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Filvà, David Fonseca Escudero 

Abstract. Dashboards are useful tools for generating knowledge and support decision-making processes, but the 
extended use of technologies and the increasingly available data asks for user-friendly tools that allow any user profile 
to exploit their data. Building tailored dashboards for any potential user profile would involve several resources and 
long development times, taking into account that dashboards can be framed in very different contexts that should be 
studied during the design processes to provide practical tools. This situation leads to the necessity of searching for 
methodologies that could accelerate these processes. The software product line paradigm is one recurrent method that 
can decrease the time-to-market of products by reusing generic core assets that can be tuned or configured to meet 
specific requirements. However, although this paradigm can solve issues regarding development times, the 
configuration of the dashboard is still a complex challenge; users' goals, datasets, and context must be thoroughly 
studied to obtain a dashboard that fulfills the users' necessities and that fosters insight delivery. This paper outlines the 
benefits and a potential approach to automatically configuring information dashboards by leveraging domain 
commonalities and code templates. The main goal is to test the functionality of a workflow that can connect external 
algorithms, such as artificial intelligence algorithms, to infer dashboard features and feed a generator based on the 
software product line paradigm.  
 

Keywords: Big Data training · Intelligent tutoring system · Master as a Service · Virtual Learning Environment 

1 Introduction 

Nowadays, a lot of technological contexts ask for tailored products; new user profiles have arisen due to 
the extended use of technologies, and these profiles might demand distinct features in their products. The 
use of software tools is not restricted and limited to technical profiles anymore, which have expanded the 
variety of products that one can find to solve specific problems.  

This increase in technology usage has also increased the quantity of available and generated data. People 
can use technology to explore information and to support their decision-making processes [1].   

However, the exponential growth of data is a challenge for analyzing and generating knowledge from 
them, as complex patterns, for example, are less easy to detect at a glance. That is why disciplines like 
information visualization study how data can be encoded to foster insight delivery.   

Tools like information dashboards arrange data into different views to ease the analysis of large datasets 
and to generate knowledge [2]. Dashboards are powerful tools, but designing and developing them are not 
trivial tasks; the variety of user-profiles induces the necessity of crafting dashboards according to specific 
user needs. In other words, dashboards need to be tailored to enhance user experience and to achieve 
particular user goals. However, tailoring dashboards for any potential user profile would consume 
significant resources and the most important: significant time.  

Developing a user-specific dashboard involves the analysis of the user goals and required tasks, the 
analysis of the user herself/himself, etc., in addition to the actual development of the dashboard, which also 
consumes time and resources.   

Given this situation, different paradigms arose to ease the tailoring of these kind of products by reusing 
artifacts or by developing dashboard generators [3]: from configuration wizards that enable users to build 
their own dashboards, structured files that are rendered into final products, agents that personalize the tools 
based on the users’ behavior, etc., to software engineering frameworks like model-driven engineering or 
the software product line paradigm.   

The latter software engineering methods provide a framework to build systems based on high-level 
resources (meta-models, core assets, etc.) that can be instantiated into concrete products. Indeed, one of the 
main benefits of the Software Product Line (SPL) paradigm is the capacity of tailoring products to match 
particular user needs without consuming several resources and development time [4,5] by increasing 
reusability not only at code-level but also at knowledge-level.    

The SPL paradigm is a powerful approach to leverage solutions framed within a specific domain [5,6]. 
It has been used in several contexts [7-12] and achieved significant results, decreasing development times, 
and time-to-market. This paradigm is organized into two phases: domain engineering and application 
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engineering [5,6]. The domain engineering phase is focused on analyzing the target domain in which the 
products will be framed, obtaining a series of artifacts that will be the inputs for the application engineering 
phase, in which the developed models, assets, etc., are employed to build specific products according to the 
clients' needs.  

In this paradigm, the domain engineering phase is essential. This phase thoroughly analyzes the domain 
to find reusability opportunities. Through the analysis and extraction of commonalities among potential 
products, it is possible to model abstract properties that can be instantiated and configured into concrete 
solutions. These properties or features are thus, essential for understanding the nature of the domain's 
products.  

