended subgroup. For convenience of exposition, let’s
suppose we are dealing with an amalgamated free product. The graph consists of a
single edge, which we identify with the unit interval, [0, 1]. We imagine successively
inserting new degree-2 vertices into the graph at the points 2−n, for n ≥ 1. Taking
the corresponding trees, we get a sequence of simplicial trees, Tn, with quotient
maps to [0, 1]. We now fix a finite 2-dimensional simplicial complex, K, with
fundamental group Γ, and define a sequence of Γ-equivariant resolutions, φn : K̃ −→
Tn, where K̃ is the universal cover of K. Passing to the quotient under Γ, these
induce a sequence of maps ψm : K −→ [0, 1]. If m ≥ n, we can suppose that
ψ−1

m [2−(n+1), 1] = ψ−1
n [2−(n+1), 1], and that ψm agrees with ψn on this preimage.

For each n ≥ 0, let en be an edge of Tn which maps to [2−(n+1), 2−n] under the
quotient map. We choose these edges so that Γ(en+1) ⊆ Γ(en), and so the edge
stabilisers are strictly decreasing. Let t̃n be a component of the preimage of the
midpoint of en which separates K̃ into two unbounded components. Let tn be the
projection of t̃n to K. Thus, tn is a track in K, which represents a splitting of
Γ = π1(K) over a subgroup of Γ(en). Since Γ is one-ended, this subgroup must be
infinite. Now, we have arranged that all the tracks tn are disjoint, and so a standard
argument (cf. [D]) shows that all but finitely many are parallel, and hence carry
the same subgroup of Γ. But, these subgroups are all infinite, and their intersection
is finite (since the intersection of the groups Γ(en) is finite). We thus arrive at a
contradiction.

Before proceeding, we should make a few brief comments on the proof of Lemma
1.2. Strictly speaking, our definition of a reduced graph should have contained a
clause relating to the specific case where Γ is a virtual Baumslag-Solitar group.
However, this case is easily dealt with separately, and does not concern us here
anyway. More details of the argument ruling out descending chains of reducible
vertices can be found in [DS]. Examples demonstrating the possibility of infinite
ascending chains can be constructed from Abels’s example [Ab] of a finitely pre-
sented group whose centre is isomorphic to the diadic rationals, as observed by
Dunwoody and Sageev.

We now move on to consider actions on R-trees.
Suppose that a group, Γ, acts isometrically on an R-tree, Σ. In this case, we

say that a subgroup, G, of Γ, is parabolic (on Σ) if it fixes a point of Σ. If Γ is
infinite and acts with finite edge stabilisers, then this point is unique. (Note that,
in this context, “parabolic actions” are sometimes referred to as “trivial actions”
or as “elliptic actions”. However, the former term is somewhat misleading, and the
latter term is at odds with the terminology of convergence actions. We therefore
adopt our slightly non-standard terminology.) We shall be concerned with “stable”
actions. This notion can be defined in a number of equivalent ways, for example by
demanding that the stabilisers of any decreasing chain of intervals must stabilise.
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Suppose that Γ is a finitely presented group with a stable non-parabolic action
on an R-tree, Σ, with finite edge-stabilisers. Then, the result of [BeF3] tells us
that Γ either is one-ended virtually abelian, or splits non-trivially over a finite or
two-ended subgroup. Moreover, if H1, . . . , Hn are finitely generated subgroups of
Γ which act parabolically on Σ, then, in the latter case, we can choose the splitting
of Γ so that each of the subgroups Hi is conjugate into one of the vertex groups.

Lemma 1.3. Suppose Γ is a finitely presented one-ended group which acts stably on
an R-tree Σ with finite edge-stabilisers. Suppose that every two-ended subgroup over
which Γ splits is parabolic, and every rank two abelian subgroup of Γ is parabolic.
Then Γ is parabolic.

