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Abstract— Automatic generation control (AGC) regulates me-
chanical power generation in response to load changes through
local measurements. Its main objective is to maintain system
frequency and keep energy balanced within each control area so
as to maintain the scheduled net interchanges between control
areas. The scheduled interchanges as well as some other factors
of AGC are determined at a slower time scale by considering
a centralized economic dispatch (ED) problem among different
generators. However, how to make AGC more economically
efficient is less studied. In this paper, we study the connections
between AGC and ED by reverse engineering AGC from an
optimization view, and then we propose a distributed approach
to slightly modify the conventional AGC to improve its economic
efficiency by incorporating ED into the AGC automatically and
dynamically.

I. INTRODUCTION

An interconnected electricity system can be described
as a collection of subsystems, each of which is called
a control area. Within each control area the mechanical
power input to the synchronous generators is automatically
regulated by automatic generation control (AGC). AGC uses
the local control signals, deviations in frequency and net
power interchanges between the neighboring areas, to invoke
appropriate valve actions of generators in response to load
changes. The main objectives of the conventional AGC is
to (i) maintain system nominal frequency, and (ii) let each
area absorbs its own load changes so as to maintain the
scheduled net interchanges between control areas [1], [2].
The scheduled interchanges between control areas, as well
as the participation factors of each generator unit within each
control area, are determined at a much slower time scale than
the AGC by individual generating companies considering a
centralized economic dispatch (ED) problem among different
generators.

Since the traditional loads (which are mainly passive)
change slowly and are predictable with high accuracy, the
conventional AGC does not incur much efficiency loss by
following the schedule made by the slower time scale ED
after the load changes. However due to the proliferation
of renewable energy resources as well as demand response
in the future power grid, the aggregate net loads, e.g.,
traditional passive loads plus electric vehicle loads minus
renewable generations, can fluctuate fast and by a large
amount. Therefore the conventional AGC can become much
less economically efficient. We thus propose a novel modifi-
cation of the conventional AGC to automatically (i) maintain
nominal frequency and (ii) reach optimal power dispatch
between different control areas (and/or different generator
units) to balance supply and demand within the whole

interconnected electricity system (and/or within the control
area) to achieve economic efficiency. We call this modified
AGC the economic AGC.

In order to keep the modification minimal and also to keep
the decentralized structure of AGC, we take a reverse and for-
ward engineering approach to develop the economic AGC.1

We first reverse-engineer the conventional AGC by showing
that the power system dynamics with the conventional AGC
can be interpreted as a partial primal-dual gradient algorithm
to solve a certain optimization problem. We then engineer the
optimization problem to include general generation costs and
general power flow balance (which will guarantee supply-
demand balance within the whole interconnected electricity
system), and propose a distributed generation control scheme
that is integrated into the AGC. The engineered optimization
problem shares the same optima as the ED problem, and thus
the resulting distributed control scheme incorporates ED into
AGC automatically. Combined with [3] on distributed load
control, this work lends the promise to develop a modeling
framework and solution approach for systematic design of
distributed, low-complexity generation and load control to
achieve system-wide efficiency and robustness.

There has been a large amount of work on AGC in
the last few decades, including, e.g., stability and optimum
parameter setting [4], optimal or adaptive controller design
[5]–[7], decentralized control [8], [9], and multilevel or multi
timescale control [10], [11]; see also [2] and the references
therein for a thorough and up-to-date review on AGC. Most
of these work focuses on improving the control performance
of AGC, such as stability and transient dynamics, but not on
improving the economic efficiency. References [12], [13] in-
troduce approaches for AGC that also support an ED feature
which operates at a slower time scale and interacts with AGC
frequency stabilization function. For instance, reference [13]
brings in the notion of minimal regulation which reschedules
the entire system generation and minimizes generation cost
with respect to system-wide performance. Our work aims to
improve the economic efficiency of AGC in response to the
load changes as well; the difference is that instead of using
different hierarchical control to improve AGC, we incorpo-
rate ED automatically and dynamically into AGC. Moreover,
our control is decentralized, where each control area can
update its generation based only on local information and
communications with neighboring areas.

The paper is organized as follows. In Section II, we

1A similar approach has been used to design a decentralized optimal load
control in our previous work [3].
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introduce a dynamic power network model with AGC, the
ED problem, and the objetive of the economic AGC. In
Section III, we reverse-engineer the conventional AGC and
in Section IV, we design an economic AGC scheme from the
insight obtained by the reverse engineering. In Section V, we
simulate and compare the convention AGC and the economic
AGC. We conclude the paper in Section VI.