There exist different methods to account for a domain’s features [13]. However, one of the most used 
methodologies to model SPL's features is the feature-oriented domain analysis (FODA) [14]. This method 
allows the representation of every possible product of an SPL in terms of a set of mandatory, optional, and 
alternative features.   

The variability points (i.e., the locations in which the product line variability are injected) can be 
materialized through different methods [15]; selecting the right method is based on available resources, 
time and the product line’s features characteristics, like the required granularity [16].  

Although information dashboards can present different forms, they share common features (visual 
encodings, layouts, low-level tasks, etc.), which makes the SPL paradigm a suitable approach for building 
tailored dashboards. In fact, successful examples of the application this approach to information dashboards 
can be found in the literature [17,18].  

However, although the SPL paradigm can support the generation of dashboards, the features still need 
to be manually selected. The configuration process can be a challenge, as users might not know what 
dashboard configuration better suits their needs, and thus, the dashboard designer wouldn't be able to select 
the appropriate dashboard features. In this case, the configuration process asks for automation.  

How can a set of proper dashboard’s features be inferred from users? This paper presents a proposal for 
generating dashboards employing domain engineering and the possibilities of connecting the SPL’s core 
assets with external prediction algorithms to obtain suitable features.  

Specifically, the main goal behind presenting this approach is to establish a foundation for leveraging 
artificial intelligence algorithms to ease the configuration process of information dashboards.   

These algorithms can learn from the users’ goals, behaviors and characteristics to infer their needs 
regarding data and their visualization; given input datasets, artificial intelligence techniques are employed 
to discover underlying relationships and patterns among variables.   

In this context, AI algorithms are intended to be employed to find relationships among users’ 
characteristics and visualization elements, in order to discover rules and use them for crafting tailored 
displays that foster knowledge generation.   

The rest of this paper is organized as follows. Section 2 outlines previous works regarding the application 
of artificial intelligence within the SPLs and visualization recommendation domains.   

Section 3 describes the methodology used in each stage of this work. Section 4 presents the proposed 
workflow for automatically generating dashboards, followed by section 5, in which a small proof-of-
concept to test the feasibility of the approach is performed.   

Finally, sections 6 and 7 discuss the results and raise some conclusions about the work done, 
respectively. 

 

2 Background 

2.1 Variability mechanisms in software product lines 

There exist different techniques to implement variability points in SPLs. It is important to choose wisely 
given the requirements of the product line itself (i.e., the complexity of the software to develop, its number 
of features, their granularity requirements, etc.).  

Variability points that correspond to a certain feature will be spread across different source files, 
generally [15]. That is why separating concerns at implementation level is essential to avoid this scattering, 
as this feature dispersion would decrease code understandability and maintainability.   

Implementing each feature in individual code modules can help with the separation of concerns [15], but 
it is difficult to achieve fine-grained variability through this approach. A balance between code 
understandability and granularity should be devised to choose both a maintainable and highly customizable 
SPL.  
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This section will briefly describe different methods that are potentially suitable to the dashboards’ 

domain given their particular features, and that could be employed to connect the outputs yielded from an 
external configuration algorithm. However, there are more approaches to implement variability in SPLs 
that can be consulted in [15]. 

 
2.1.1 Conditional compilation 

Conditional compilation uses preprocessor directives to inject or remove code fragments from the final 
product source code.  This method allows the achievement of any level of feature granularity due to the 
possibility of inserting these directives at any point of the code, even at expression or function signature 
level [19]. Also, although pretended to the C language, preprocessor directives can be used for any language 
and arbitrary transformations [20]. The main drawback of this approach is the decrease of code readability 
and understandability as interweaving and nesting these preprocessor directives makes the code 
maintainability a tedious task [21].   