Proof. Note that it follows that every one-ended virtually abelian subgroup of Γ
is parabolic. Suppose, for contradiction, that Γ is not parabolic, and hence not
virtually abelian. By Lemma 1.2, Γ admits a maximal two-ended splitting. Let
T be the corresponding simplicial tree. Let V (T ) be the vertex set of T . Given
v ∈ V (T ), let Γ(v) denote the vertex stabiliser. By Lemma 2.1, each Γ(v) is finitely
presented. By hypothesis, each edge stabiliser is parabolic. We claim that each
vertex stabiliser is parabolic.

Suppose that Γ(v) were not parabolic. From our hypotheses, Γ(v) is not one-
ended virtually abelian. It also cannot be virtually cyclic (otherwise it would con-
tain an edge group of finite index). Thus, by [BeF3], Γ(v) splits over a finite or
two-ended subgroup relative to the incident edge groups, contradicting our choice
of T , and proving our claim.

From the uniqueness of these fixed points, it now follows that all vertex and edge
stabilisers must fix the same point of Σ. Thus Γ is parabolic.

Note that in the hypotheses we only really need to assume that a certain alge-
braically predetermined finite set of subgroups of Γ are each parabolic.

Recall that a dendrite is a locally connected metrisable continuum which is
uniquely arc-connected.

Lemma 1.4. Suppose that Γ is finitely presented one-ended and contains no infi-
nite torsion subgroup. Suppose that Γ acts as a minimal convergence group on a
dendrite, D, in such a way that every two-ended subgroup over which Γ splits is
parabolic on D. Then D is trivial (i.e. a point).

Proof. Suppose D is non-trivial. Then, using either [L] or [Bo5], we construct an
R-tree, Σ, on which Γ acts isometrically and non-parabolically with finite edge
stabilisers. The non-existence of infinite torsion subgroups ensures that this action
is stable. Moreover, if H1, . . . , Hn are finitely presented subgroups of Γ which are
parabolic on D, then we can assume that they are parabolic on Σ.

Now, any rank-two free abelian subgroup of Γ is necessarily parabolic on D (see,
for example, [T]). Let H1, . . . , Hn be the edge groups in a maximal splitting of Γ
as described in the proof of Lemma 1.3, together with those vertex groups which
are virtually abelian. These groups are all parabolic on D, and so can be chosen
to be parabolic in Σ. By Lemma 1.3, and the subsequent remark, we arrive at the
contradiction that Γ is parabolic on Σ.

Proof of Theorem 0.1. Define an equivalence relation on M by deeming two points,
x, y ∈ M , to be not equivalent if there exists a subset of M consisting of points
which individually separate x from y, and which is order isomorphic to the rational
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numbers in the natural linear order (arising from the pointwise separation properties
of this subset). The quotient of M by this relation is a dendrite, D. If M contains
a cut point which is not a parabolic fixed point, then it follows from [Bo3] that D
is non-trivial. Moreover, Γ acts as a minimal convergence group on D.

Suppose that Γ splits over a two-ended subgroup, G ≤ Γ. We claim that G is
parabolic on D. If G is parabolic on M , then it is certainly parabolic on D, so
we can assume that it is loxodromic on M . Thus, its limit set, ΛG, consists of
precisely two points, say a and b. Moreover (M \ΛG)/G is compact hausdorff. By
hypothesis, (M \ ΛG)/G is disconnected, so we can write it as a disjoint union,
A1 t A2, of non-empty closed subsets. Now, the preimage, Ui, of Ai in M \ ΛG
is open in M \ ΛG and hence in M . Thus, Bi = Ui ∪ ΛG ⊆ M is closed and
G-invariant. Moreover, M = B1 ∪B2 and ΛG = B1 ∩B2.

We claim that Bi is connected. To see this, let K be a connected component of
Bi. If K ∩ ΛG were empty, then we could find a closed and open subset, L, of Bi

containing K and which does not meet ΛG. We see that L must be closed and open
in M , contradicting the fact that M is connected. This shows that K ∩ ΛG 6= ∅.
Suppose that a ∈ K ∩ ΛG. Let H ≤ G be the subgroup (of index at most 2) of
G which fixes a. Now, K is H-invariant, and so either ΛG ⊆ K or K = {a}. In
the former case, we see that Bi = K is connected as required. In the latter case,
we deduce, similarly, that {b} is a component of Bi, giving the contradiction that
Bi = ΛG.