II. SYSTEM MODEL

A. Dynamic network model with AGC

Consider a power transmission network, denoted by a
graph (N , E), with a set N = {1, · · · , n} of buses and a
set E ⊂ N ×N of transmission lines connecting the buses.
Here each bus may denote an aggregated bus or a control
area. We make the following assumptions:
• The lines (i, j) ∈ E are lossless and characterized by

their reactance xij ;
• The voltage magnitudes |Vi| of buses i ∈ N are

constants;
• Reactive power injections at the buses and reactive

power flows on the lines are ignored.
We assume that (N , E) is connected and directed, with an
arbitrary orientation such that if (i, j) ∈ E , then (j, i) /∈ E .
We use i : i → j and k : j → k respectively to
denote the set of buses i such that (i, j) ∈ E and the
set of buses j such that (j, k) ∈ E . We study generation
control when there is a step change in net loads from their
nominal (operating) points, which may result from a change
in demand or in non-dispatchable renewable generation. To
simplify notation, all the variables in this paper represent
deviations from their nominal (operating) values. Note that
in practice those nominal values are usually determined by
the last ED problem, which will be introduced later.

Frequency Dynamics: For each bus j, let ωj denote the
frequency, PMj the mechanical power input, and PLj the total
load. For a link (i, j), let Pij denote the transmitted power
form bus i to bus j. The frequency dynamics at bus j is
given by the swing equation:

ω̇j = − 1

Mj

Djωj − PMj + PLj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij

 ,

(1)
where Mj is the generator inertia and Dj is the damping
constant at bus j.

Branch Flow Dynamics: Assume that the frequency devi-
ation ωj is small for each bus j ∈ N . Then the deviations
Pij from the nominal branch flows follow the dynamics:

Ṗij = Bij(ωi − ωj), (2)

where
Bij :=

|Vi||Vj |
xij

cos(θ0i − θ0j )

is a constant determined by the nominal bus voltages and the
line reactance. Here θ0i is the nominal voltage phase angle
of bus i ∈ N . The detailed derivation is given in [3].

Turbine-Governor Control: For each generator, we con-
sider a governor-turbine control model, where a speed
governor senses a speed deviation and/or a power change
command and converts it into appropriate valve action, and
then a turbine converts the change in the valve position
into the change in mechanical power output. The governor-
turbine control is usually modeled as a two-state dynamic
system. One state corresponds to the speed governor and
the other state corresponds to the turbine. Since the time
constant of the governor is much smaller than the turbine
for most systems, we simplify the governor-turbine control
model from two states to a single state PMj :

ṖMj = − 1

Tj

(
PMj − PCj +

1

Rj
ωj

)
, (3)

where PCj is the power change command and Tj and Rj
are costant parameters. See [1] for a detailed introduction of
governor-turbine control.

ACE-based control: In the conventional AGC, power
change command PCj is adjusted automatically by the tie-
line bias control which drives the area control errors (ACEs)
to zero. For a bus j, the ACE is defined as:

ACEj = Bjωj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij .

The adjustment of power change command is given as
follows:

ṖCj = −Kj

Bjωj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij

 , (4)

where both Bj and Kj are positive constant parameters. In
this paper, we also call this AGC the ACE-based AGC.

In summary, the dynamic model with power control over
a transmission network is given by equations (1)-(4). If
the system is stable given certain load changes, then by
simple analysis we can show that the ACE-based AGC
drives the system to a new steady state where the load
change in each control area is absorbed within each area,
i.e., PMj = PLj for all j ∈ N , and the frequency is returned
to the nominal value, i.e., ωj = 0 for all j ∈ N ; as shown
in Proposition 1 in Section III. Notice that the ACE-based
AGC has a decentralized structure, namely that it only uses
local control signals, i.e., deviations in frequency and the net
power interchanges with the neighboring buses.

B. Economic dispatch (ED)

Due to the proliferation of renewable energy resources
such as solar and wind in the future power grid, the aggregate
net loads will fluctuate much faster and by large amounts.
The ACE-based AGC that requires each control area to
absorb its own load changes may be economically inefficient.
Therefore, we proposed to modify the ACE-based AGC to (i)
maintain the nominal frequency and (ii) drive the mechanical
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power output PMj , j ∈ N to the optimum of the following
ED problem:2

min
∑
j∈N

Cj(P
M
j ) (5a)

s.t. PMj = PLj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij , j ∈ N(5b)

over PMj , Pij , j ∈ N , (i, j) ∈ E ,

where each generator at j incurs certain cost Cj(P
M
j )

when its power generation is PMj . Equation (5b) imposes
power flow balanced at each bus. The cost function Cj(·)
is assumed to be continuous, convex. We call this modified
AGC as the economic AGC. In the following sections, we
will show how to reverse and forward engineer the ACE-
based AGC to design an economic AGC scheme.

