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Parametrized quantum circuits serve as ansatze for solving variational problems and provide a flexible
paradigm for the programming of near-term quantum computers. Ideally, such ansatze should be highly
expressive, so that a close approximation of the desired solution can be accessed. On the other hand, the
ansatz must also have sufficiently large gradients to allow for training. Here, we derive a fundamental
relationship between these two essential properties: expressibility and trainability. This is done by extend-
ing the well-established barren plateau phenomenon, which holds for ansatze that form exact 2-designs,
to arbitrary ansatze. Specifically, we calculate the variance in the cost gradient in terms of the express-
ibility of the ansatz, as measured by its distance from being a 2-design. Our resulting bounds indicate
that highly expressive ansatze exhibit flatter cost landscapes and therefore will be harder to train. Further-
more, we provide numerics illustrating the effect of expressibility on gradient scalings and we discuss the
implications for designing strategies to avoid barren plateaus.
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I. INTRODUCTION

While quantum hardware is rapidly reaching the stage
at which it can outperform classical supercomputers [1],
we remain in the noisy intermediate-scale quantum (NISQ)
era, in which the available devices are relatively small
and prone to errors [2]. Variational quantum algorithms
(VQAs) have gathered attention as a computational strat-
egy that is well suited to the constraints imposed by NISQ
devices [3–20]. In VQAs, a problem-specific cost function
is efficiently evaluated on a quantum computer, while a
classical optimizer trains a parametrized quantum circuit
to minimize this cost. The benefit of this paradigm is that
it adapts to the qubit and connectivity constraints of NISQ
devices, while keeping the circuit depth short to mitigate
quantum hardware noise.

Central to the success of VQAs is the construction
of a parametrized quantum circuit, which serves as an
ansatz with which to explore the space of solutions to
the target problem. Some noteworthy ansatze include the
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quantum alternating operator ansatz [5,21], the coupled
cluster ansatz [22–24], the Hamiltonian variational ansatz
[25], and the hardware-efficient ansatz [26]. To success-
fully find an optimal solution, the ansatz should ideally
be both expressive and trainable. Specifically, the ansatz
must be sufficiently expressive that it contains a circuit that
approximates the optimal solution well. Concurrently, the
cost landscape must be sufficiently featured to be able to
train the parameters to find this optimal solution.

Recently, it has been shown that VQAs can exhibit
barren plateaus, where under certain conditions the gradi-
ent of the cost function vanishes exponentially with the
size of the system [27–36]. In particular, Ref. [27] has
demonstrated that if an ansatz is sufficiently random that it
matches the uniform distribution of unitaries up to the sec-
ond moment (i.e., forms a 2-design), then the variance in
the cost gradient will vanish exponentially with the number
of qubits. Several strategies have been proposed to address
this issue [37–46], such as clever parameter initialization
or ansatz construction, while more research is needed to
test these strategies on various problems.

In broad terms, the expressibility of an ansatz is deter-
mined by how uniformly it explores the unitary space.
Thus the distance between the distribution of unitaries
generated by an ansatz and the maximally expressive uni-
form distribution of unitaries is a natural measure of its
expressibility [47]. Using such a measure, Ref. [48] has
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calculated the expressibility for several commonly used
ansatze and, by using the cost gradients obtained in Ref.
[28], has suggested that in some cases it is possible for
an ansatz to be both expressive and trainable. Addition-
ally, Ref. [49] has noted a numerical correlation between
expressibility and trainability for analog systems. How-
ever, given that both expressibility and trainability are
closely related to randomness, one might expect to be
able to draw a more fundamental and general relationship
between expressibility and trainability.

Here, we demonstrate that this is indeed the case by
analytically relating the trainability of an ansatz to its
expressibility. This is done by extending the barren plateau
phenomenon introduced in Ref. [27], which holds for
ansatze that form exact 2-designs, to arbitrary ansatze.
Specifically, we upper bound the variance in the cost gra-
dient in terms of the distance the ansatz is from being
a 2-design. Since the degree to which an ansatz is a 2-
design is a measure of its expressibility, this allows us to
relate the gradient of the cost landscape to the express-
ibility of the ansatz. We find that the more expressive the
ansatz, the smaller is the variance in the cost gradient and
hence the flatter is the landscape. We note that an ansatz
does not strictly need to be highly expressive to be used
successfully; rather, it just needs to contain a solution to the
problem at hand. Thus our result highlights the importance
of developing trainable problem-inspired ansatze.

Our main results can be summarized in Fig. 1. Given an
ansatz, we analyze the space of unitaries that are accessible
when sampling the parameters [Fig. 1(a)] of a parametrized
quantum circuit. Inexpressive ansatze, such as the one
shown in Fig. 1(b), access a small region of the unitary
group and can include the space of unitaries that solve
certain problems but not the space that solve others. Our
results do not preclude inexpressive ansatze having train-
ability issues, such as barren plateaus. On the other hand,
highly expressive ansatze, which are generically used for
many problems, as they can access a much larger space
[Fig. 1(c)], are shown to lead to small gradients and hence
can have trainability issues.

Since our analytic bounds are upper bounds, they leave
open the questions of how reducing the expressibility of an
ansatz changes the cost landscape and hence how reduc-
ing the expressibility can be used to avoid the barren
plateau phenomenon. To address these questions, we pro-
vide extensive numerics studying the effect that tuning the
expressibility of an ansatz may have on the scaling of
gradient magnitudes. Specifically, we consider the effects
of decreasing the depth of the circuits, correlating cir-
cuit parameters, and restricting either the direction or the
angle of rotations. We find that strongly correlating param-
eters [37] and/or initializing close to the solution (and then
restricting the ansatz to explore the region close to the ini-
tialization [38]) are the most effective approaches to avoid
exponentially vanishing cost gradients.

(a)

(b)

(c)

Unitary group

FIG. 1. A schematic representation of the main results. (a)
Variational quantum algorithms (VQAs) train the parameters θ

in a parametrized quantum circuit to minimize a cost function
as in Eq. (1). Each set of parameters corresponds to a unitary
U(θ) being produced. The set of unitaries U accessible by U(θ)
is a subset of the unitary group U(d) and the VQA can be suc-
cessful if U overlaps with the space of solution unitaries Us
that (approximately) minimize the cost. The expressibility of
an ansatz quantifies the degree to which it uniformly explores
the unitary group U(d). Given problems A and B, we denote
their solution spaces as UA

s and UB
s , respectively. (b) A low-

expressibility ansatz contains solutions to problem A but not to B,
while a high-expressibility ansatz as in (c) contains solutions to
both problems. Low-expressibility ansatze can lead to both small
and large cost gradients. On the other hand, high-expressibility
ansatze lead to predominantly flat cost landscapes and thus are
generally hard to train.

II. PRELIMINARIES

A. General framework

VQAs encode an optimization task in a cost function,
the minimum of which corresponds to the solution of the
problem. Here, we consider cost functions of the form [50]

Cρ,H (θ) = Tr[HU(θ)ρU(θ)†], (1)

where ρ is an n-qubit input state, H is a Hermitian operator,
and U(θ) is a parametrized quantum circuit depending on
trainable parameters θ . The value of the cost Cρ,H (θ) (or
of its gradient) are estimated on a quantum computer and
are then fed into a classical optimizer, which attempts to
solve the optimization task arg minθCρ,H (θ).
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The success of the VQA hinges on several factors. First,
it is necessary to find an operator H such that the resulting
cost is faithful for the given problem. That is, we require
the minimum of Cρ,H (θ) to correspond to the solution of
the optimization task. Evidently, for some applications,
there may be multiple choices in H corresponding to faith-
ful costs and therefore other factors will determine which
to use. One such factor is how easily H can be measured
on a quantum computer. Another relevant feature, as dis-
cussed further in Sec. II D, is the locality of H , i.e., the
number of qubits on which it acts nontrivially. We say that
the cost function is global if H acts nontrivially on all
qubits, while we use the term k-local for costs where H
acts nontrivially on at most k qubits.

A second aspect that determines the success of a VQA is
the choice of ansatz for U(θ). While discrete parametriza-
tions are possible, usually θ are continuous parameters,
such as gate rotation angles, in a parametrized quantum
circuit. Generally, U(θ) is expressed as

U(θ) =
D∏

j =1

Uj (θj )Wj . (2)

Here, {Wj }N
j =1 is a chosen set of fixed unitaries and Uj =

e−iθj Vj is a rotation of angle θj generated by a Hermitian
operator Vj such that (Vj )

2 = 1. The rotation angles {θj }
are typically assumed to be independent.

Once an ansatz has been fixed for the parametrized
quantum circuit, then, as sketched in Fig. 1(a), each pos-
sible vector of parameters θ corresponds to a unitary
U(θ) that is produced. For concreteness, given a set of
different parameters {θ (1), . . . θ (2), . . . , θ (y)} we obtain the
corresponding ensemble of unitaries:

U = {U(1), U(2), . . . , U(y)}, (3)

where U(j ) := U(θ (j )). Here, U ⊆ U(d), where U(d) is the
unitary group U(d) of degree d = 2n.

B. Expressibility

For a VQA to be successful, a solution (i.e., a unitary
that is by some measure close to the unitary that minimizes
the cost) needs to be contained within the ensemble of uni-
taries generated by the ansatz. Specifically, defining Us as
the set of solution unitaries, then the VQA will be success-
ful only if Us

⋂
U �= ∅. When this condition is satisfied,

the ansatz is said to be complete for the given problem.
In the absence of prior knowledge about where the solu-

tion unitaries Us lie, the likelihood that the ansatz is com-
plete can be maximized by using an ansatz that explores
the total space of unitaries as fully and as uniformally as
possible. Such ansatze are known as expressive ansatze.
For example, consider having two problems (problems A

and B), with solution spaces respectively denoted as UA
s

and UB
s . Figure 1(b) sketches U for an inexpressive ansatz

that is complete with respect to problem A but incomplete
with respect to B. Conversely, Fig. 1(c) shows U for an
expressive ansatz that is complete with respect to both
problems.