It now follows that no point of M separates the two points of ΛG. Thus, ΛG
collapses to a point in D, and so G is parabolic in D.

The hypotheses of Lemma 1.4 are now satisfied, giving the contradiction that D
is trivial.

It is unclear to what extent the algebraic hypotheses on Γ in Theorem 0.1 are
really necessary. It is conceivable it might hold for any finitely generated group,
though one might want to interpret a “parabolic fixed point” to mean one whose
stabiliser is an infinite (possibly torsion) subgroup. One can drop the assumption
that M is metrisable, though to do so would introduce technical complications with
little obvious benefit — all likely applications are to metrisable spaces.

2. Proof of the first corollary

Let Γ be a one-ended hyperbolic group (in the sense of Gromov [Gr]). Its bound-
ary, ∂Γ, is a metrisable continuum, on which Γ acts as a minimal convergence group
without parabolics (see [GhH], [F], [T], [Bo7]). Moreover, Γ has no infinite torsion
subgroup.

Let X be a Cayley graph of Γ, so that X∪∂Γ admits a natural compact hausdorff
topology. Suppose that G ≤ Γ is two-ended with ηΓ(G) > 1. Thus, (X∪∂Γ\ΛG)/G
is compact hausdorff. There is an open relatively compact subset, N , of X/G
such that we can write (X/G) \ N as a disjoint union of two closed non-compact
subsets A1 and A2. Let Āi be the closure of Ai in (X ∪ ∂Γ \ ΛG)/G, and let
Bi = Āi ∩ (∂Γ \ ΛG)/G. We claim that (∂Γ \ ΛG)/G = B1 t B2. To see this,
suppose a ∈ (∂Γ \ ΛG)/G, and consider a path β in X/G tending to a and which
is the projection of geodesic ray in X . Since G is two-ended, it quasiconvex, so the
lift of N to X is quasiconvex. It follows easily that β must eventually lie in either
A1 or A2, and so a ∈ B1 ∪B2. Moreover any such ray in A1 must diverge from any
such ray in A2, and so B1 ∩B2 = ∅ as claimed. We see that η∂Γ(G) > 1.
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The hypotheses of Theorem 0.1 are now satisfied. Since Γ has no parabolics on
∂Γ, there can be no global cut point. This proves Corollary 0.3.

3. Proof of the second corollary

As mentioned in the introduction, the argument we present here will go through,
with minor modification, to the case of relatively hyperbolic groups. This will be
discussed in Section 4 (where the convex hull of the limit set will be replaced by a
locally finite hyperbolic 2-complex). Most of the proof of Corollary 0.4 is given up
to dealing with the complication of two-ended parabolic subgroups.

Let Y be a complete simply connected riemannian manifold of pinched negative
curvature. We can naturally compactify Y to a closed ball, Y ∪ ∂Y , by adjoining
the ideal sphere, ∂Y . (To avoid any confusion with ideal boundaries, in this section
we shall use frA to denote the topological boundary or “frontier” of a set A.)

Suppose a group, Γ, acts as a geometrically finite group on Y , as discussed in
[Bo2]. It was shown there that Γ is finitely generated, and a simple extension of
these arguments shows that it must, in fact, be finitely presented. Also, Γ has no
infinite torsion subgroup.