Remark 1. In the conventional ACE-based AGC, if a bus j
denotes a control area, then the corresponding generation
change PCj in (4) is allocated to generator units within
this area via participation factors. The participation factors
are inversely proportional to the units’ incremental cost of
production which are determined by the last ED performed.
See [14] for detailed description. Thus if the net loads
fluctuate fast and dramatically due to the large penetration
of renewable energy, this allocation plan by using constant
participation factors also becomes economically inefficient.
The results developed in this paper can also be applied to
improve the economic efficiency of the generation control
for each unit within one area. In fact, a system manager can
apply our results to the generation control at different levels
of the power system, e.g., different control areas, different
generators within one area, etc, according to the practical
requirements of the system. For the simplicity of illustration
and the generality of our results, we do not specify the level
of the generation control that we study. We will focus on the
abstract model in (1)-(4) and treat each bus j as a generator
bus.

III. REVERSE ENGINEERING OF ACE-BASED AGC

In this section, we reverse-engineer the dynamic model
with the ACE-based AGC (1)-(4). We show that the equilib-
rium points of (1)-(4) are the optima of a properly defined
optimization problem and furthermore the dynamics (1)-(4)
can be interpreted as a partial primal-dual gradient algorithm
to solve this optimization problem. The reverse-engineering
suggests a way to modify the ACE-based AGC to incorporate
ED into the AGC scheme.

We first characterize the equilibrium points of the power
system dynamics with AGC (1)-(4). Let ω = {ωj , j ∈ N},

2Because all the variables denote the deviations in this paper, it may be
not straightforward to interpret this ED problem, e.g., how this problem is
connected with the slower timescale ED problem using the absolute value
of each variable instead of the deviated value? This problem can be seen
as revising energy dispatch, because of the load changes, over the nominal
values that are determined by the slower time-scale ED problem that is
usually operated by ISOs or generating companies.

PM = {PMj , j ∈ N}, PC = {PCj , j ∈ N}, and P =
{Pi,j , (i, j) ∈ E}.

Proposition 1. (ω, PM , PC , P ) is an equilibrium point of
the system (1)-(4) if and only if ωj = 0, PCj = PMj = PLj ,
and

∑
i:i→j Pij =

∑
k:j→k Pjk for all j ∈ N .

Proof: At a fixed point,

Ṗij = Bij(ωi − ωj) = 0.

Therefore ωi = ωj for all i, j ∈ N , given that the
transmission network is connected. Moreover,

ACEj = Bjωj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij = 0.

Thus
∑
j∈N ACEj =

∑
j∈N Bjωj = ωi

∑
j∈N Bj = 0, so

ωi = 0 for all i ∈ N . The rest of the proof is straightforward.
We omit it due to space limit. 2

Consider the following optimization problem:

OGC-1

min
∑
j∈N

Cj(P
M
j ) +

∑
j∈N

Dj

2
|ωj |2 (6a)

s.t. PMj = PLj +Djωj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij(6b)

PMj = PLj (6c)

over ωj , P
M
j , Pij , j ∈ N , (i, j) ∈ E ,

where equation (6c) requires that each control area absorbs
its own load changes. The following result is straightforward.

Lemma 2. (ω∗, PM
∗
, P ∗) is an optimum of OGC-1 if and

only if ω∗j = 0, PMj
∗

= PLj , and
∑
k:j→k P

∗
jk =

∑
i:i→j P

∗
ij

for all j ∈ N .

Proof: First, the constraints (6b,6c) imply that
Djωj +

∑
k:j→k Pj,k −

∑
i:i→j Pi,j = 0 for all j ∈ N .

Then we can use contradiction to prove that ω∗i = ω∗j for all
(i, j) ∈ E . By following similar arguments in Proposition 1,
we can prove the statement in the lemma. 2

Note that problem OGC-1 appears simple, as we can easily
identify its optima if we know all the information on the
objective function and the constraints. However, in practice
these information is unknown. Moreover, even if we know
an optimum, we cannot just set the system to the optimum.
As the power network is a physical system, we have to find
a way that respects the power system dynamics to steer the
system to the optimum. Though the cost function Cj(P

M
j )

does not play any role in determining the optimum of OGC-
1, it will become clear later that the choice of the cost
function does have important implication to the algorithm
design and the system dynamics.