For many applications, information about the problem
can be encoded in the ansatz. For instance, the quantum
alternating operator ansatz [21] (or the Hamiltonian varia-
tional ansatz [25]), encodes information of an appropriate
adiabatic transformation. Such problem-inspired ansatze
may be complete but inexpressive [e.g., Fig. 1(b) could
denote a problem-inspired ansatz for problem A]. How-
ever, problem-agnostic ansatze, which can be used for a
wide range of problems, need to be sufficiently expressive
to guarantee their completeness.

The expressibility of an ansatz, i.e., the degree to which
it uniformly explores the unitary group U(d), can be quan-
tified by comparing the uniform distribution of unitaries
obtained from the ensemble U to the maximally expressive
uniform (Haar) distribution of unitaries from U(d). More
concretely, the expressibility of a circuit can be defined in
terms of the following superoperator [47,48]:

A(t)
U
(·) :=

∫

U(d)
dμ(V)V⊗t( · )(V†)⊗t

−
∫

U

dU U⊗t( · )(U†)⊗t, (4)

where dμ(V) is the volume element of the Haar measure
and dU is the volume element corresponding to the uni-
form distribution over U in Eq. (3). If A(t)

U
(X ) = 0 for

all operators X , then averaging over elements of U agrees
with averaging over elements of the Haar distribution over
U(d) up to the tth moment, and thus U forms a t-design
[51–55]. For our purposes, it suffices to consider the behav-
ior of A(t)

U
for t = 2. Henceforth, we drop the t superscript;

i.e., AU ≡ A(2)
U

.
In the context of minimizing a generic cost Cρ,H (θ) of

the form specified by Eq. (1), we are interested in the
expressibility of the circuit with respect to both the initial
state ρ and the measurement operator H . The following
quantities, respectively, capture these notions:

ε
ρ
U

:= ||AU(ρ
⊗2)||2, (5)

εH
U

:= ||AU(H⊗2)||2. (6)

Small values of ερ
U

and εH
U

indicate that the ansatz is
highly expressive. These measures generalize the notion of
expressibility introduced in Ref. [47], where the express-
ibility has been defined in terms of ερ

U
for ρ = |0〉〈0|.
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While the ρ and H dependence of ερ
U

and εH
U

make
them natural measures of the expressibility in the context
of minimizing a cost Cρ,H (θ), cost-function-independent
measures of expressibility may allow the expected perfor-
mance of different ansatze to be more easily compared.
With this in mind, one could alternatively quantify the
expressibility directly in terms of the diamond norm of AU,

ε	
U

:= ||AU||	, (7)

which is an operationally meaningful distance measure to
distinguish two quantum operations. We use the diamond
norm here in line with the literature on ε-approximate uni-
tary designs [56]; however, alternative norms can be used
(for a discussion, see Ref. [54]). For completeness, we for-
mulate our results in terms of ε	

U
, as well as the quantities

ε
ρ
U

and εH
U

.

C. Gradient magnitudes

For a VQA to run successfully, it is not sufficient that the
ansatz contains the solution; the cost landscape must also
exhibit large enough cost gradients to enable this solution
to be found.

The component of the gradient corresponding to the
parameter θk is determined by the partial derivative ∂kC :=
∂Cρ,H (θ)/∂θk. For a generic ansatz of the form speci-
fied by Eq. (2), the average of ∂kC over all parameters θ

vanishes:

〈∂kC〉 = 0 ∀ k. (8)

That is, the cost gradients are not biased in any single direc-
tion but, rather, average out to zero. Intuitively, this lack of
bias can be understood as following from the fact that the
average of a rotation exp[−iθkVk] is zero when V2

k = 1. We
show this in Appendix C, where we prove that 〈∂kC〉 = 0
by explicitly integrating over θk.

However, an unbiased cost landscape can be either train-
able or untrainable, depending on the extent to which the
gradient fluctuates away from zero. Therefore, to assess the
trainability of an ansatz U(θ), we now recall Chebyshev’s
inequality. This inequality bounds the probability that the
partial derivative of the cost deviates from its average of
zero,

P(|∂kC| � δ) � Var[∂kC]
δ2 , (9)

in terms of the variance

Var[∂kC] = 〈
(∂kC)2

〉− 〈∂kC〉2 , (10)

where the expectation value is taken over the parameters
θ . Hence if the variance of the partial derivative is small
for all θk, then the probability that the partial derivative is

nonzero is small for all θk. On such landscapes, (potentially
untenably) precise measurements are required to detect the
path of steepest descent to navigate to the minimum.

D. Barren plateaus

There is a growing awareness of the so-called barren
plateau phenomenon for VQAs [27–36]. For a given ansatz
U(θ), a cost C is said to exhibit a barren plateau if its gra-
dients vanish exponentially with the number of qubits n.
This is typically relaxed to a probabilistic definition, where
the gradient vanishes exponentially with high probability.
This would follow from Chebyshev’s inequality, given in
Eq. (9), if the variance in the partial derivative vanishes
exponentially, i.e., if Var[∂kC] ∈ O(2−pn) for any integer
p > 0. For costs that exhibit barren plateaus, exponentially
precise measurements may be required to determine the
minimization direction and hence the cost is effectively
untrainable for large problem sizes.

To elucidate the conditions under which a layered
parametrized ansatz U(θ), of the form of Eq. (2), gives
rise to barren plateaus, consider a bipartite cut of U(θ) and
write

U(θ) = UL(θ)UR(θ), (11)

where

UL(θ) =
D∏

j =k+1

Uj (θ j)Wj and UR(θ) =
k∏

j =1

Uj (θ j )Wj .

(12)

Note that since we suppose that the parameters θj are
uncorrelated, the circuits UL and UR are independent.
These circuits are pertinent when quantifying gradients,
since taking the partial derivative of a circuit, as shown
in Appendix D, effectively splits a circuit in two.

Reference [27] has then demonstrated that if the ensem-
ble of unitaries generated by the ansatz U(θ) is sufficiently
random (i.e., expressive) such that the ensembles UL or
UR [associated with the circuits UL(θ) and UR(θ), respec-
tively] form 2-designs, then the variance in the cost gra-
dient vanishes exponentially with n. Specifically, let us
denote the variance of the cost when just UR, just UL, and
both UR and UL form 2-designs as VarR∂kC, VarL∂kC, and
VarR,L∂kC, respectively. From Ref. [27], it follows that for
x = R, x = L and x = R, L,

Varx∂kC = gx(ρ, H , U)
22n − 1

, (13)

where we pull out the n-dependent scaling factor explic-
itly. The prefactor gx(ρ, H , U), which we define explicitly
in Appendix E, is in O(2n) for typical choices in Vk and H .
Thus if UL or UR form a 2-design, the variance in the gradi-
ent vanishes exponentially in n. In other words, maximally
expressive ansatze exhibit barren plateaus.
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III. MAIN RESULTS

A. Analytic bounds

In this section, we study the gradient of a generic cost
Cρ,H (θ), given in Eq. (1), with an ansatz U(θ), given in
Eq. (2), but relax the assumption that UL or UR forms
a 2-design. By doing so, we extend the results on bar-
ren plateaus from Ref. [27] to arbitrary ansatze. As will
become clear, this generalization enables us to relate the
variance of the cost function partial derivative to the
expressibility of U(θ) in Eq. (4).

Let us start by noting that while maximally expressive
ansatze exhibit barren plateaus, the converse is not nec-
essarily true. In other words, highly inexpressive ansatze
need not always experience large cost gradients and in fact
they may exhibit vanishing gradients. A trivial example
of this phenomenon is provided by an ansatz composed
of rotations that commute with the measurement oper-
ator [U(θ), H ] = 0. Such an ansatz will leave the cost
unchanged for any θ and so the variance in gradient in
the cost of such an ansatz is necessarily zero. A more sub-
tle example is an ansatz composed of a tensor product of
single-qubit rotations. Since this ansatz does not generate
entanglement, it is inexpressive; however, it has also been
shown to exhibit a barren plateau for global cost func-
tions [7,28]. It follows from these observations that it is
not possible to meaningfully lower bound the gradients of
an ansatz in terms of its expressibility.

Therefore, to relate cost gradients to expressibility, we
instead derive an upper bound. Specifically, our main
result consists of a nontrivial upper bound for the variance
of the cost function partial derivative for a general ansatz
U(θ) in terms of the expressibility in Eq. (4). This bound
is in terms of (1) the variance of the cost gradient when
either UL or UR form a 2-design, and (2) the expressibility
of the ansatz as measured by the distance UL and UR are
from being 2-designs. As shown in Appendix D, we prove
the following.

Theorem 1. Consider a generic cost function Cρ,H (θ), as
given in Eq. (1), using a layered ansatz U(θ) of the general
form in Eq. (2). The variance of the cost partial derivative
obeys the following bounds:

Var ∂kC � VarR ∂kC + 4ερR||H ||22, (14)

Var ∂kC � VarL ∂kC + 4εH
L ||ρ||22, (15)

Var ∂kC � VarR,L ∂kC + f (ερR, εH
L ). (16)

Here, we use the shorthand ερR := ε
ρ
UR

and εH
L := εH

UL
, and

we define

f (x, y) := 4xy + 2n+2
(
x||H ||22 + y||ρ||22

)

22n − 1
. (17)

Theorem 1 establishes a formal relationship between
the gradient of the cost landscape and the expressibility
of the ansatz used. Namely, the higher the expressibility of
the ansatz—that is, the smaller εH

L or ερR—the smaller is the
upper bound on the variance of the cost partial derivative.
This, in combination with the fact that the cost gradient is
unbiased, demonstrates that highly expressive ansatze will
have flatter landscapes and consequently be harder to train.

In contrast to the bounds specified by Eq. (13), which
hold for three distinct cases (i.e., when UL is a 2-design,
when UR is a 2-design, and when both UL and UR are
2-design), the bounds in Eqs. (14)–(16) all hold for any
generic ansatz of the form in Eq. (2). Thus any single
bound would suffice to bound the variance in the cost
function partial derivative for an arbitrary ansatz.