Let ΛΓ ⊆ ∂Y be the limit set of Γ, and let X be the intersection of its closed
convex hull with Y . (In fact, it would be more convenient to take a uniform neigh-
bourhood of the convex hull — this ensures that X is a codimension-0 submanifold
with C1 boundary.) Now, X ∪ ΛΓ is a closed subset of Y ∪ ∂Y . In fact, X is in-
trinsically a Gromov hyperbolic space with ideal boundary ∂X = ΛΓ. Let Π ⊆ ΛΓ
be the set of parabolic fixed points. Given a point p ∈ Π, its stabiliser, Γ(p), is
finitely generated virtually nilpotent [Bo1], and hence, in particular, is either one- or
two-ended. The groups, Γ(p), are precisely the maximal parabolic subgroups of Γ.
Now, each parabolic fixed point, p, is “bounded” in the sense that (ΛΓ \ {p})/Γ(p)
is compact. Moreover, we can choose an open horoball, B(p), about p such that
S(p) = X ∩ frB(p) is connected. (To see this, choose any compact set Q ⊆ ΛΓ such
that ΛΓ =

⋃
Γ(p)Q, and generators, γ1, . . . , γn for Γ(p). Now, Q′ = Q ∪⋃n

i=1 γiQ
is a closed subset of ΛΓ missing the point p, and so we can find a horoball, B(p),
whose closure does not meet the convex hull of Q′. Each component of X \ B(p)
must meet ΛΓ; otherwise we could remove it from the convex hull. It follows that
X \ B(p) is connected. Since B(p) is connected, and X is simply connected, it
follows that X ∩ frB(p) is connected.) Note that S(p)/Γ(p) is compact. We re-
fer to C(p) = X ∩ B(p) as a cusp region. Note that C(p) ∪ {p} is convex, and
hence topologically a closed ball. In particular, C(p) is simply connected and one-
ended. We can choose the horoballs B(p) equivariantly with respect to the action
of Γ, and with the property that distinct horoballs have disjoint closures. Let
X0 = X \⋃

p∈Π C(p). In this way, X0/Γ is compact. The connected components of
X \X0 are precisely the cusp regions C(p), and the components of the boundary
of X0 in X are precisely the sets S(p).

We write Π = Π1 tΠ2, where Γ(p) (and hence S(p)) is one-ended for all p ∈ Π1,
and Γ(p) (and hence S(p)) is two-ended for all p ∈ Π2. Let X2 = X \⋃

p∈Π2
C(p).

We thus have Γ-invariant sets, X0 ⊆ X2 ⊆ X .
We note that Γ is one-ended if and only if X0 is one-ended (since X0/Γ is

compact). Also ΛΓ is connected if and only if X is one-ended (since ΛΓ is the ideal
boundary of X). From the topology of cusp regions described above (specifically
the fact that each region C(p) is one-ended, and that the set S(p) is one-ended if
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p ∈ Π1), we see that the one-endedness of X is equivalent to that of X2, and is
implied by that of X0. If it happens that Π2 = ∅, then these are all equivalent.

We first prove Corollary 0.4 in the case where Π2 = ∅, i.e. all maximal parabolic
subgroups are one-ended. From the previous paragraph, we see that Γ is one-ended.
Suppose G ≤ Γ is loxodromic. Now, the quotient, (X∪ΛΓ\ΛG)/G is compact. Also
G intersects every parabolic subgroup in a finite group, so each cusp region, C(p),
projects finite-to-one into X/G. In particular, these projections are connected, and
have one-ended boundaries. Removing them we obtain the quotient X0/G. Now,
if ηΓ(G) > 1, then X0/G has more than one end. Thus, X/G also has more than
one end. As in the proof of Corollary 0.3, we see that (ΛΓ\ΛG)/G is disconnected.
In other words, ηΛΓ(G) > 1. The hypotheses of Theorem 0.1 are now satisfied,
proving Corollary 0.4 in this case.

We note that the essential points of the argument were that X is one-ended
and Gromov hyperbolic with boundary ΛΓ. The idea to deal with the general
case will be to use a “doubling” construction that will preserve this hyperbolicity.
We will also want to verify that the resulting space is one-ended. This is perhaps
most simply done directly, but to make a cleaner, and more general statement, we
translate it into a lemma about groups.