We now show that the dynamic system (1)-(4) is actually
a partial primal-dual gradient algorithm for solving OGC-1
with Cj(PMj ) =

βj
2 (PMj )2 where βj > 0:
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Introducing Lagrangian multipliers λj and µj for the
constraints in OGC-1, we obtain the following Lagrangian
function:

L =
∑
j∈N

βj
2

(PMj )2 +
∑
j∈N

Dj

2
|ωj |2

+
∑
j∈N

λj

PMj − PLj −Djωj −
∑
k:j→k

Pjk +
∑
i:i→j

Pij


+
∑
j∈N

µj
(
PMj − PLj

)
.

Based on the above Lagrangian function, we can write
down a partial primal-dual subgradient algorithm of OGC-1
as follows:

ωj = λj (7a)

Ṗij = εPij (λi − λj) (7b)

ṖMj = −εPj (βjPMj + λj + µj) (7c)

λ̇j = ελj

PMj − PLj −Djωj −
∑
k:j→k

Pjk +
∑
i:i→j

Pij


(7d)

µ̇j = εµj
(
PMj − PLj

)
, (7e)

where εPij , εPj , ελj and εµj are positive stepsizes. Note
that equation (7a) solves maxwj

Dj
2 w

2
j−λjDjwj rather than

follows the primal gradient algorithm with respect to wj ;
hence the algorithm (7) is called a “partial” primal-dual
gradient algorithm. See the Appendix for a description of
the general form of partial primal-dual gradient algorithm
and its convergence.

Let ελj = 1
Mj

for all j ∈ N . By applying linear
transformation from (λj , µj) to (ωj , P

C
j ):

ωj = λj

PCj = KjMj

(
λj −

1

εµjMj
µj

)
,

the partial primal-dual gradient algorithm (7) becomes:

ω̇j =− 1

Mj

Djωj − PMj + PLj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij


(8a)

Ṗij = εPij (ωi − ωj) (8b)

ṖMj =−εPjβj
(
PMj −

εµj
Kjβj

PCj +
1 + εµjMj

βj
ωj

)
(8c)

ṖCj =−Kj

Djωj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij

 . (8d)

If we set εPij = Bij , εµj =
RjKj

1−RjKjMj
, βj =

Rj
1−RjKjMj

,
and εPj = 1

βjTj
, then the partial primal-dual algorithm (8)

is exactly the power system dynamics with AGC (1)-(4) if
Bj = Dj , j ∈ N . Note that the assumption of Bj = Dj

looks restrictive. But since Bj is a design parameter, we can

set it to Dj . However, in reality Dj is uncertain and/or hard
to measure because it does not only account for damping
of the generator but also contains a component due to the
frequency dependent loads. In Section V, the simulation
results demonstrate that even if Bj 6= Dj , the algorithm still
converges to the same equilibrium point. It remains as one
of our future work to characterize the range of Bj which
guarantees the convergence of the algorithm. Nonetheless,
the algorithm in (8) provides a tractable and easy way
to choose parameters for the ACE-based AGC in order to
guarantee its convergence.

Theorem 3. If 1 > RjKjMj for all j ∈ N , with the
above chosen ελj , εµj , εPij and εPj , the partial primal-
dual gradient algorithm (8) (i.e., the system dynamics (1)-
(4)) converges to a fixed point (ω∗, P ∗, PM

∗
, PC

∗
) where

(ω∗, P ∗, PM
∗
) is an optimum of problem OGC-1 and

PC
∗

= PM
∗.

Proof: Please see the Appendix for the convergence
of the partial primal-dual gradient algorithm. 2

Remark 2. We have made an equivalence transformation in
the above: from algorithm (7) to algorithm (8). The reason
for doing this transformation is to derive an algorithm that
admits physical interpretation and can thus be implemented
as the system dynamics. In particular, PLj is unknown and
hence µj can not be directly observed or estimated, while
PCj can be estimated/calculated based on the observable
variables ωj and Pij . As the control should be based on
observable or estimable variables, the power system imple-
ments algorithm (8) instead of (7) for the ACE-based AGC.