We include all three bounds despite this fact since, in
any instance, one bound may be tighter than the others and
hence more informative. In particular, the relative tightness
of the bounds depends on the parameter with respect to
which we are taking the derivative. This follows from the
fact that Eq. (14) becomes an equality in the limit that UR
tends to a 2-design, whereas Eq. (15) becomes an equality
in the limit that UL is a 2-design and Eq. (16) becomes an
equality in the limit that both UL and UR are 2-designs. If
we are looking at the derivative with respect to the final
layer, then UR is typically closer to being a 2-design than
UL and so Eq. (14) will be tightest. Conversely, if we are
most interested in the partial derivative with respect to a
parameter in the first layer, then Eq. (15) will be tight-
est. On the other hand, for parameters in a layer close to
the middle (i.e., at depth D/2) and Eq. (16) will be tight-
est since, as shown in Appendix D, the derivation of this
bound uses the most information about the ansatz.

In Appendix D, we extend Theorem 1 to cost func-
tions of the form Cgen = ∑

i Tr[HiU(θ)ρiU(θ)†], which
allow for multiple input states and measurements. Thus our
results also apply to quantum machine learning approaches
that utilize training data [57–60].

1. Generalizing the barren plateau phenomenon

Theorem 1 may be viewed as an extension of the barren
plateau phenomenon introduced in Ref. [27] to ansatze that
form approximate rather than exact 2-designs. By combin-
ing Eqs. (13) and (16), we find that the variance in the
partial derivative for an arbitrary ansatz is bounded as

Var ∂kC � gL,R(ρ, H , U)
22n − 1

+ f (εH
L , ερR). (18)

Here, the first term on the right is the variance of a
maximally expressive ansatz (namely, one that forms a
2-design) and f (εH

L , ερR) is the expressibility-dependent
correction term defined in Eq. (17). Expressions similar to
Eq. (18) are obtainable from Eqs. (14) and (15).
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For perfectly expressive ansatze, f (εH
L , ερR) vanishes and

Eq. (18) reduces to Eq. (13), regaining the result of Ref.
[27]. In this case, the variance in the gradient vanishes
exponentially with the size of the system n, i.e., the ansatz
exhibits a barren plateau. Similarly, if the expressibility of
an ansatz increases exponentially with the size of the prob-
lem, i.e., if f (εH

L , ερR) ∈ O (
1/2kn

)
for k > 0, then Var ∂kC

again vanishes exponentially and the ansatz exhibits a
barren plateau. However, more generally, when f (εH

L , ερR)
scales nonexponentially, the upper bound allows for the
variance in the partial derivative to be nonvanishing. Thus,
there is leeway for imperfectly expressive ansatze to avoid
barren plateaus.

In Ref. [61], it has been proven that the barren plateau
phenomenon is necessarily associated with the concen-
tration of cost function values about their mean. More
concretely, it has been shown that the probability that the
cost function deviates from its mean is determined by the
variation in the gradient of the cost. Thus our bounds
also imply that the degree to which the cost concentrates
about its mean increases with increasing expressibility.
In Appendix F, we provide an alternative proof of this
following on from the results of Ref. [33].

2. Diamond norm reformulation

For local costs, the term ||H ||22 scales exponentially with
the size of the system and therefore for large systems Eq.
(14) becomes exponentially loose. This issue can be miti-
gated by reformulating Theorem 1 in terms of ε	

U
, given in

Eq. (7). We obtain the following theorem in Appendix D.

Theorem 2. Consider a generic cost function Cρ,H (θ), as
given in Eq. (1), using a layered ansatz U(θ) of the general
form in Eq. (2). The variance of the cost partial derivative
obeys the following bounds:

Var ∂kC � VarR ∂kC + 4||H ||2∞ ε	
R, (19)

Var ∂kC � VarL ∂kC + 4||ρ||2∞‖H‖1 ε
	
L , (20)

Var ∂kC � VarR,L ∂kC + f (ε	
R, ‖H‖1ε

	
L)

2n , (21)

where we use the shorthand ε	
R = ε	

UR
and ε	

L = ε	
UL

and
with f (x, y) defined in Eq. (17).

Again, Theorem 2 formally establishes that highly
expressive ansatze experience flatter cost landscapes. Fur-
thermore, a relation similar to Eq. (18) can be derived from
Theorem 2. Hence, Theorem 2 also provides an extension
of the barren plateau result of Ref. [27]. However, since
||H ||2∞ ∈ O(1) for all H , Eq. (19) does not experience the
same looseness for local costs of large systems as Eq. (14).
On the other hand, since ||H ||1 may scale exponentially in

n, Eq. (20) may become loose for large systems and there-
fore we expect Eq. (15) to generally be more useful than
Eq. (20).

B. Numerical simulations

Since the analytic bounds in the previous section are
upper bounds, we have no guarantee that inexpressive
ansatze will exhibit larger cost gradients. The bounds thus
leave open the question of whether or how reducing the
expressibility of an ansatz changes the cost landscape.
Moreover, they leave open the question of how one can
avoid the barren plateau phenomenon that is observed for
maximally expressive ansatze.

One can conceive of numerous ways in which the
expressibility of an ansatz can be tuned, each of which
could have a different impact. In this section, we consider
four such ways: decreasing the depth of the circuits, corre-
lating circuit parameters, and restricting either the direction
or angle of rotations. We then numerically investigate the
effect these have on the cost gradient scaling.

For completeness, in our numerics we consider both
a 2-local cost where the measurement operator is com-
posed of Pauli-z measurements on the first and second
qubits, HL = σ z

1σ
z
2 , and a global cost where the measure-

ment operator consists of Pauli-z measurements across
all qubits, HG = ⊗n

i=1 σ
z
i [28]. In both cases, following

Ref. [27], the system is prepared in the pure state, ρ =
|ψ0〉〈ψ0|⊗n, where |ψ0〉 = exp[−i(π/8)σY]|0〉. We further
consider a layered hardware-efficient ansatz,

U(kl, θ l, D) :=
D∏

l=1

WV(kl, θ l), (22)

consisting of D alternating layers of random single-qubit
gates and entangling gates as shown in Fig. 2. Specifically,
the entangling layer,

W =
n−1∏

i=1

CPHASEi,i+1, (23)

is composed of a ladder of controlled-phase (CPHASE)
operations, between adjacent qubits in a one-dimensional
array. The single-qubit layer consists of a series of random
single-qubit rotations,

V(kl, θ l) =
n∏

i=1

Rki
l
(θ i

l ), (24)

where Rki
l
(θ i

l ) is a rotation of the ith qubit by an angle
θ i

l about the ki
l = x, y or z axis. In the maximally expres-

sive version of the ansatz, the x, y, or z rotation directions
{ki

l} for each qubit on each layer are chosen independently
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Correlated qubits

Correlated
layers

Correlated qubits and layers

FIG. 2. Ansatz employed in numerical simulations. The ansatz
is composed of alternating random single-qubit rotations and lad-
ders of CPHASE operations. The colored boxes indicate the gates,
which are fixed to rotate by the same angle and in the same direc-
tion when we correlate the ansatz layers (yellow), correlate qubits
(blue), and correlate both the layers and qubits (green).

and with equal probability and the rotation angles {θ i
l }

are independently and randomly chosen in the range 0
to 2π . Our numerics are implemented using TensorFlow
Quantum [62].

1. Circuit depth

One of the simplest ways of reducing the expressibility
of an ansatz is to reduce the depth D of the circuit. It has
been shown in Ref. [28] that global costs with a hardware-
efficient ansatz experience barren plateaus irrespective of
the depth of the circuit. However, local costs only exhibit
barren plateaus for deep circuits D ∈ 
(poly(n)) but are
trainable for shallow circuits D ∈ O(log(n)).

We obtain similar results here. As shown in Fig. 3(a),
for the global cost, the variance in the partial derivative
is seemingly independent of the depth of the circuit and
vanishes exponentially with the size of the system n. Con-
versely, for local costs, as shown in Fig. 3(d), exponentially
vanishing partial derivatives are observed for systems up
to 12 qubits for depths D � 100. However, shallow cir-
cuits D � 50 exhibit an approximately constant scaling for
n � 8.

2. Correlating parameters

A more sophisticated means of reducing the expressibil-
ity of the ansatz is to correlate the rotation angles [37].
Here, we consider three different means of correlating
parameters, as sketched in Fig. 2, and plot the correspond-
ing variance in the cost partial derivative in the central
panel of Fig. 3. In the first, shown in yellow, we correlate
the qubits (but allow the angles to vary between layers),
i.e., ki

l = ki′
l and θ i

l = θ i′
l for any two qubits i and i′. In the

second (plotted in green), we correlate the different lay-
ers (but not the qubits), i.e., ki

l = ki
l′ and θ i

l = θ i
l′ for any

two layers l and l′. Finally, as shown in blue, we corre-
late both the qubits and layers. In this case, all the qubits

rotate in same direction and by the same angle, i.e., ki
l = ki′

l′
and θ i

l = θ i′
l′ for any two qubits i and i′ and layers l and

l′. In other words, all parameters are correlated. The data
for only y (x) rotations are indicated by the solid (dashed)
lines, respectively.

In contrast to varying circuit depth, here we obtain sim-
ilar results irrespective of whether a local or global cost
is used. Correlating both the qubits and the layers results
in the least expressive ansatz and, correspondingly, the
largest variation in cost gradients is observed. Indeed, in
this case the variance in the cost gradient is approximately
constant. In contrast, correlating just the qubits, or just the
layers, increases the cost gradients and reduces the scaling
of the cost gradient with system size but an exponential
scaling is still observed.