We begin with a definition. Suppose that G is a finitely presented group, and
Hi, . . . , Hn are finitely presented subgroups. We can construct finite complexes,
K(G) and K(Hi), with these groups as fundamental groups. We can assume
that K(G) contains disjoint embedded copies, K(G,Hi), of each K(Hi). More-
over, we can assume that each K(G,Hi) has a neighbourhood homeomorphic to
K(Hi)× [0, 1], with K(G,Hi) embedded as K(Hi) × {0}. We write K̃(G) etc. for
the universal covers of these spaces. We say that G is one-ended relative to the sub-
groups Hi if every compact subset of K̃(G) whose complement has more than one
unbounded component meets a lift of some K(G,Hi). We shall need the following:

Lemma 3.1. Suppose that a finitely presented group, Γ, splits as a finite graph
of groups with all edge-stabilisers two-ended. Suppose each vertex group is one-
ended relative to the incident edge groups, and is not itself two-ended. Then Γ is
one-ended.

Proof. For each vertex group, Γ(v), and incident edge group, Γ(e), we construct
finite complexes, K(Γ(v)), K(Γ(e)) and K(Γ(v),Γ(e)) as described above, and glue
them together, as in the proof of Lemma 1.1, to obtain a finite complex K with
fundamental group Γ.

Let (V,E) be the simplicial tree arising from the graph of groups. Given v ∈ V
and e ∈ E, we write Γ(v) and Γ(e) for the vertex and edge stabilisers in Γ. For
each v, we get copy, K̃(v), of the universal cover of K(Γ(v)) embedded in K̃. We
similarly get a subcomplex, K̃(e), for each e ∈ E. Note that K̃(e) is two-ended and
separates K̃ into two components.

We first show that if F ⊆ K̃(v) is a compact subset meeting only one edge
complex, K̃(e), then K̃(v) \ F has precisely one unbounded component. There is
no loss in taking F to be a finite subcomplex. Moreover, we can assume that each
component of K̃(v) \ F and of K̃(e) \ F is unbounded. Now, each component of
K̃(v) \ F meets K̃(e) (otherwise the boundary of such a component would violate
the relative one-endedness hypothesis). If K̃(v) \ F is not connected, we see that
it must have precisely two components, say O and U , each meeting K̃(e) in a
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neighbourhood of an end. Let γ be an infinite order element of Γ(e). We can
suppose that K̃(e) ⊆ ⋃∞

n=0 γ
−nU . Now we can connect any point, x, in K̃(v) to

K̃(e) by a compact path, α ⊆ K̃(v). For sufficiently large n, γnα ∩ F = ∅, and
so γnα ⊆ U , telling us that γnx ∈ U . We see that

⋃∞
n=0 γ

−nU = K̃(v), and so⋂∞
n=0 γ

−nO = ∅. Similarly, we see that
⋂∞

n=0 γ
nU = ∅. We see easily that K̃(v) =⋃∞

n=−∞ γnF ∪⋃∞
n=−∞ γn(U ∩ γO). (Given x ∈ K̃(v), consider min{n | γnx /∈ O}.)

But now, fr(U ∩ γO) ⊆ F ∪ γF is compact. Also, (U ∩ γO) ∩ K̃(e) is relatively
compact. It follows that U ∩ γO is relatively compact in K̃(v) (otherwise, pushing
it slightly off K̃(e), we would obtain an unbounded set in K̃(v) whose boundary
is compact and does not meet any edge complex). We conclude that K̃(v)/Γ(e)
is compact, and so Γ(e) is of finite index in Γ(v), giving that Γ(v) is two-ended,
contrary to the hypotheses.