The above reverse-engineering, i.e., the power system
dynamics with AGC as the partial primal-dual gradient algo-
rithm solving an optimization problem, provides a modeling
framework and systematic approach to design new AGC
mechanisms that achieve different (and potentially improved)
objectives by engineering the associated optimization prob-
lem. The new AGC mechanisms would also have differ-
ent dynamic properties (such as responsiveness) and incur
different implementation complexity by choosing different
optimizing algorithms to solve the optimization problem. In
the next section, we will engineer problem OGC-1 to design
an AGC scheme that achieves economic efficiency.

IV. ECONOMIC AGC BY FORWARD ENGINEERING

We have seen that the power system dynamics with the
ACE-based AGC (1)-(4) is a partial primal-dual gradient
algorithm solving a cost minimization problem OGC-1 with
a “restrictive” constraint PMj = PLj that requires supply-
demand balance within each control area. As mentioned
before, this constraint may render the system economically
inefficient. Based on the insight obtained from the reverse-
engineering of the conventional AGC, we relax this con-
straint and propose an AGC scheme that (i) keeps the
frequency deviation to 0, i.e., ωj = 0 for all j ∈ N , and
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(ii) achieves economic efficiency, i.e., the mechanical power
generation solves the ED problem (5).

Consider the following optimization problem:

OGC-2

min
∑
j∈N

Cj(P
M
j ) +

∑
j∈N

Dj

2
|ωj |2 (9a)

s.t. PMj = PLj +Djωj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij(9b)

PMj = PLj +
∑
k:j→k

γjk −
∑
i:i→j

γij (9c)

over ωj , P
M
j , Pij , γij , j ∈ N , (i, j) ∈ E ,

where γij are auxiliary variables introduced to facilitate the
algorithm design. As will become clear later, the reason to
include constraint (9c) is in order to keep ωj = 0 for all
j ∈ N and to derive an implementable control algorithm,
similar to equations (3)-(4).

Lemma 4. Let (ω∗, PM
∗
, P ∗, γ∗) be an optimum of OGC-2,

then ω∗j = 0 for all j ∈ N and PM ∗ is the optimal solution
of the ED problem (5).

Proof: First, note that at the optimum, ω∗i = ω∗j for all
(i, j) ∈ N . Second, combining (9b) and (9c) gives

Djωj +
∑
k:j→k

(Pjk − γjk)−
∑
i:i→j

(Pij − γij) = 0

for all j ∈ N . Following similar arguments as in
Proposition 1, we have ω∗i = 0 for all i ∈ N . Therefore
the constraint (9c) is redundant and can be removed. So,
problem OGC-2 reduces to the ED problem (5). 2

Following the same procedure as in Section III, we can
derive the following partial prime-dual algorithm solving
OGC-2:

ωj = λj (10a)

Ṗi,j = εPij (λi − λj) (10b)

ṖMj = −εPj (C ′j(PMj ) + λj + µj) (10c)
γ̇ij = εγij (µi − µj) (10d)

λ̇j = ελj

PMj − PLj −Djωj −
∑
k:j→k

Pjk +
∑
i:i→j

Pij


(10e)

µ̇j = εµj

PMj − PLj − ∑
k:j→k

γjk +
∑
i:i→j

γij

 , (10f)

Let ελj = 1
Mj

, εPij = Bij , εµj =
RjKj

1−RjKjMj
and εPj =

1−RjKjMj

TjRj
as in Section III. By using linear transformation

ωj = λj and PCj = KjMj

(
λj − 1

εµjMj
µj

)
, the partial

primal-dual gradient algorithm (10) becomes:

ω̇j =− 1

Mj

Djωj − PMj + PLj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij


(11a)

Ṗij =Bij(ωi − ωj) (11b)

ṖMj =− 1

Tj

(
1−RjKjMj

Rj
C ′j(P

M
j )− PCj +

1

Rj
ωj

)
(11c)

ṖCj =−Kj

Djωj +
∑
k:j→k

(Pjk − γjk)

−
∑
i:i→j

(Pij − γij)

 (11d)

γ̇ij = εγij

((
Miωi −

PCi
Ki

)
εµi −

(
Mjωj −

PCj
Kj

)
εµj

)
.