3. Restricting rotation direction

One might also consider reducing the expressibility of
the ansatz by reducing the single-qubit-rotation gates to
a subset of directions. We explore this in the right panel
of Fig. 3. In blue, we plot the variance when only rota-
tions in a single direction, namely in the x (dark blue) or y
(light blue) direction, are implemented. We do not plot the
case when only z rotations are implemented, since in that
case U commutes with HL = σ z

1σ
z
2 and HG = ⊗n

i=1 σ
z
i ,

and so the cost landscape is entirely flat. For a local cost,
reducing the expressibility of the ansatz by restricting to
single-direction rotations seemingly removes the exponen-
tial gradient scaling. However, for a global cost, the scaling
remains exponential.

4. Restricting rotation angles

A final way to reduce the expressibility of an ansatz is
by reducing the range from which the rotation angles θ are
chosen; that is, choosing the θ i

l in the range [θ̃ i
l , θ̃

i
l + 2πr],

where θ̃ i
l is a fixed initialization point. For r = 1, the ansatz

explores the entire solution space but for r < 1 the ansatz
is constrained to exploring a subset of the solution space
where the rotation angles θ i

l deviate from θ̃ i
l by at most

2πr.
However, with a little thought, it is clear that, in con-

trast to the previous three approaches we have discussed,
restricting the rotation angles of the ansatz does not change
the cost landscape but, rather, limits the region of the
landscape explored by the ansatz. Thus, in general, reduc-
ing the rotation angles does not effect the cost gradients
experienced. This intuition is confirmed by the numerical
results displayed in the top panel of Fig. 4. Here, we ran-
domly initialize the parameters by randomly choosing θ̃ i

l
in the range [0, 2π ]. We find that the cost partial deriva-
tives for different r values perfectly overlap in this case,
i.e., for a random initialization, restricting the ansatz to a
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FIG. 3. Partial-derivative scalings for different expressibilities. The variance in the partial derivative of a global cost with HG =⊗n
i=1 σ

z
i (top) and 2-local cost with HL = σ z

1σ
z
2 (bottom) as a function of the number of qubits n. In both cases ρ = |ψ0〉〈ψ0|⊗n where

|ψ0〉 = exp[−i(π/8)σY]|0〉. In the left panel, we vary the circuit depth D of a hardware-efficient ansatz. In the middle (right) panel, we
consider the effect of correlating parameters (restricting the directions of rotation) of a hardware-efficient ansatz with D = 150, with
the choices of correlations (rotations) indicated in the figure legend. In all cases, the derivative is taken with respect to θ1

1 , the rotation
angle of the first qubit in the first layer, and the variance is taken over an ensemble of 1000 unitaries.

limited range of rotation angles does not change the partial
derivatives observed.

On the other hand, if the parameters are initialized close
to the solution, varying r has a substantial effect on the
observed partial derivatives for local costs and a reduced
effect for global costs. This is seen in Figs. 4(b) and 4(c),
where we initialize to identity, i.e., pick θ̃ i

l = 0 for all i,
which is close to the solution for this simple problem. In
this case, for r close to 1 (as shown in red and yellow),
the variance in the partial derivative again vanishes expo-
nentially with n. However, for small angle ranges, r � 0.1,
as shown in blue, we find that the partial derivative of a
local cost ceases to exhibit an exponential scaling. To some
degree, a similar effect is displayed for global costs; how-
ever, the effect is reduced and is only visible in the data
here for r ≈ 0.025.

This change in partial-derivative scaling for small r for
initializations close to the solution is plausibly explained
by the fact that the global minimum of costs exhibiting
barren plateaus tend to sit within a steep and narrow gorge
[28], as sketched in Fig. 1(c). By initializing close to the
solution, we are likely to be initializing within the nar-
row gorge. In this case, when r is close to 1, the ansatz
still explores the entire cost landscape and therefore the
variance in the partial derivative will be unchanged. How-
ever, for smaller r, the ansatz is constrained to the region
around the narrow gorge itself and hence a larger variance
in partial derivatives is observed.

5. Outlook for ansatz design

Figure 3 suggests that reducing the depth of a circuit
and correlating parameters are the most effective strategies
for amplifying the observed cost gradients. However, the

optimal solution, of course, may not lie within a shallow
or highly correlated ansatz. When deep and/or uncorre-
lated circuits are required, as is expected to be the case
for many problems of interest, then a perturbative strategy
may instead be effective. That is, one could start the vari-
ational algorithm using a shallow highly correlated ansatz
and as the cost is iteratively minimized, gradually grow the
ansatz [8,15,38] and decorrelate the parameters [37].

Restriction of the angle range also appears to provide
an effective strategy for increasing cost gradients, but for
it to be practical, it is necessary to initialize close to the
solution. This, of course, requires either prior knowledge
of an approximate solution to the problem at hand or an
effective pretraining strategy to obtain such an approximate
solution. The viability of either of these options warrants
further investigation.

6. Correlation and tightness of bounds

In Fig. 6, we study the correlation between the cost gra-
dients and our upper bounds. To quantify this correlation,
we include the Spearman correlation coefficient [64], as
well as its corresponding p value, which approximately
gives the probability of uncorrelated data generating a
Spearman coefficient at least as large as the one found.
For local costs, we obtain a Spearman value of at least
0.9 with a p value of less than 0.05 in all cases, indicat-
ing a strong correlation between our upper bound and the
actual variance in the gradient. The correlation is weaker
in the case of global costs, highlighting that in the case of
a global cost, expressibility is not the only phenomenon
that may induce a barren plateau. This is to be expected
given the results of Ref. [28], which show even very shal-
low and/or nonentangling circuits (i.e., highly inexpressive
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FIG. 4. Partial-derivative scalings for restricted angle ranges.
The scaling of the variance in the partial derivative when the rota-
tion angles θ i

l are randomly chosen from the range [θ̃ i
l , θ̃

i
l + 2πr],

such that for r = 1 (red) the ansatz explores the entire solution
space but for r � 1 (blue) the ansatz is constrained to exploring
close to the initialization point defined by {θ̃ i

l }. In (a), the angles
{θ̃ i

l } are a fixed (randomly chosen) initialization point away from
the solution (here, we consider a local cost but the data for a
global cost are essentially unchanged). In (b) and (c), which cor-
respond to global and local costs, respectively, the angles θ̃ i

l = 0
for all l and i, which is close to the global minimum of the cost.
In all cases, the derivative is taken with respect to θ1

1 , the rotation
angle of the first qubit in the first layer, and the variance is taken
over an ensemble of 1000 unitaries.

circuits) may exhibit barren plateaus when using global
costs. For completeness, the results presented here are
extended in Appendix G, where we study directly the cor-
relation between the cost gradient and the expressibility
measures ερR and εH

L , similar correlations being observed.
Figure 6 additionally highlights that, as expected, the

bounds are tightest for higher-expressibility ansatze but
may be relatively loose for lower expressibilities. More
specifically, in all cases considered here, the bounds are
tight to within a couple of orders of magnitude, with the
bounds tightest for ansatze that are high-depth, uncorre-
lated, and use the full range of rotation directions [65].
This phenomenon is more clearly demonstrated in Fig. 5,
where we plot both the variance in the partial deriva-
tive of the cost and the Hamiltonian- and state-dependent
expressibility bound, given in Eq. (16), as a function of the

40 80 120 160 200 240
Circuit depth
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100

V
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∂
θ
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,b
ou

nd

Expressibility bound
Variance in cost gradient
Variance for exact 2-design

FIG. 5. Comparison of scaling of bound and gradients. The
scaling of the bound on the variance in the gradient (blue), given
in Eq. (16), and the variance in the partial derivative (green) as
a function of the ansatz depth for n = 8 qubits. The dashed line
indicates the predicted variance in the partial derivative for a per-
fect 2-design from Ref. [63]. The derivative is taken with respect
to θ1

D/2, the rotation angle of the first qubit in the middle layer
(D/2) and the variance is taken over an ensemble of 1000 uni-
taries. We choose to show the state and Hamiltonian dependent
bound here, as given in Eq. (16), because as we are looking at the
gradient with respect to θ1

D/2, this bound is tightest.

ansatz depth for the eight-qubit local cost. The bound cap-
tures the qualitative behavior of the cost gradients, which
decrease with an increased circuit depth. While moder-
ately loose at low depths, the bound becomes tight for deep
circuits.

IV. DISCUSSION

In this work, we extend the well-known barren plateau
result. This result was restricted to anstze that form 2-
designs [27], while we extend it to arbitrary ansatze in our
Theorems 1 and 2. In practice, this extension may prove
to be quite useful, since many ansatze of interest are not
exact 2-designs but, rather, are some approximate notion
of this [56,66–68]. Our results can potentially provide use-
ful bounds on the variance of the gradient in this realistic
scenario of approximate 2-designs.

The key to our extension is to consider the expressibil-
ity of the ansatz. This can be precisely defined in terms of
the distance of the ensemble of unitaries accessible by the
ansatz from being a 2-design. Hence, our extension links
two key properties of ansatze: their expressibility and their
gradient magnitudes. Our bounds demonstrate that increas-
ing the expressibility of an ansatz can result in smaller cost
gradients. We believe that this connection is very inter-
esting and there is certainly much more to be explored
along these lines. For example, it would be interesting to
connect our findings to recent results on the role of the
growth of entanglement in generating barren plateaus. In
particular, since highly expressive ansatze are necessarily
highly entangling, our results would seem to imply those
in Refs. [33,44].
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FIG. 6. Correlations between cost partial derivatives and bounds. The variance in the partial derivative of a 2-local cost with H =
σ z

1σ
z
2 (top) and a global cost with H = ∏n

i=1 σ
z
i (bottom) as a function of (a)–(f) the state-dependent expressibility upper bound on the

variance in the partial derivative specified by Eq. (14) and (g)–(l) the Hamiltonian-dependent expressibility upper bound on the variance
in the partial derivative specified by Eq. (15). In both cases ρ = |ψ0〉〈ψ0|⊗n where |ψ0〉 = exp[−i(π/8)σY]|0〉. In the left panel, we
vary the circuit depth D of a hardware-efficient ansatz. In the right (middle) panel, we consider the effect of correlating parameters
(restricting the directions of rotation) of a hardware-efficient ansatz with D = 100, with the choices of correlations (rotations) indicated
in the figure legend. In (a)–(f), the derivative is taken with respect to θ1

1 and in (g)–(l), the derivative is taken with respect to θ1
D. In all

cases, n = 4 and the expressibility measures are estimated using an ensemble of 5000 unitaries.