Now, suppose that F ⊆ K̃ is compact. (We can again take it to be a finite
complex.) We claim, by induction on the number of edge complexes which intersect
F , that K̃ \ F has only one unbounded component. Suppose that e ∈ E. Then
K̃(e) separates K̃ into two pieces, say K̃1 and K̃2, whose boundary components,
fr K̃1 and fr K̃2, are identified with K̃(e). Now, from the tree structure, we can
choose e such that F ∩ K̃1 meets fr K̃1 but no other edge complex in K̃1. By the
previous paragraph, we can see that the two ends of fr K̃1 lie in the same component
of K̃1 \F . By the induction assumption (pushing F ∩ K̃2 slightly away from fr K̃2),
we see that each unbounded component of K̃2 \F contains at least one end of fr K̃2.
On gluing back together, we see that K̃ \ F has only one unbounded component.
Thus, by induction, K̃ is one-ended.

Another proof of Lemma 3.1 is given in [Bo6]. This uses a different definition of
relative one-endedness (namely, G is one-ended relative to H1, . . . , Hn if G does not
split over any finite group relative to each Hi). That these notions are equivalent
follows from a relative version of Stallings’s theorem.

We now return to our geometrically finite group, Γ. We observe:

Lemma 3.2. If Γ is geometrically finite, then the limit set, ΛΓ, is connected if and
only if Γ is one-ended relative to its two-ended maximal parabolic subgroups.

Proof. We have already observed that ΛΓ is connected if and only if X2 is one-
ended. This is in turn equivalent to saying that X0 is one-ended relative to the
subsets S(p) for p ∈ Π2 (i.e. every compact set, F ⊆ X0, whose complement has
more than one unbounded component meets at least one S(p)). Since X0/Γ is
compact, it’s not hard to see that the last statement is equivalent to saying that Γ
is one-ended relative to the groups, Γ(p), for p ∈ Π2.

We only need the “only if” statement here. We omit the details, since we only
need the result to feed into Lemma 3.1, and the argument of Lemma 3.1 can be
applied directly to the construction we are about to describe, without translating
it into group theoretical terms. A more careful proof of Lemma 3.2 can be found
in [Bo9].

Recall that X2 is obtained by removing from X all sets of the form C(p) for
p ∈ Π2. Now S(p) is connected, and S(p)/Γ(p) is compact. Although it is not
essential to the argument, it will be convenient for the purposes of exposition to
assume that each such S(p) is simply connected. If this is not already the case, it
can be achieved by equivariantly attaching a number of discs to S(p) in frB(p),
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and then thickening X2 up slightly on the complement of B(p). It now follows
that X2 is also simply connected. We write frX2 =

⋃
p∈Π2

S(p) for the topological
boundary of X2 in X . Note that each S(p) is concave in the riemannian sense. It
follows that in the induced path metric on X2, each S(p) is totally geodesic (in
the metric space sense) and is quasiisometric to the real line. In particular, S(p)
is Gromov hyperbolic. It now follows that X2 is intrinsically Gromov hyperbolic.
This can be seen using the linear isoperimetric inequality. The idea is that if γ is
a rectifiable loop in X2, we can span it by a disc, D, in X , whose area is linearly
bounded by the length of γ. If a portion of D enters a region C(p) for p ∈ Π2, we
use the fact that S(p) is hyperbolic to push it back into X2. (This is essentially
the same argument as that which shows that a group which is hyperbolic relative
to a class of hyperbolic subgroups is intrinsically word hyperbolic; see for example
[Bo8].) We write ∂X2 for its ideal boundary. Now, Γ acts isometrically on X2, and
if p ∈ Π2, then Γ(p) is loxodromic on X2. Write L(p) ⊆ ∂X2 for its fixed point
set. Thus, S(p) ∪ L(p) is closed in X2 ∪ ∂X2. We obtain, topologically, the space
X ∪ ΛΓ by collapsing L(p) to the point p, for each p ∈ Π2.