(11e)

Compared with algorithm (8) (i.e., the power system
dynamics with the ACE-based AGC), the difference in
algorithm (11) is the new variables γij and the marginal cost
C ′j(·) in the generation control (11c). Note that γij can be
calculated based on the observable/measurable variables. So,
the above algorithm is implementable. However, it might be
not practical to add additional variable γij for each branch
(i, j) ∈ E . To further facilitate the implementation, we can
remove γi,j by introducing γj for each bus j and replace
(11d, 11e) by the following dynamics:

ṖCj = −Kj

Djωj +
∑
k:j→k

(Pjk − γj + γk)

−
∑
i:i→j

(Pij − γi + γj)

 (12a)

γ̇i = εγ

((
Miωi −

PCi
Ki

)
εµi

)
. (12b)

which tells us that the power change command PCj can
be controlled using local measurements ωj , Pjk, γj , and
local communications on γi, γk with the neighbors i, k where
(i, j), (j, k) ∈ E . Here γj is a local auxiliary variable which
is updated using local information at each bus j ∈ N .

Similarly, we have the following result.

Theorem 5. The algorithm (11a–11c, 12a–12b) con-
verges to a fixed point (ω∗, P ∗, PM

∗
, PC

∗
, γ∗) where

(ω∗, P ∗, PM
∗
, γ∗) is an optimum of problem OGC-2, which

is also optimal to the ED problem in (5), and PCj
∗

=
1−RjKjMj

Rj
C ′j(P

M
j
∗
).

Proof: Please see the Appendix for the convergence
of the partial primal-dual gradient algorithm. 2
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With Lemma 4 and Theorem 5, we can implement al-
gorithm (11a–11c, 12a–12b) as an economic AGC for the
power system. By comparing with the ACE-based AGC in
(1)-(4) and the economic AGC in (11a–11c, 12a–12b), we
note that economic AGC has only a slight modification to
the ACE-based AGC and keeps the decentralized structure of
AGC. In other words, adding a local communication about
the new local auxiliary variable γj based on (12a–12b) can
improve the economic efficiency of AGC.

Remark 3. We can actually derive a simpler and yet imple-
mentable algorithm without introducing variable γij , (i, j) ∈
E (or γi, i ∈ N ). However, in order to have minimal
modification to the existing conventional AGC and also keep
the resulting control decentralized, we choose to derive the
algorithm (11) and (12).

V. CASE STUDY

Consider a small 4-area interconnected system, as shown
in Figure 1. The values of the generator and transmission
line parameters are shown in Table II and I. Notice that
though our theoretical results require that Bj = Dj for each
j, here we choose Bj differently from Dj since Dj is usually
uncertain in reality. For each area, the generation cost takes
on the form of Ci(PMi

) = aiP
2
Mi

where a is randomly
drawn from [1, 2].

Fig. 1: A 4-area interconnected system

TABLE I: Generator Parameters

Area, j Mj Dj |Vj | Tj Rj Kj Bj

1 3 1 1.045 4 0.05 2 2
2 2.5 1.5 0.98 4 0.05 2 3
3 4 1.2 1.033 4 0.05 2 2
4 3.5 1.4 0.997 4 0.05 2 3

TABLE II: Line Parameters

line 1-2 2-3 3-4 4-1
r 0.004 0.005 0.006 0.0028
x 0.0386 0.0294 0.0596 0.0474

In the model used for simulation, we relax some of
the assumptions made in the previous analysis. For each
transmission line we consider non-zero line resistance and do
not assume small differences between phase angle deviations,
which means that the power flow model is in the form of

Pij =
|Vi||Vj |
x2ij + r2ij

(
xij(sin θij − sin θ0ij)− rij(cos θij − cos θ0ij)

)
.
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Fig. 2: The ACE-based AGC
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Fig. 3: The economic AGC

Simulations results show that our proposed AGC scheme
works well even in these non-ideal, practical systems.

At time t = 10s, a step change of load occurs at area
4 where PL4 = 1 pu. Figure 2 shows the dynamics of the
frequencies and mechanical power outputs for the 4 areas
using ACE-based AGC (1)–(4). Figure 3 shows the dynamics
of the frequencies and mechanical power outputs for the 4
areas using the economic AGC (11a–11c, 12a–12b). Figure
4 compares the total generation costs using the ACE-based
AGC and the economic AGC with the minimal generation
cost of the ED problem (5). We see that the economic AGC
does not only track the optimal value of the ED problem but
also smooths out the frequency dynamics.

VI. CONCLUSION

We reverse-engineer the conventional AGC, and based on
the insight obtained from the reverse engineering, we design
a decentralized generation control scheme that integrates
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the ED into the AGC and achieves economic efficiency.
Combined with the previous work [3] on distributed load
control, this work lends the promise to develop a modeling
framework and solution approach for systematic design of
distributed, low-complexity generation and load control to
achieve system-wide efficiency and robustness.