 
2.1.2 Frames 

Frame technology is based on entities (frames) that are assembled to compose final source code files. 
Frames use preprocessor-like directives to insert or replace code and also to set parameters [15]. An 
example of a variability implementation method based on frame technology is the XML-based Variant 
Configuration Language (XVCL) [22]. Through this approach, only the necessary code is introduced in 
concrete components by specifying frames that contain the code and directives associated with different 
features and variants. XVCL is independent of the programming language and can handle variability at any 
granularity level [23]. 

 
2.1.3 Template engines 

Template engines allow the parameterization and inclusion/exclusion of code fragments through 
different directives. If the template engine allows the definition of macros, features can be refactored into 
different code fragments encapsulated through these elements, improving the code organization and 
enabling variability at any level of granularity. Templating engines can also be language-independent, 
providing a powerful tool for generating any kind of source file [24] by using programming directives such 
as loops and conditions.   

 
2.1.4 Aspect-Oriented Programming 

Aspect-Oriented Programming (AOP) allows the implementation of crosscutting concerns through the 
definition of aspects, centralizing features that need to be present in different source files through unique 
entities (aspects) thus improving code understandability and maintainability by avoiding scattered features 
and “tangled” code [25].   

AOP is a popular method to materialize variability points in SPLs due to the possibility of modifying 
the system behavior at certain points, namely join points [26-28]. However, AOP could lack o of fine-
grained variability (i.e., variability at sentence, expression or signature level) and particular frameworks or 
language extensions are necessary to implement aspects in certain programming languages. 

 
2.2 Automatic visualization recommendations 

Selecting the right information visualizations is a challenging step when developing dashboards. This 
step is also crucial because the effectiveness of the dashboard or visualization can be compromised if the 
design decisions are not based on the context or the final users.  

To ease this process, several authors in the literature aim at automatically recommending visualizations. 
As the majority of works point out, the particular design of a visualization depends on different aspects, 
like the domain knowledge of the users, the tasks that the visualization must support or the data 
characteristics [29].  

Developing a dashboard or a visualization need expert knowledge to help with design decisions based 
on the audience and context to which the product is aimed for. But can this developing process and design 
decisions be automated? There are different approaches to tackle these challenges. 
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For example, some methods use visual mapping and rules to recommend a certain visualization based 

on the target data to be displayed [29]. Through this method, the dataset is analyzed, and a series of rules 
are applied to select a proper visual mark, scale, channel, etc. based on the type or properties of the data 
variables. Some tools take advantage of this method to develop suitable visualizations, like Tableau's Show 
Me [30], Manyeyes [31], or Voyager [32].  

On the other hand, VizDeck [33] proposes a set of visualization based on the input data, and the user 
selects the ones that prefer the most. The system learns from these user interactions, providing the user with 
similar visualizations subsequently.   

Other solutions take into account the context in which the visualization is framed, attending to the 
domain, experience, or knowledge. For example, in [34] a visualization ontology named VISO is employed 
no only to annotate data, but also "to represent context and factual knowledge." Then, a ranking process is 
executed to yield the recommendations using rules to rate the suitability of visual encodings.  

User behavior is also considered as a crucial aspect when recommending visualizations. For example, in 
[35,36], the user behavior when interacting with a visualization is logged and used later to search for 
interesting patterns that could mean that the user asks for a different visualization. When the visual task is 
inferred from the user behavior, a set of ranked annotated visual metaphors is retrieved.  

Furthermore, an application of content and collaborative filtering to recommend visualizations can be 
found in [37]. Through these methods, potentially suitable visualizations for a specific user can be 
identified.  

Finally, applications of neural networks to infer specific features of a visualization are also present in 
the literature. VizML [38] used the Plotly API1 to retrieve information about how the Plotly community 
crafted different visualizations for different datasets to train a set of models. The outputs of these models 
are a set of visualization design choices at visualization-level and encoding-level, including mark types or 
properties regarding axes, like if a variable is encoded on the X or the Y-axis or if the axis is shared.   

A similar approach is taken in Data2Vis [39], where the inputs of a sequence to sequence model are data 
characteristics and the output is a visualization specification in Vega-Lite.  