Now, X2/Γ is an orbifold with orbifold fundamental group Γ, and with frX2/Γ a
suborbifold of the orbifold boundary. We construct an orbifold, X ′

2/Γ
′, by doubling

X2/Γ in frX2/Γ. Here, X ′
2 is the universal cover, and Γ′ is the orbifold fundamental

group of the double. The group, Γ′, can be defined abstractly as a graph of groups
with two vertex groups each isomorphic to Γ, connected by a set of two-ended
edge groups given by (the conjugacy classes in Γ of) two-ended maximal parabolic
subgroups. Note that, by Lemmas 3.1 and 3.2, if ΛΓ is connected, then Γ′ is one-
ended. Also, Γ′ contains no infinite torsion subgroup. (Every finite subgroup of Γ′

is conjugate into one of the vertex groups.)
The space, X ′

2, is obtained by gluing together two copies of X2 along the com-
ponents of frX2. Since these components are totally geodesic (in the induced path
metric), one can verify that X ′

2 is hyperbolic in the induced path metric. (This
follows by the same argument, via the subquadratic isoperimetric inequality, that
is given in [BeF2]. Given that, in our case, the sets S(p) are quasiconvex, one can
also give a more direct argument to show that every triangle has a centre, i.e. point
which lies a bounded distance from each side.) Let ∂X ′

2 be the ideal boundary of
X ′

2. We can obtain X ′
2 ∪ ∂X ′

2 by gluing together copies of X2 ∪ ∂X2 along sets of
the form S(p) ∪ L(p).

Since X ′
2 is hyperbolic, Γ′ acts as a convergence group on ∂X ′

2 (see, for example,
[Bo7]). Since Γ′ is one-ended, ∂X ′

2 is connected. We are now effectively back in
the case in which we have already proved Corollary 0.4 — with Γ′ replacing Γ,
X ′

2 replacing X , and ∂X ′
2 replacing ΛΓ. (We have introduced some geometrically

singular codimension-1 submanifolds into the picture but these have no bearing on
the argument — they do not affect the topology or the large-scale geometry of the
set-up.) We conclude that every global cut-point of ∂X ′

2 is a parabolic fixed point
of Γ′.

Now suppose, for contradiction, that q ∈ ∂X \Π is a global cut point of ∂X . We
can write ∂X \{q} = A0tA1, where A0 and A1 are disjoint nonempty open subsets
of ∂X . Let Ei = Ai ∪

⋃
p∈Ai∩Π2

C(p). Thus, Ei is closed in X ∪ ∂X \ {q}. Now,
X ∪ ∂X \ {q} is metrisable, hence normal, so we can find disjoint open subsets, O0

and O1, with Ei ⊆ Oi. Let Q = X \ (E0 ∪ E1) ⊆ X2. Thus, Q ∪ {q} is closed in
X ∪ ∂X .
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Now, consider X2 as a hyperbolic space with boundary ∂X2. As discussed above,
we can view ∂X as a quotient of ∂X2. Since q /∈ Π, q can be identified as a point
of ∂X2. Moreover, Q ∪ {q} is closed in X2 ∪ ∂X2. Let Vi = Ui ∩ X2. Note that
S(p) ⊆ Vi for all p ∈ Ai ∩Π2. Since Π2 is dense in ∂X , Ai ∩ Π2 is non-empty.

We now imagine X2 as isometrically embedded in X ′
2. Any point of X ′

2 \X2 can
be connected to X2 by a path meeting exactly one set S(p) for p ∈ Π2. Moreover,
this point p is uniquely determined. Let Wi ⊆ X ′

2 consist of the set Vi together
with all those points of X ′

2 for which this p lies in Π2 ∩ Ai. Thus, Wi is open in
X ′

2, and X ′
2 \Q = W0 tW1.

Now, we can identify ∂X2 as a closed subset of ∂X ′
2. Let Zi be the closure of

Wi in ∂X ′
2 \ {q}, and let Fi = Wi ∩ ∂X ′

2. Thus, Fi is non-empty and open in ∂X ′
2

and ∂X ′
2 \ {q} = F0 t F1. Thus, q is a global cut point of ∂X ′

2.
It now follows that q is fixed by an element γ ∈ Γ′, which is parabolic on X ′

2. We
see that γ fixes X2 setwise; in other words, γ ∈ Γ. Now γ has no periodic points in
∂X ′

2 \ {q} ⊇ ∂X2 \ {q}. It thus has no fixed points in ∂X \ {q}. It follows that γ is
parabolic for the action of Γ on X , giving us the contradiction that q ∈ Π.