ACKNOWLEDGMENT

This work is supported by NSF NetSE grant CNS
0911041, ARPA-E grant DE-AR0000226, Southern Califor-
nia Edison, National Science Council of Taiwan, R.O.C.
grant, NSC 101- 3113-P-008-001, the Caltech Resnick In-
stitute, and the Okawa Foundation.

REFERENCES

[1] A. Bergen and V. Vittal. Power Systems Analysis. Prentice Hall, 2
edition, 1999.

[2] P Kumar, Dwarka P Kothari, et al. Recent philosophies of automatic
generation control strategies in power systems. Power Systems, IEEE
Transactions on, 20(1):346–357, 2005.

[3] C. Zhao, U. Topcu, N. Li, and S. Low. Power system dynamics as
primal-dual algorithm for optimal load control. In arXiv:1305.0585,
2012.

[4] J Nanda and BL Kaul. Automatic generation control of an intercon-
nected power system. In Proceedings of the Institution of Electrical
Engineers, volume 125, pages 385–390, 1978.

[5] O. I. Elgerd and C. Fosha. The megawatt frequency control problem:
A new approach via optimal control theory. IEEE Transactions on
Power Apparatus and Systems, 89(4):563–577, 1970.

[6] M Aldeen and H Trinh. Load-frequency control of interconnected
power systems via constrained feedback control schemes. Computers
& electrical engineering, 20(1):71–88, 1994.

[7] C-T Pan and C-M Liaw. An adaptive controller for power system load-
frequency control. Power Systems, IEEE Transactions on, 4(1):122–
128, 1989.
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APPENDIX

Consider the following optimization problem:

min
x,y

f(x) + g(y) (13)

s.t. Ax+By = C,

where f(x) is a strict convex function of x, g(y) is a convex
function of y, and both f, g are differentiable. Notice that
g(y) can be a constant function.

The Lagrangian function of this optimization problem is
given by:

L(x, y, λ) = f(x) + g(y) + λT (Ax+By − C).

Assume that the constraint is feasible and an optimal so-
lution exists, then the strong duality holds. Moreover, the
primal-dual optimal solution (x∗, y∗, λ∗) is a saddle point of
L(x, y, λ) and vice versa.

The partial primal-dual gradient algorithm is given as
follows:

Algorithm-1: x(t) = min
x

{
f(x) + λTAx

}
ẏ = −Ξy(

∂g(y)

∂y
+BTλ)

λ̇ = Ξλ(Ax+By − C)

where Ξy = diag(εyi) and Ξλ = diag(ελj ).
In the following we will study the convergence of this

algorithm.
Define

q(λ) , min
x

{
f(x) + λTAx

}
L̂(y, λ) , q(λ) + g(y) + λT (By − C).

The following proposition demonstrate some properties of
q(λ) and L̂(y, λ).

Proposition 6. q(λ) is a concave function and its gradient is
given as ∂q(λ)

∂λ = Ax. If ker(AT ) = 0, then q(λ) is a strictly
concave function. As a consequence, given any y, there is a
unique maximizer for maxλ L̂(y, λ).

Proof: This proposition follows directly from
Proposition 6.1.1 in [15]. 2

Moreover, we have the following connections between
L(x, y, λ) and L̂(y, λ).

Lemma 7. If (x∗, y∗, λ∗) is a saddle point of L,
then (y∗, λ∗) is a saddle point of L̂ and x∗ =
argminx

{
f(x) + (λ∗)TAx

}
. Moreover, if (y∗, λ∗) is a sad-

dle point of L̂, then (x∗, y∗, λ∗) is a saddle point of L where
x∗ = argminx

{
f(x) + (λ∗)TAx

}
.

Proof: The proof is straightforward by comparing the
first order conditions of saddles points for both L and L̂.
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Notice that convexity of f, g, and concavity of q implies
that those first order conditions are necessary and sufficient
conditions for saddle points. 2

In the following, we will assume that ker(AT ) = 0. Thus
q(λ) and L̂ are stricitly concave on λ.