To go beyond our bounds and look at the precise relation
between expressibility and gradients, we perform exten-
sive numerics. We consider several different strategies by
which one can vary the expressibility. As highlighted in
Figs. 6 and 5, we typically observe a strong correlation
(especially for local cost functions) between the express-
ibility and the variance of the gradient. However, the
bounds are not perfectly tight. This may arise from the
repeated use of the triangle and Cauchy-Schwarz inequal-
ities in the derivation (Appendix D). Thus a natural ques-
tion to ask is whether our bounds can be further tightened.
Another direction would be to explore the nature of barren
plateaus for global costs, where the numerics suggest that
the correlation between expressibility and cost gradients is
weaker.

We remark that the numerical results presented here are
necessarily problem specific, since they depend both on the
choice in cost function and ansatz. Further work is required

to ascertain the extent to which the trends observed here are
universally observed. In particular, it would be valuable to
investigate whether any analytic results can be obtained to
support them.

Nevertheless, there are several interesting trends shown
in our numerics that even suggest potential strategies
of avoiding or mitigating barren plateaus. As discussed
above, correlating parameters and restricting rotation
angles (especially when initializing near the solution) are
two strategies that significantly mitigated barren plateaus
in our numerics. Further exploring these and other strate-
gies will be an important direction for future research.
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APPENDIX A: PRELIMINARIES

We begin by reviewing some definitions and prior
results relevant for the rest of the appendices. We then
provide proofs for the main results and theorems.

1. Operator norms

Let D(H) denote the set of density operators acting on
a Hilbert space H, i.e., those that are positive semidefi-
nite with unit trace. Let L(H) denote the space of square
linear operators acting on H. The trace norm or Schat-
ten 1-norm ‖
‖1 of an operator 
 ∈ L(H) is defined as
‖
‖1 := Tr[|
|], where |
| :=

√

†
. More generally,

the Schatten p-norm of an operator 
 can be defined as
‖
‖p = (Tr[|
|p ])1/p , which satisfies ‖
‖p � ‖
‖q for
p � q. The diamond norm of a Hermiticity-preserving
linear map SA is defined as

‖SA‖	 = sup
n

sup

AB �=0

‖(SA ⊗ I(n)B )(
AB)‖1

‖
AB‖1
, (A1)

where 
AB ∈ L(HA ⊗ HB) and I(n)B denote an iden-
tity channel acting on an n-dimensional system B. The
diamond-norm distance ‖N − M‖	 is a measure of the
distinguishability of two quantum operations N and M.

2. Properties of the Haar measure

Let U(d) denote the unitary group of degree d = 2n. Let
dμH (V) = dμ(V) be the volume element of the Haar mea-
sure, where V ∈ U(d). The volume of the Haar measure
is finite:

∫
U(d) dμ(V) < ∞. The Haar measure is uniquely

defined up to a multiplicative constant factor. Let dζ(V) be
an invariant measure. Then there exists a constant c such
that dζ(V) = cdμ(V). The Haar measure is left and right
invariant under the action of the unitary group of degree d,
i.e., for any integrable function g(V), the following holds:

∫

U(d)
dμ(V)g(WV) =

∫

U(d)
dμ(V)g(VW)

=
∫

U(d)
dμ(V)g(V), (A2)

where W ∈ U(d).

3. Symbolic integration

We recall formulas that allow for the symbolical inte-
gration with respect to the Haar measure on a unitary group
[69]. For any V ∈ U(d), the following expressions are valid
for the first two moments:

∫
dμ(V)vijv

∗
pk = δipδjk

d
,

×
∫

dμ(V)vi1j1vi2j2v
∗
i′1j′1
v∗

i′2j′2

=
δi1i′1δi2i′2δj1j′1δj2j′2 + δi1i′2δi2i′1δj1j′2δj2j′1

d2 − 1

−
δi1i′1δi2i′2δj1j′2δj2j′1 + δi1i′2δi2i′1δj1j′1δj2j′2

d(d2 − 1)
, (A3)

where vij are the matrix elements of V. Assuming d = 2n,
we use the notation i = (i1, . . . in) to denote a bit string of
length n such that i1, i2, . . . , in ∈ {0, 1}.

4. Useful identities

We use the following identities, which can be derived
using Eq. (A3) (for a review, see Ref. [28]):

∫
dμ(W)Tr

[
WAW†B

] = Tr[A]Tr[B]
d

, (A4)

∫
dμ(W)Tr

[
WAW†BWCW†D

]

= Tr[A]Tr[C]Tr[BD] + Tr[AC]Tr[B]Tr[D]
d2 − 1

− Tr[AC]Tr[BD] + Tr[A]Tr[B]Tr[C]Tr[D]
d
(
d2 − 1

) , (A5)

∫
dμ(W)Tr

[
WAW†B

]
Tr
[
WCW†D

]

= Tr[A]Tr[B]Tr[C]Tr[D] + Tr[AC] + Tr[BD]
d2 − 1

− Tr[AC]Tr[B]Tr[D] + Tr[A]Tr[C]Tr[BD]
d
(
d2 − 1

) , (A6)

where A, B, C, and D are linear operators on a
d-dimensional Hilbert space.

Let A ∈ L(H) and B ∈ L(H′). Then the following iden-
tity holds:

Tr[A]Tr[B] = Tr[A ⊗ B]. (A7)

Let A, B ∈ L(H), where H is a d2-dimensional Hilbert
space. Then, from Eq. (A3), we derive the following
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integral:

∫
dμ(U)Tr[AU⊗2BU†⊗2]

= Tr[A]Tr[B] + Tr[AW]Tr[BW]
d2 − 1

− Tr[AW]Tr[B] + Tr[A]Tr[BW]
d(d2 − 1)

, (A8)

where W is the subsystem swap operator, i.e.,
W|i〉|j 〉 = |j 〉|i〉.

APPENDIX B: DEFINITIONS OF
EXPRESSIBILITY

In broad terms, a parametrized quantum circuit can be
considered expressive if the circuit can be used to uni-
formly explore the unitary group U(d). Thus, the express-
ibility of a circuit can be defined in terms of the following
superoperator:

A(t)
U
(·) :=

∫

U(d)
dμ(V)V⊗t( · )(V†)⊗t

−
∫

U

dU U⊗t( · )(U†)⊗t, (B1)

where dμ(V) is the volume element of the Haar measure
and dU is the volume element corresponding to the uni-
form distribution over U. If A(t)

U
(X ) = 0 for all operators

X , then the averaging over elements of U agrees with aver-
aging over the Haar distribution up to the tth moment. In
this case, U is said to form a t-design. For our purposes, it
suffices to consider the behavior of A(t)

U
for t = 2. Hence-

forth, we drop the t superscript and denote A(2)
U
(·) asAU(·).

In the context of minimizing a generic cost C of the form
specified by Eq. (1), we are interested in the quantities

ε
ρ
U

:= ||AU(ρ
⊗2)||2, (B2)

εH
U

:= ||AU(H⊗2)||2. (B3)

The quantities ερ
U

and εH
U

may be more readily computed by
relating them to a generalization of the frame potential. To
demonstrate how, let us first recall that the frame potential
[48,53] of an ensemble U may be defined as

FU :=
∫

U

∫

U

dUdV|〈0|(UV†)|0〉|4, (B4)

where dU and dV are volume elements corresponding to
the distribution over U. We then note that the quantity
||AU(|0〉〈0|)||22 can be rewritten in terms of FU as follows:

||AU(|0〉〈0|)||22 =
∣∣∣∣

∣∣∣∣
∫

U(d)
dμ(V) V⊗2(|0〉〈0|)(V†)⊗2 −

∫

U

dU U⊗2(|0〉〈0|)(U†)⊗2
∣∣∣∣

∣∣∣∣
2

2

=
∫

U

∫

U

dUdV|〈0|(UV†)|0〉|4 − 2
∫

U(d)

∫

U

dμ(V)dU|〈0|(UV†)|0〉|4

+
∫

U(d)

∫

U(d)
dμ(U)dμ(V)|〈0|(UV†)|0〉|4

=
∫

U

∫

U

dUdV|〈0|(UV†)|0〉|4 −
∫

U(d)

∫

U(d)
dμ(U)dμ(V)|〈0|(UV†)|0〉|4

= FU − FHaar, (B5)

where we use the left and right invariance of the Haar
measure, i.e., Eq. (A2), as in Ref. [53], and where we
define

FHaar :=
∫

U(d)

∫

U(d)
dμ(U)dμ(V)|〈0|(UV†)|0〉|4

= 1
(2n + 1)2n−1 . (B6)

In the context of the expressibility of a VQA, we are
interested in the more general quantity ||AU(X ⊗2)||2,

where X is a quantum state ρ or Hamiltonian H . Fol-
lowing the same approach as in Eq. (B5), we note that
||AU(X ⊗2)||2 can be rewritten as

||AU(X ⊗2)||2 =
√
F (X )

U
− F (X )

Haar, (B7)

where we define the operator-dependent frame-potential as

F (X )
U

:=
∫

U

∫

U

dUdVTr[XU†VXV†U]2 (B8)
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and

F (X )
Haar :=

∫

U(d)

∫

U(d)
dμ(U)dμ(V)Tr[XU†VXV†U]2. (B9)

The latter can be evaluated using Eq. (A6) to give

F (X )
Haar = Tr[X ]4 + Tr[X 2]2

22n − 1
− 2Tr[X 2]Tr[X ]2

2n(22n − 1)
. (B10)

Thus our expressibility measures can be related to state-
and Hamiltonian-dependent frame potentials via

ε
ρ
U

:= ||AU(ρ
⊗2)||2 =

√
F (ρ)

U
− F (ρ)

Haar, (B11)

εH
U

:= ||AU(H⊗2)||2 =
√
F (H)

U
− F (H)

Haar. (B12)

We use these expressions to evaluate the expressibility of
different ansatze in Appendix G.