As well as with the variability mechanisms of software product lines, it can be seen that there are many 
methods to address the automatic recommendation of suitable visualizations. The next section details the 
specific methodology followed for this work.   

3 Methodology 

3.1 Conceptualization: meta-modelling and domain engineering 

As introduced, the employed framework involves two software engineering approaches: meta-modeling 
and the software product line paradigm. The combination of meta-modeling to obtain a domain abstraction 
with the SPL philosophy of systematically reuse assets provides a powerful framework for building families 
of products.  
The first (and essential) phase in developing SPLs is domain engineering. This phase is conducted to 
understand the domain in which the potential products of the SPL are framed. But what exactly is the 
meaning of "understand the domain"? In domain engineering approaches, to understand the domain means 
to analyze it, to find commonalities and variability points among the domain's products. By identifying 
commonalities and variations, generic and abstract components can be developed to subsequently combine 
them, parameterize them, derive them, or to execute any other operation with the goal of obtaining a 
concrete product [15].  
However, how can these domain characteristics be captured? Meta-models can support this 
conceptualization process. These elements are artifacts from the model-driven architecture paradigm 
[40,41] that capture high-level and abstract concepts and document them in a structured representation. 
Through meta-modeling, the development of general rules, constraints, etc., for a set of related problems is 
fostered by abstracting common structures and associations found in different domain’s instances.   
 
 
 
 
 
 

                                                           
1 https://plot.ly/ 
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Fig 1. Using meta-models to understand complex domains. 

 
Fig 2. An extract of the dashboard meta-model where the visualization components are decomposed into abstract primitives [43]. 

In the end, meta-models can be mapped to concrete model instances and products, following the OMG 
four-layer meta-model architecture [42]: meta-meta-model layer (M3), meta-model layer (M2), user model 
layer (M1) and user object layer (M0).  

The dashboards domain is indeed complex. There is a huge diversity of dashboards in terms of designs, 
interactions, supported tasks, displayed data, layouts, etc.   

However, using meta-models and domain engineering as conceptualization tools, it can be possible to 
extract commonalities shared by dashboards and arrange them into abstract models that can be concretized. 
Figure 1 illustrates this approach.   

An extract of the developed dashboard meta-model is shown in Figure 2, in which different primitives 
that a visualization could have are presented.   

This meta-model also accounts for user goals and characteristics, including visualization literacy, 
domain knowledge, bias, preferences, etc. [44].  Also, components are arranged among different containers 
to compose the dashboard. The full version of the meta-model can be consulted at [43].   

The meta-model helps with the conceptualization of the automatic generation approach and to gain 
knowledge about abstract features regarding dashboards.   

However, to test this first approximation and the configuration process of dashboards, an abbreviated 
feature model has been developed, which can be consulted in Figure 3. This feature model reflects the 
elements that a dashboard display belonging to the product line could have at the moment. In this case, a 
dashboard display can be composed of different pages with different visualizations.   
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Fig 3. The dashboard product line’s feature model. 

As presented in the meta-model, a visualization is composed of marks that could encode data through 
different channels. The “Base Structure” feature is the core of every visualization, which supports its 
generation and its basic functionalities. Of course, this feature model can be extended to support more 
characteristics (scale types, annotations, interaction patterns, etc.), but in order to test the feasibility of this 
approach in a straightforward way, the feature model has been kept simple. 

3.2 Variability Implementation: code templates 

One of the challenges regarding the development and configuration of SPLs is the desired features’ 
granularity. In the dashboards’ domain, features’ are fine-grained; variability is focused on visual and 
interactive elements of the presentation layer, because slight modifications on different aspects, like 
interaction patterns, layouts, color palettes, etc., can influence the perceived usability and user experience 
[45]. In other words, dashboards’ features can involve statement-level, and even expression-level 
granularity [16], meaning that tiny fragments of code can be affected by the SPL configuration process.  