Now we study the convergenc of Algorithm-1. With
L̂(y, λ), Algorithm-1 can be written as follows:

ẏ = −Ξy

(
∂L̂(y, λ)

∂y

)
(14)

λ̇ = Ξλ

(
∂L̂(y, λ)

∂λ

)
(15)

Let (y∗, λ∗) be a saddle point of L̂(y, λ). Define a nonegative
function as:

U(y, λ) =
1

2

[
y − y∗
λ− λ∗

]T [
Ξ−1y

Ξ−1λ

] [
y − y∗
λ− λ∗

]
=

n∑
i=1

1

2εyi
(yi − y∗i )2 +

m∑
i=1

1

2ελi
(λi − λ∗i )2(16)

Notice that U ≥ 0 for any (y, λ). The derivative of U along
the trajectory defined in (14,15) is given as:

∂U

∂t
= −∂L̂(y, λ)

∂y

T

(y − y∗) +
∂L̂(y, λ)

∂λ
(λ− λ∗)

≤ −L̂(y, λ) + L̂(y∗, λ) + L̂(y, λ)− L̂(y, λ∗) (17)

= L̂(y∗, λ)− L̂(y∗, λ∗) + L̂(y∗, λ∗)− L̂(y, λ∗)

≤ 0

where the first equality comes from (14,15,16), the first
inequality follows from the strictly concavity of L̂ in λ and
convexity of L̂ in y and last inequality comes from that
(y∗, λ∗) is a saddle point of L̂. Therefore U is actually a
Lyapunov function of (14,15). For simplicity, we will denote
(y, λ) as z.

Lemma 8. ∂U(z)
∂t ≤ 0 for all z, and

{
ẑ : ∂U(ẑ)

∂t = 0
}

={
ẑ : λ̂ = λ∗, L̂(ŷ, λ∗) = L̂(y∗, λ∗)

}
.

Proof: (17) has shown that ∂U(z)
∂t ≤ 0. To ensure

∂U(ẑ)
∂t = 0, we need that L̂(y∗, λ̂) = L̂(y∗, λ∗) = L̂(ŷ, λ∗),

which implies that λ̂ = λ∗ because L̂ is strictly concave in
λ and (y∗, λ∗) is a saddle point. Thus we can conclude the
lemma. 2

Lemma 9. Given any two saddle points (y∗1 , λ
∗
1), (y∗2 , λ

∗
2),

we have λ∗1 = λ∗2, and L̂(y∗1 , λ
∗
1) = L̂(y∗2 , λ

∗
2). Any solution

(y(t), λ(t)) of (14,15) for t ≥ 0 asympotically approaches
to a nonempty, compact subset of the set of saddle points.

Proof: (16) tells that U(z) ≥ 0 for any z, and
(17) tells that U(z(t)) is decreasing with time t and
U(z(t)) ≤ U(z(0)) for any t ≥ 0. Because of the structure
of U(z) in (16), z(t) = (y(t), λ(t)) is bounded for t ≥ 0.

By Lyapunov convergence theory [16] , z(t) = (y(t), λ(t))
converges to a nonempty invariant compact subset of{
ẑ : ∂U(ẑ)

∂t = 0
}

=
{
ẑ : λ̂ = λ∗, L̂(ŷ, λ∗) = L̂(y∗, λ∗)

}
.

To ensure the subset is invariant, we have λ̇ = ∂L̂(Ẑ)
∂λ = 0

which implies that such ẑ is a saddle point of L̂. 2

Theorem 10. Any solution (y(t), λ(t)) of (14,15) for t ≥ 0
asympotically converges to a saddle point (y∗, λ∗). The
saddle point (y∗, λ∗) may depend on the initial point
(y(0), λ(0)).

Proof: The proof of Lemma 9 show that {z(t)}t≥0 is
a bounded sequences, therefore, we know that there exists
a subsequence {z(tj) = (y(tj), λ(tj))} converges to a point
z∞ = (y∞, λ∞). This implies that:

lim
tj→∞

n∑
i=1

1

2εyi
(yi(tj)−y∞i )2+

m∑
i=1

1

2ελi
(λi(tj)−λ∞i )2 = 0.

(18)
As shown in Lemma 9, z∞ = (y∞, λ∞) is a saddle point
of L̂. Therefore Lemma 8,9 tells that:

lim
t→∞

U(y(t)− y∞, λ(t)− λ∞)

= lim
t→∞

n∑
i=1

1

2εyi
(yi(t)− y∞i )2 +

m∑
i=1

1

2ελi
(λi(t)− λ∞i )2

= u

for some constant u. Since {z(tj) = (y(tj), λ(tj))} is a
subsequence of {z(t)}, (18) tells that u = 0. Therefore,
we can conclude that (y(t), λ(t)) converges to (y∞, λ∞). 2

The above proof for the general partial primal-dual gra-
dient algorithm can be easily extended to prove Theorem 3
and 5. We omit the details here due to the space limitation.

8