APPENDIX C: PROOF FOR EQ. (8)

For a random layered parametrized ansatz of the form
Eqs. (2) and Eqs. (11)–(12), and the generic cost defined
in Eq. (1), we now show that 〈∂kC〉U = 0 for all k and
therefore that the cost landscape is unbiased.

To do so, let us first note that the cost function can be
expressed as

C = Tr[Uk(θk)ρ̃Uk(θk)
†H̃ ], (C1)

where we introduce the shorthand

ρ̃ = Wk

⎛

⎝
k−1∏

j =1

Uj (θj )Wj

⎞

⎠ ρ

⎛

⎝
k−1∏

j =1

Uj (θj )Wj

⎞

⎠
†

W†
k , (C2)

H̃ = UL(θ)
†HUL(θ). (C3)

This rewriting emphasizes the dependence of C on Uk(θk),
the rotation with respect to which we are taking the partial
derivative, by associating UL with the Hamiltonian H and(∏k−1

j =1 Uj (θj )Wj

)
with ρ.

It follows that

∂kC = −iTr[VkUk(θk)ρ̃Uk(θk)
†H̃ ]

+ iTr[Uk(θk)ρ̃Uk(θk)
†VkH̃ ] (C4)

= −iTr[Vk(cos(θk)− i sin(θk)Vk)ρ̃(cos(θk)

+ i sin(θk)Vk)H̃ ] + iTr[(cos(θk)

− i sin(θk)Vk)ρ̃(cos(θk)+ i sin(θk)Vk)VkH̃ ] (C5)

= −i
(
(cos(θk)

2 − sin(θk)
2)(Tr[Vkρ̃H̃ ] − Tr[ρ̃VkH̃ ])

+ i sin(2θk)(Tr[Vkρ̃VkH̃ ] − Tr[ρ̃H̃ ])
)

. (C6)

Since
∫ 2π

0 sin(2θk) = 0 and
∫ 2π

0 cos(θk)
2 = ∫ 2π

0 sin(θk)
2,

uniform averaging of ∂kC over θk leads to

1
2π

∫ 2π

0
dθk∂kC = 0, (C7)

which implies that 〈∂kC〉U = 0.

APPENDIX D: VARIANCE OF THE
PARTIAL-DERIVATIVE DERIVATION

For a random layered parametrized ansatz of the form
Eqs. (2) and Eqs. (11)–(12), and the generic cost defined in
Eq. (1), then since

∂kU(θ) = −iULVkUR (D1)

where UL and UR are defined in Eq. (12), it follows that the
partial derivative of the cost can be written as

∂kC := ∂C
∂θk

= iTr[URρU†
R[Vk, U†

LHUL]]. (D2)

Since the average derivative of the cost vanishes, as dis-
cussed in Appendix C, its variance is given by

Var ∂kC = 〈(∂kC)2〉U. (D3)

Equations (D2) and (D3) provide the starting point to
derive the bounds Eqs. (14)–(16) and Eqs. (19)–(21).

1. Bound in Eq. (14)

Note that two different ensembles UL and UR can be gen-
erated using UL(θ) and UR(θ), respectively, as defined in
Eq. (11). Let dUL and dUR denote volume elements cor-
responding to distributions over UL and UR, respectively.
Since UL and UR are independent, from the definition of
dU and from Eq. (11), we obtain that dU = dULdUR.

Then, by substituting Eq. (D2) into Eq. (D3) and using
Eq. (A7), we obtain

Var∂kC = −
∫

UL

dUL

∫

UR

dURTr[U⊗2
R ρ⊗2U†

R
⊗2

X ⊗2
Lk ],

(D4)

where

XLk := [Vk, U†
LHUL]. (D5)
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Next, we substitute in AR(ρ
⊗2) to give

Var∂kC = −
∫

UL

dUL

∫

U(d)
dμ(U)Tr[U⊗2

Haarρ
⊗2U†⊗2

HaarX
⊗2

Lk ]

+
∫

UL

dULTr[AR(ρ
⊗2)X ⊗2

Lk ]

= VarR∂kC +
∫

UL

dULTr[AR(ρ
⊗2)X ⊗2

Lk ], (D6)

where in the second line we use the explicit definition of
VarR∂kC, the variance in the partial derivative of the cost
when UR forms a 2-design, i.e.,

VarR∂kC := −
∫

UL

dUL

∫

U(d)
dμ(U)Tr

× [U⊗2
Haarρ

⊗2U†⊗2
HaarX

⊗2
Lk ]. (D7)

Rearranging, we are left with

|Var ∂kC − VarR∂kC| �
∣∣∣∣
∫

UL

dULTr[AR(ρ
⊗2)X ⊗2

Lk ]
∣∣∣∣,

(D8)

which on using the triangle inequality followed by the
Cauchy-Schwarz inequality reduces to

|Var ∂kC − VarR∂kC| �
∫

UL

dUL|Tr[AR(ρ
⊗2)X ⊗2

Lk ]|

�
∫

UL

dUL||X ⊗2
Lk ||2||AR(ρ

⊗2)||2.

(D9)

The term ||X ⊗2
Lk ||2 can be bounded as follows. First, we

note that X †
Lk = −XLk, which implies that

||X ⊗2
Lk ||2 =

√
Tr[X ⊗2

Lk X ⊗2
Lk ] =

√
Tr[X 2

Lk ⊗ X 2
Lk]

= |Tr[X 2
Lk]| = |Tr[[Vk, U†

LHUL]2]|. (D10)

Let A = Vk and B = U†
LHUL. Since A and B are Hermi-

tian, from the triangle inequality and the Cauchy-Schwarz
inequality, we obtain

|Tr[[A, B]2]| = 2|Tr[ABAB] − Tr[A2B2]| � 2[|Tr[ABAB]|
+ |Tr[B2]|] � 2

√
Tr[ABAABA]Tr[B2]

+ 2|Tr[B2]| = 4|Tr[B2]|. (D11)

Therefore, we find that

||X ⊗2
Lk ||2 � 4Tr[(U†

LHUL)
2] = 4Tr[H 2] = 4||H ||22.

(D12)

Hence the bound takes the form

|Var ∂kC − VarR∂kC| � 4
∫

UL

dUL||AR(ρ
⊗2)||2||H ||22

= 4||AR(ρ
⊗2)||2||H ||22, (D13)

which completes the proof.

a. Extension to generalized cost

This result can be further extended to cost functions of
the following form:

C(θ) =
∑

m

Tr[HmU(θ)ρmU(θ)†], (D14)

for which the derivative with respect to the parameter θk
can be written as

∂kC = i
∑

m

Tr[URρmU†
R[Vk, U†

LHmUL]]. (D15)

Therefore, from Eq. (D7), it follows that

Var∂kC = −
∑

m,n

∫

UL

dUL

∫

UR

dURTr

× [U⊗2
R (ρm ⊗ ρn)(U

†
R)

⊗2X m
Lk ⊗ X n

Lk], (D16)

where X m
Lk is defined in Eq. (D5) with H = Hm.

After substituting AR(ρj ⊗ ρk), we obtain

Var∂kC = VarR∂kC +
∑

m,n

∫

UL

dULTr

× [AR(ρm ⊗ ρn)(X m
Lk ⊗ X n

Lk)], (D17)

which implies that

|Var ∂kC − VarR∂kC|

�
∑

m,n

∫

UL

dUL|Tr[AR(ρm ⊗ ρn)(X m
Lk ⊗ X n

Lk)]| (D18)

�
∑

m,n

∫

UL

dUL‖AR(ρm ⊗ ρn)‖2‖(X m
Lk ⊗ X n

Lk)‖2 (D19)

�
∑

m,n

‖AR(ρm ⊗ ρn)‖2

√
Tr[(X m

Lk)
2]Tr[(X n

Lk)
2] (D20)

� 4
∑

m,n

‖AR(ρm ⊗ ρn)‖2‖Hm‖2‖Hn‖2, (D21)

where we use steps similar to those used in deriving Eqs.
(D10)–(D13).
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2. Bound in Eq. (15)

Substituting Eq. (D2) into Eq. (D3) and using Eq.
(A7) and the cyclicity of the trace operation, we find
that

Var∂kC =
∫

UL

dUL

∫

UR

dURTr[U†⊗2
L H⊗2UL

⊗2Y⊗2
Rk ],

(D22)

where YRk := [URρU†
R, Vk]. The rest of the derivation pro-

ceeds in the same manner as for the bound in Eq. (14).

a. Extension to generalized cost

Similar to Eq. (D21), the bound in Eq. (15) can be
extended for the cost functions of the form in Eq. (D14).
In particular, we find that

|Var∂kC − VarL∂kC|
� 4

∑

m,n

‖AL(Hm ⊗ Hn)‖2‖ρm‖2‖ρn‖2. (D23)

3. Bound in Eq. (16)

To derive Eq. (16), we start by substituting Eq. (D2) into
Eq. (D3) and using Eq. (A7) and the cyclicity of the trace
operation to find that

Var∂kC = −
∫

UL

dUL

∫

UR

dURTr[ρ⊗2
R (V⊗2

k H⊗2
L + H⊗2

L V⊗2
k

− 2(Vk ⊗ 1)H⊗2
L (1 ⊗ Vk))], (D24)

where we introduce the shorthand ρR := URρU†
R and

HL := U†
LHUL. Next, we substitute in AL(H⊗2) and

AR(ρ
⊗2) to find that the variance is given by

Var∂kC = VarL,R∂kC − Tr[AR(ρ
⊗2)ZLk] + I1 + I2.