Given these granularity requirements, the chosen mechanism to implement the SPL is based on template 
engines. These tools allow developers to tag sections and to parameterize fragments of source code to 
subsequently instantiate them with particular values, thus obtaining concrete source files [17].   

Jinja2 has been selected as the template engine given its powerful features like the possibility of 
enclosing code within macros and the multiple directives available (loops, conditional directives, variable 
definitions, etc.). On the other hand, the chosen technology to implement the SPL’s assets (i.e., the code 
templates’ content) is the data visualization framework Vega-Lite2. This is not an arbitrary selection; Vega-
Lite allows building custom visualizations through a fine-grained configuration of their properties, which 
matches the requirements of this product line approach and fits with the identified domain’s features. 

3.3 Configuration proposal: artificial intelligence and visual mapping 

As presented in section 2.2, artificial intelligence has arisen as a powerful tool to recommend 
visualization types and configurations. The fact that users and developers might be biased when designing 
a dashboard makes artificial intelligence algorithms a useful means to drive design decisions. However, as 
it will be discussed, it is important to take into account that AI algorithms are fed with data, and if these 
data are biased, then the algorithm will also be biased [46].  

Although creating a product line of dashboards can boost development processes, products still need to 
be configured; and this is not a trivial task.   

Configuration processes are still manual or semi-automatic (supported by tools [47-49]) processes in 
which user requirements or the product-line’s objectives have to be analyzed and materialized by selecting 
the appropriate features to obtain a suitable product.   

This is a complex and crucial process that can compromise the effectiveness of the dashboard.  
However, the configuration of a product line with several features involved can be overwhelming, even 

for an artificial intelligence algorithm. As previously introduced (in section 3.1) the dashboard meta-model 
contemplates several fine-grained features; inferring every single exact value for every single feature might 
involve significant quantities of data and resources to get good results.  

 
 

                                                           
2 https://vega.github.io/vega-lite/ 
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That is why using visual mapping approaches are also useful for these problems, because general 

guidelines must be followed to deliver correct visualizations. In this case, a visualization recommendation 
engine, such as CompassQL [50,51], can be selected to act as a visual mapping engine.   

Specifically, CompassQL allows partial specifications of visualizations and integrates methods for 
choosing and ranking the best specification.   

The following section explains how artificial intelligence and visual mapping can be introduced in a 
dashboard product line configuration process. 

4 Workflow for automatically setting up a dashboard product line 

This section proposes a workflow to address the challenge of automatically configuring a product line 
of dashboards based on user necessities.   

Of course, the first step is to identify the inputs and outputs of the whole process.  Broadly speaking, 
there are three main inputs based on the previously presented meta-model in section 3.1: the user's goals, 
the user's characteristics, and the target datasets. Following previous visualization recommendation 
methods [29], this method combines different aspects to obtain a hybrid approach.   

The reason to use a hybrid approach is that using a single dimension for configuring dashboards or 
visualizations, for example, using only data characteristics or using only user preferences, can lack 
effectiveness.   

Data characteristics need to be taken into account to build appropriate charts [52], as some visual 
encodings are not suitable for some type of variables.   

However, while a chart can be correctly built, it can be inappropriate if its context and audience are not 
considered.  

User goals are crucial, as visual metaphors, supported tasks or displayed data depend on what are the 
user’s data necessities, as well as users’ characteristics, because the visualization literacy, domain 
knowledge or even bias, can compromise the users’ insight delivery process.   

On the other hand, in this case, the selected method to manage tailoring capabilities is the software 
product line paradigm, meaning that the output of the configuration process must be a set of suitable features 
from the feature model. Figure 4 outlines the inputs and outputs of the process.  

In the end, the problem is summarized as the necessity of tuning the core assets parameters to optimize 
the user experience and the effectiveness of the generated dashboard.   

Users' goals, characteristics, and datasets must be structured into machine-readable documents to allow 
their processing and to automatize the process. The output as well, in this case, a selection of features, can 
be transformed into a structured file readable by the code generator which will inject the specific parameter 
values into the templates to generate the final dashboard. 