This proves Corollary 0.4 in the general case.

4. Proof of Theorem 0.2

We can adapt the proof of Corollary 0.4 easily to deal with the case of relatively
hyperbolic groups. Details of the relevant constructions can be found in [Bo8].

Suppose that Γ is a group and that G is a set of infinite finitely generated sub-
groups of G. We shall say that Γ is hyperbolic relative to G if there exists a proper
(complete locally compact) hyperbolic path-metric space, X , and a geometrically
finite action of Γ on X such that G is precisely the set of maximal parabolic sub-
groups. From this, one can deduce that G is a union of finitely many conjugacy
classes of subgroups, that each element of G is equal to its normaliser, and that the
intersection of any two distinct elements of G is a finite group. We refer to G as
a “peripheral structure” on Γ, and to an element of G as a “peripheral subgroup”.
The term “geometrically finite” can be defined by saying that each point of the limit
set, ΛΓ ⊆ ∂X , is either a conical limit point or a bounded parabolic fixed point.
It turns out that this limit set depends, up to Γ-equivariant homeomorphism, only
on Γ and G. It thus gives us a well-defined boundary, ∂(Γ,G), of the relatively
hyperbolic group, (Γ,G). In fact, we can assume that X is “taut” (i.e. that every
point of X lies a bounded distance from a biinfinite geodesic) and that the action
of Γ on ∂X is minimal, so that the limit set equals ∂X .

It turns out that we can make a number of other simplifying assumptions about
the space, X , without any loss of generality. Since we have already dealt with
hyperbolic groups, we shall assume that G 6= ∅ (though the distinction is artificial
— it will be clear that one can give a unified argument). In this case, we can take
X to be a 2-complex consisting of a set of ideal hyperbolic triangles glued together
so that only finitely many meet along any given edge, and such that the union of
two adjacent ideal triangles is an ideal hyperbolic square. Now, Γ acts isometrically
on X , and there are finitely many orbits of such triangles. Let Π ⊆ ∂X be the set
of parabolic points. Thus G = {Γ(p) | p ∈ Π}, where Γ(p) is the stabiliser of p.
Each triangle is isometrically embedded in X and its three ideal points all lie in Π.
We note that we can choose a Γ-invariant system of disjoint horoballs, (B(p))p∈Π,
such that for each p ∈ Π, the boundary S(p) = frB(p) is a locally finite graph
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with S(p)/Γ(p) finite, and B(p) is a hyperbolic cone over S(p). Moreover, we can
assume that each horoball B(p) is convex in X , and that the distance between
distinct horoballs is arbitrarily large in relation to fixed hyperbolicity constants, as
well as in relation to the diameters of the graphs S(p)/Γ(p).

The proof now proceeds almost exactly as with that of Corollary 0.4, where the
complex,X , plays the role of the convex hull of the limit set. It is no longer true that
X is simply connected. However, it is “quasi simply connected” in the sense that
every loop can be spanned by a disc with holes of a bounded size. In any case, the
precise topology of X only served as a convenient language for expressing what were
essentially combinatorial or geometric constructions. As before, we can construct
the space X2 by removing all horoballs with two-ended stabilisers. The space
X ′

2 can be constructed explicitly by gluing together copies of X ′
2 along two-ended

subsets which are intrinsically geodesic (in fact, quasigeodesic would be enough).
The pieces are glued together in treelike fashion, as dictated by the structure of
the doubled group, Γ′. Now, Γ acts cocompactly on X ′

2. It is easily verified that
X ′

2 is hyperbolic, and that the action of Γ′ on X ′
2 is geometrically finite. (One can

also give a cleaner combinatorial verification of these statements using the ideas of
[Bo9].) The remainder of the argument proceeds exactly as with Corollary 0.4.
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