(D25)

Here, we define

Zxk := [V⊗2
k Ax(ωx)+ Ax(ωx)V⊗2

k

− 2(Vk ⊗ 1)Ax(ωx)(1 ⊗ Vk)], (D26)

for x = L and x = R, and where ωR = ρ and ωL = H . The
integrals I1 and I2 are given by

I1 =
∫

U(d)
dμ(U)Tr[ZLkρ̃

⊗2]

I2 =
∫

U(d)
dμ(U)Tr[AR(ρ

⊗2)(V⊗2
k H̃⊗2 + H̃⊗2V⊗2

k

− 2(Vk ⊗ 1)H̃⊗2(1 ⊗ Vk)], (D27)

with ρ̃ = UρU† and H̃ = U†HU.
The integrals I1 and I2 can be evaluated using Eq. (A8)

as follows:

I1 = 1
d2 − 1

Tr[ZLkW]Tr[ρ2] − 1
d(d2 − 1)

Tr[ZLkW],

I2 = 1
d2−1

Tr[ZRkW]Tr[H 2]− 1
d(d2−1)

Tr[ZRkW]Tr[H ]2,

(D28)

where we use the fact that Tr[ZLk] = Tr[ZRk] = 0,
Tr[ρ⊗2W] = Tr[ρ2], and Tr[H⊗2W] = Tr[H 2].

Substituting these integrals, given in Eq. (D28), back
into Eq. (D25) and then using the triangle inequality yields

|Var ∂kC − VarR,L∂kC|

� 1
d2 − 1

((Tr[ρ2] − 1/d)|Tr[ZLkW]|

+ (Tr[H 2] − Tr[H ]2/d)|Tr[ZRkW]|)
+ |Tr[AR(ρ

⊗2)ZL,k]|. (D29)

Using Cauchy-Schwarz, this reduces to

|Var ∂kC − VarR,L∂kC| � d
d2 − 1

[(||ρ||22 − 1/d)||ZLk||2
+ (||H ||22 − Tr[H ]2/d)||ZRk||2] + ||AR(ρ

⊗2)||2||ZLk||2,
(D30)

where we use ||W||2 = d. Finally, by expanding ||Zxk||2,
using the triangle inequality and the fact that V2

k = 1, we
find that

||Zxk||2 � 4||Ax(ωx)||2, (D31)

for x = L and x = R, and where ωR = ρ and ωL = H . Thus
we are left with

|Var∂kC − VarR,L∂kC| � 4||AR(ρ
⊗2)||2||AL(H⊗2)||2 + 2n+2

22n − 1

×
[
||AR(ρ

⊗2)||2
(

||H ||22 − 1
d

Tr[H ]2
)

+ ||AL(H⊗2)||2
(

||ρ||22 − 1
d

)]
. (D32)
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a. Extension to generalized cost

Similar to Eqs. (D21) and (D23), the bound in Eq. (16) can be extended for the cost functions of the form in Eq. (D14).
In particular, we find that

|Var∂kC − VarR,L∂kC| � 4
∑

m,n

||AR(ρm ⊗ ρn)||2||AL(Hm ⊗ Hn)||2 + 2n+2

22n − 1

∑

m,n

×
[
||AR(ρm ⊗ ρn)||2

(
Tr[HmHn] − 1

d
Tr[Hm]Tr[Hn]

)
+ ||AL(Hm ⊗ Hn)||2

(
Tr[ρmρn] − 1

d

)]
. (D33)

4. Reformulating bounds using the diamond norm

Here, we derive bounds Eqs. (19)–(21), in which the expressibility is quantified in terms of the diamond norm. This is
a natural alternative way of formulating the bounds, since the diamond norm is an operationally meaningful measure of
the distinguishability of two quantum operations that is often used to define ε-approximate t-designs.

To derive Eq. (19), we start with Eq. (D9) and invoke the Hölder’s inequality as follows:

|Var ∂kC − VarR∂kC| �
∫

UL

dUL|Tr[AR(ρ
⊗2)X ⊗2

Lk ]| �
∫

UL

dUL||X ⊗2
Lk ||∞||AR(ρ

⊗2)||1. (D34)

The term ||X ⊗2
Lk ||∞ can now be bounded as follows. Given that X †

Lk = −XLk, it follows from the unitary invariance and
submultiplicativity of the infinity norm that

||X ⊗2
Lk ||∞ = (||XLk||∞)2 � (2||Vk||∞||U†

LHUL||∞)2 = (2||Vk||∞||H ||∞)2 � 4||H ||2∞. (D35)

We additionally note that ||E(X )||1 � ‖X ‖1||E ||	 for any channel E and operator X . Therefore,

||AR(ρ
⊗2)||1 � ‖ρ‖1||AUR ||	 = ||AUR ||	 := ε	

R. (D36)

Thus we are now left with

|Var ∂kC − VarR∂kC| � 4||H ||2∞ ε	
R. (D37)

The derivation of Eq. (20) is entirely analogous.
To derive Eq. (21), we start with Eq. (D29) and again use Hölder’s inequality in terms of the infinity and one norm

to find

|Var ∂kC − VarR,L∂kC| � 1
d2 − 1

[(||ρ||22 − 1/d)||ZLk||1 + (||H ||22 − Tr[H ]2/d)||ZRk||1] + ||AR(ρ
⊗2)||1||ZLk||∞, (D38)

where we use ||W||∞ = 1. Finally, by expanding ||Zxk||∞, using the triangle inequality and the fact that V2
k = 1, we find

that

||Zxk||∞ � ||V⊗2
k Ax(ωx)||∞ + ||Ax(ωx)V⊗2

k ||∞ + 2||(Vk ⊗ 1)Ax(ωx)(1 ⊗ Vk)||∞ � 2||V⊗2
k ||∞||Ax(ωx)||∞

+ 2||(Vk ⊗ 1)||∞||Ax(ωx)||∞||(1 ⊗ Vk)||∞ � 4||Ax(ωx)||∞, (D39)

for x = L and x = R. We additionally note that ||E(X )||1 � ‖X ‖1||E ||	 for any channel E and operator X . Therefore,

||AR(ρ
⊗2)||∞ � ||AR(ρ

⊗2)||1 � ε	
R, (D40)

||AL(H⊗2)||∞ � ||AL(H⊗2)||1 � ‖H‖1ε
	
L . (D41)
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Thus we are left with

|Var ∂kC − VarR,L∂kC| � 4
d2 − 1

[(||ρ||22 − 1/d)||AL(H)||∞
+ (||H ||22 − Tr[H ]2/d)||AR(ρ

⊗2)||∞] + 4||AR(ρ)||1||AL(H⊗2)||∞ (D42)

or, alternatively,

|Var ∂kC − VarR,L∂kC| � 4
d2 − 1

[(||ρ||22 − 1/d)‖H‖1ε
	
L + (||H ||22 − Tr[H ]2/d)ε	

R] + 4‖H‖1 ε
	
Rε

	
L . (D43)

APPENDIX E: VARIANCE IN PARTIAL DERIVATIVE FOR EXACT 2-DESIGNS

In this appendix, we provide the explicit expressions and the derivation of the variance in the partial derivative for a
random layered parametrized ansatz of the form Eqs. (2) and Eqs. (11)–(12) and the generic cost defined in Eq. (1). These
quantities have been investigated in Ref. [27]; however, only the highest-order terms in n were given. Here, we provide
higher-order terms for completeness.

1. Explicit expressions

Let us denote the variance of the cost when just UR, just UL, and both UR and UL form 2-designs as VarR∂kC, VarL∂kC,
and VarR,L∂kC, respectively. These variances are given by

Varx∂kC = gx(ρ, H , U)
22n − 1

, (E1)

where

gR(ρ, H , U) = −
(

Tr[ρ2] − 1
2n

)∫
dULTr[[Vk, U†

LHUL]2], (E2)

gL(ρ, H , U) = −
(

Tr[H 2] − Tr[H ]2

2n

)∫
dURTr[[Vk, U†

RHUR]2], (E3)

gR,L(ρ, H , U) = −2
(

Tr[ρ2] − 1
2n

){ 1
22n − 1

[Tr[Vk]2Tr[H 2] + Tr[V2
k]Tr[H ]2]

− 1
2n(22n − 1)

[Tr[V2
k]Tr[H 2] + Tr[Vk]2Tr[H ]2] − 1

2n Tr[V2
k]Tr[H 2]

}
. (E4)

2. Derivation

From Eq. (D2), we have

∂kC := ∂C
∂θk

= iTr[URρU†
R[Vk, U†

LHUL]]. (E5)

Since the cost gradient is unbiased, as in Eq. (8), the variance in the partial derivative is given by

Var∂kC = −
∫

dUL

∫
dURTr[URρU†

R[Vk, U†
LHUL]]2. (E6)

Then VarR∂kC, VarL∂kC, and VarR,L∂kC can be calculated by the integration in Eq. (E6) over UR, UL, and both UR and UL,
respectively.
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Integrating over only UR gives

VarR∂kC = − 1
d2 − 1

∫
dUL[Tr[ρ]2Tr[[Vk, U†

LHUL]]2 + Tr[ρ2]Tr[[Vk, U†
LHUL]2]]

+ 1
d(d2 − 1)

∫
dUL[Tr[ρ2]Tr[[Vk, U†

LHUL]]2 + Tr[ρ]2Tr[[Vk, U†
LHUL]2]] (E7)

= − 1
d2 − 1

∫
dULTr[ρ2]Tr[[Vk, U†

LHUL]2] + 1
d(d2 − 1)

∫
dULTr[[Vk, U†

LHUL]2] (E8)

= −
(

Tr[ρ2] − 1
d

)(
1

d2 − 1

)∫
dULTr[[Vk, U†

LHUL]2], (E9)

where the first equality follows from Eq. (A6) and the second equality follows from the fact that the trace of a commutator
is always zero.