 

 

Fig 4. Inputs and outputs of the proposed dashboards’ configuration approach. 

However, as previously shown in Figure 2, a single visualization needs several primitives, properties, 
and features to be selected. Identifying and configuring every potential feature would consume several 
resources and time. This also means that it is necessary to have not only relevant quantities of data to train 
a model but also information about different types of visualizations.   

That is why the following configuration process is proposed. Some basic but relevant features can be 
predicted using user data and data schemes, for example: predict the number of visualizations that a 
dashboard should hold given all of the users' goals and expertise.   
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This could also be applied at "visualization-level," for example: predict the appropriate number of 

encodings/channels for a visualization or the mark type.  
Then, once this information has been collected, the inferred data can be converted into a set of concrete 

visualizations by using visual mapping.  
In this case, to test functionality, CompassQL has been selected as the visual mapping/recommendation 

engine to deliver the final dashboard. CompassQL enables the automatic selection of channels given the 
dataset and the variables to visualize.   

The structure of this query language allows the connection of the outcomes from an external algorithm 
to a visualization query through the mentioned code templates, and the mapping results can also be used to 
generate visualizations with different frameworks. 

5 Proof-of-concept 

This section outlines the functionality of the product line generation process.  
The presented proof-of-concept aims at testing the suitability and feasibility of using code templates to 

introduce external configurations.   
The main requirement of the approach involves the capacity of adapting dashboards based on fine-

grained features, following the meta-model described in section 3.1.  
The inputs of the approach are the selected features from the product-lines feature model (which need to 

be previously selected based on user requirements and the dataset structures).  
A pilot prototype to test the functionality of the workflow has been implemented. Different code 

templates have been coded to generate example charts, such as bar charts and scatter plots by using a sample 
configuration file.   

The code templates hold basic and generic code for every visualization, and they can be parameterized 
to inject concrete features. Figure 5 shows an overview of the process.   

 

 
Fig 5. Workflow overview using code templates. 

Figure 6 shows a code template snippet, where external data is used to parameterize the final code after 
the rendering process.   

The dashboard generator gets the data from the configuration files, and passes them to the code templates 
to inject concrete values, thus obtaining the final source files.    

 

 
 
Fig 6. Code snippet for a code template in which a CompassQL query is instantiated using external parameters. 
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This means that, if the outcome of a previous prediction process using users’ characteristics is as in 

Figure 7, the delivered dashboard could be configured as in Figure 8. 
 

 
 
Fig 7. Example dashboard configuration. 

 

 
 
Fig 8. Example outcome of the generation process. 

For example, the previous visualizations can be generated with the visualization framework Semiotic 
[53], using the CompassQL outcomes after the proper channels had been inferred through visual mapping. 
Figure 9 shows a code template for generating XY charts, while Figure 10 shows the final generated 
visualization, which coincides with the scatter plot generated at the beginning of this section. 

 

 
 
Fig 9. Using the visualization framework Semiotic to generate charts using properties from external files. 

 
 
Fig 10. Generated scatter plot using Semiotic’s code. 

In addition, code templates can be used for other features of the software product line, like the addition 
of interaction patterns, controls, styles, etc., following the same approach as in [17].   
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6 Conclusions and future work 

This paper proposes an approach that takes advantage of domain engineering and code templates for 
generating tailored dashboards.   

The feasibility of connecting external algorithms’ outcomes to a software product line’s configuration 
process using code templates has been tested.   

Choosing the right implementation technique is a complex task, because several factors must be taken 
into account: the aforementioned granularity level, the understandability, and maintainability of the code, 
the viability of the technique, etc. Having the power of customizing their features at fine-grained level could 
be highly valuable, as dashboards usually ask to be user-tailored in order to provide useful support for 
particular and individual goals.   

Code templates not only enable fine-grained variability points to be materialized at code-level but also 
allows the introduction of external algorithms, like artificial intelligence or visual mapping algorithms 
within the rendering process. The parameterization of code through Jinja2 templates lets the generator to 
be fed with configuration files no matter their source (if provided with a fixed syntax).   

Fine-grained features are very important in a domain like this, changing the mark type or some encoding 
channel could be decisive for users to accomplish their goals regarding datasets. Code templates allow 
flexibility and even expression-level variability, which are powerful features for this domain.  

Although this approach still lacks powerful maintainability levels, it maintains good requirements 
traceability by arranging features in a variety of macro definitions. Using XVCL [22] could have been 
another solution to manage these fine-grained features, but the decision of wrapping the SPL specification 
through a DSL asked for a more flexible and customizable method such as a template engine.   

What is more, a combination of the AOP paradigm with the templating method could be highly beneficial 
providing both customization capabilities regarding directives and a better technique to manage 
crosscutting concerns (an issue that a template engine could not solve straightforwardly).  

However, although presenting some caveats, the results are promising and prove that a powerful template 
engine could be a beneficial method to materialize fine-grained variability and to introduce external 
configuration algorithms within the SPL paradigm context. 

Regarding the introduction of artificial intelligence, a hybrid approach for configuring the product line 
is proposed. The reason behind this approach is that, while artificial intelligence is powerful for predicting 
values given an input set of features, visual mapping ensures that basic guidelines and constraints are 
followed.   

Artificial intelligence could be useful for identifying user-profiles and to "translate" these profiles into a 
set of visualization features. But, in the end, a series of constraints regarding the construction of graphics 
and visualizations must be followed. That is why this work proposes predicting high-level visualization 
features, like the number of channels or visualizations within a dashboard, and then using visual mapping 
to convert this abstract information into concrete visualizations.  

Moreover, a meta-model has been developed to extract commonalities from the domain and to 
understand the relationships among the identified elements. The user has been included in the meta-model 
as they are the final consumers of the dashboards. Knowing and understanding their characteristics, 
backgrounds, preferences, expertise, goals, etc., is crucial to deliver dashboards that support their intentions 
in an effective manner.  

However, there are also challenges regarding the introduction of user characteristics and goals in this 
kind of AI pipelines. On the one hand, user goals are identified and expressed in natural language, meaning 
that they need preprocessing before using them to predict values. However, structuring goals is not trivial. 
There exist different frameworks for identifying and linking goals with low-level tasks that could be very 
useful for this matter [54-56]. On the other hand, user characteristics like expertise, visualization literacy, 
bias, are not only difficult to structure but to identify and measure, although there are also frameworks that 
could help with these tasks [57-59].  

Another challenge is that this approach needs to be tested with real-world data and seek for 
improvements, but the functionality of the workflow seems promising.   

However, not only tests with real-world data need to be performed. Users are the backbone and the target 
of visualization tools. Visualization recommendation approaches aim at boosting their capacity to reach 
insights. Delivering a functional dashboard is important, but in the end, the metrics that prove that the 
approach is useful are user-related (usability, engagement, acceptance, insights reached, etc.).  

Testing an automatically generated product can refine not only the product eitself but also the whole 
generation process by obtaining more feedback data that could feed AI algorithms. 
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7 Conclusions 

This paper describes a proof-of-concept for a dashboard generator that uses users and datasets 
characteristics.  

The functionality of the template-based generator has been tested to prove the feasibility of the approach 
and the necessity of taking into account fine-grained features in a complex domain like dashboards'. The 
configuration process proposal takes into account the user goals and characteristics and not only the dataset 
schema to infer high-level visualization features.  

However, the proposed workflow needs to be tested in depth to validate not only the functionality, but 
the technological acceptance and usability of the generated dashboards. Users are the final consumers of 
these tools, so they must be involved in the validation of the workflow.  

Future research lines will involve the implementation of a more comprehensive framework to generate 
functional visualizations using fine-grained features, as well as the testing of this approach with real-world 
data and users, and the iterative improvement of the workflow, to predict more visualizations’ features, and 
thus obtaining a more powerful tailoring process for dashboards. 
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