Form the cyclicity of the trace operation and the arguments similar to Eqs. (E7) and (E8), we obtain

VarL∂kC = −
(

Tr[H 2] − Tr[H ]2

d

)(
1

d2 − 1

)∫
dURTr[[Vk, U†

RHUR]2]. (E10)

In order to calculate VarR,L∂kC, we note that Tr[[Vk, U†
LHUL]2] in Eq. (E9) can be written as

Tr[[Vk, U†
LHUL]2] = 2[Tr[ULVkU†

LHULVkU†
LH ] − Tr[ULV2

kU†
LH 2]]. (E11)

The integral of the first term over UL in Eq. (E11) can be calculated using Eq. (A5) as follows:

∫
dULTr[ULVkU†

LHULVkU†
LH ]

= 1
d2 − 1

[Tr[Vk]2Tr[H 2] + Tr[V2
k]Tr[H ]2] − 1

d(d2 − 1)
[Tr[V2

k]Tr[H 2] + Tr[Vk]2Tr[H ]2]. (E12)

The integral of the second term in Eq. (E11) can be calculated using Eq. (A4) as follows:

∫
dULTr[ULV2

kU†
LH 2] = Tr[V2

k]Tr[H 2]
d

. (E13)

Finally, after combining everything, we obtain

VarR,L∂kC = −
(

Tr[ρ2] − 1
d

)( 2
d2 − 1

)( 1
d2 − 1

[Tr[Vk]2Tr[H 2] + Tr[V2
k]Tr[H ]2]

− 1
d(d2 − 1)

[Tr[V2
k]Tr[H 2] + Tr[Vk]2Tr[H ]2] − 1

d
Tr[V2

k]Tr[H 2]
)

. (E14)

APPENDIX F: CONCENTRATION OF MEASURE

In Ref. [33] it has been shown that for ansatze where the reduced state on the measured qubits obeys a volume law,
typical local cost function values concentrate exponentially fast in n to its mean. This result has been complemented by
a proof that for ansatze that form 2-designs, i.e., maximally expressive ansatze, local costs concentrate exponentially fast
to a fixed value. Here, we show that this proof may be generalized to nonperfectly expressive ansatze.
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Specifically, we show that for a k-local cost Ck, we have that

〈|Ck − Tr[(Hk ⊗ 1)1/d]|〉 � ||Hk||∞
(√∫

dUHaarTr[(U ⊗ U)(σ ⊗ σ)(U† ⊗ U†)(W ⊗ 1)])

)
+ ||Hk||∞√

χε , (F1)

where
(√∫

dUHaarTr[(U ⊗ U)(σ ⊗ σ)(U† ⊗ U†)(W ⊗ 1)])

)
∈ O

(√
2k

2n

)
. (F2)

Here, χε is an expressibility-dependent correction defined as

χε := Tr[AU(|0〉〈0|)(W ⊗ 1)]), (F3)

where, as previously, W is the subsystem permutation operator.

Proof. The start of the proof is identical to Ref. [33]:

〈|Ck − Tr[(Hk ⊗ 1)1/d]|〉 =
∫

dU|((Hk ⊗ 1)
(
U|0〉〈0|U† − 1/d

)
)|

� ||Hk||∞
∫

dU||Trk(
(
U|0〉〈0|U† − 1/d

)
)||1

� ||Hk||∞
√

2k

∫
dU||Trk(

(
U|0〉〈0|U† − 1/d

)
)||22

= ||Hk||∞
√∫

dUTr[
(
U|0〉〈0|U† − 1/d

)⊗ (
U|0〉〈0|U† − 1/d

)
(W ⊗ 1)])

= ||Hk||∞
√∫

dUTr[(U ⊗ U)(σ ⊗ σ)(U† ⊗ U†)(W ⊗ 1)]), (F4)

where σ = |0〉〈0| − 1/d. The first inequality follows from Hölder’s inequality. For the second inequality, we use the
relation between the trace norm and the Hilbert-Schmidt norm and invoke Jensen’s inequality. We use k to denote qubits
that are not measured for defining the cost function Ck.

We now substitute in the definition of AU(|0〉〈0|) to obtain that
∫

dUTr[(U ⊗ U)(σ ⊗ σ)(U† ⊗ U†)(W ⊗ 1)]) =
∫

dUHaarTr[(U ⊗ U)(σ ⊗ σ)(U† ⊗ U†)(W ⊗ 1)])

+ Tr[AU(|0〉〈0|)(W ⊗ 1)]). (F5)

Introducing the shorthand Tr[AU(|0〉〈0|)(W ⊗ 1)]) = χε to denote the expressibility-dependent correction, we can then
write

〈|Ck − Tr[(Hk ⊗ 1)1/d]|〉 � ||Hk||∞
√∫

dUHaarTr[(U ⊗ U)(σ ⊗ σ)(U† ⊗ U†)(W ⊗ 1)])+ χε

� ||Hk||∞
(√∫

dUHaarTr[(U ⊗ U)(σ ⊗ σ)(U† ⊗ U†)(W ⊗ 1)])+ √
χε

)
, (F6)

where we use
√

a + b � √
a + √

b. Moreover, Eq. F2 follows from Theorem 2 in Ref. [70], which completes the proof.
�
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APPENDIX G: NUMERICALLY STUDYING THE
CORRELATIONS BETWEEN EXPRESSIBILITY

AND COST PARTIAL DERIVATIVES

In this appendix, we present numerical results on the
correlations between the cost gradient and expressibility.
Specifically, we consider the layered parametrized ansatz
detailed in Sec. III B of the main text and plot the variance
in the PQC gradients as a function of its expressibility.

We can calculate the expressibility measures ερR and
εH

L via their reformulation in terms of the state- and
Hamiltonian-dependent frame potentials F (ρ)

R := F (ρ)
UR

and F (H)
L := F (ρ)

UL
given in Eq. (B11). However, since

it follows from Eq. (B10) that the state-dependent
(Hamiltonian-dependent) frame potential for the Haar dis-
tribution F (ρ)

Haar (F (H)
Haar) is exponentially small, and ερR (εH

L )
measures the difference between F (ρ)

R and F (ρ)
Haar (F (H)

L and
F (H)

Haar), it follows that ερR (εH
L ) may also be exponentially

small. We therefore find the ratio of the true frame poten-
tial to the Haar frame potential more insightful to plot. That
is, we consider the ratios

F (ρ)
R

F (ρ)
Haar

= (ε
ρ
U)

2

F (ρ)
Haar

+ 1, (G1)

F (H)
L

F (H)
Haar

= (εH
U )

2

F (H)
Haar

+ 1. (G2)

The larger these ratios, the more inexpressive is the ansatz,
with the ratios tending to 1 for maximally expressive
ansatze (exact 2-designs).
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FIG. 7. Correlations between cost partial derivatives and the state-dependent frame potential. The variance in the partial derivative
of a global cost with H = ∏n

i=1 σ
z
i (top) and the 2-local cost with H = σ z

1σ
z
2 (bottom) as a function of the expressibility measure

F (ρ)
R /F (ρ)

Haar {in both cases, ρ = |ψ0〉〈ψ0|⊗n where |ψ0〉 = exp[−i(π/8)σY]|0〉}. In the left panel, we vary the circuit depth D of a
hardware-efficient ansatz. In the right (middle) panel, we consider the effect of correlating parameters (restricting the directions of
rotation) of a hardware-efficient ansatz with D = 100, with the choices of correlations (rotations) indicated in the figure legend. In all
cases, n = 4, the derivative is taken with respect to θ1

D, and the variance and frame potentials are estimated using an ensemble of 5000
unitaries.

In Figs. 7 and 8, we plot the variance in the partial
derivative as a function of F (ρ)

R /F (ρ)
Haar and F (H)

L /F (H)
Haar,

respectively. In line with Sec. III B of the main text, we
focus on three different ways of tuning the expressibility
of an ansatz; namely decreasing the depth of the circuits,
correlating circuit parameters, and restricting either the
direction of rotations or rotation angle ranges.

To numerically quantify the degree of correlations
between the variance in the partial derivative of the cost
and the expressibility, we include in Figs. 7 and 8 the
Spearman correlation coefficient [71] and its correspond-
ing p value. Overall, we find a clear correlation between
partial derivatives of the cost and expressibility, with the
variance in the derivatives increasing with increasing F (ρ)

R

and F (H)
L . Specifically, combining all the different ways of

tuning the expressibility, the Spearman coefficient for the
correlation between the variance in the partial derivative
of the cost and the ερ is found to be 0.78, with a p value
of 1.19 × 10−7. Similarly, the Spearman coefficient for the
correlations with εH is 0.80, with a p value of 1.18 × 10−7.

It is noteworthy that the Hamiltonian-dependent frame
potential captures the effect of locality on cost gradients
as the circuit depth is tuned. As observed in Sec. III B,
increasing the depth of the circuit reduces cost partial
derivatives for a local cost but not a global cost. The state-
dependent frame potential cannot capture this effect, since
it is independent of the choice of measurement operator H
and therefore necessarily independent of the locality of H .
Conversely, while the Hamiltonian frame potential for a
local cost decreases with increasing depth, in line with the
decreasing variance in partial derivatives, the Hamiltonian-
dependent frame potential for the global cost is effectively
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FIG. 8. Correlations between cost partial derivative and the Hamiltonian-dependent frame potential. The setting here is entirely
equivalent to that described in Fig. 7; however, here we plot the variance in the partial derivative as a function of the ratio of
Hamiltonian-dependent frame potentials F (H)

L /F (H)
Haar and the derivative is taken with respect to θ1

1 .

constant (even as the depth of the circuit substantially
increases), reflecting the effectively constant variance in
partial derivatives.

Nonetheless, the correlation between the variance in
the cost partial derivative and the expressibility is not
perfect, as is clear, for example, from Fig. 8(f). This is
entirely compatible with our analytic bounds, which are
upper bounds and therefore do not enforce perfect corre-
lation between the variance in the partial derivative and
the expressibility. Thus while Figs. 7 and 8 demonstrate a
clear correlation between the variance in the partial deriva-
tive of the cost and expressibility, further work is required
to understand the intricacies of this correlation.
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