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ABSTRACT: 

 

Cultural heritage information systems, such as H-BIM, are becoming more and more widespread today, thanks to their potential to 

bring together, around a 3D representation, the wealth of knowledge related to a given object of study. However, the reconstruction of 

such tools starting from 3D architectural surveying is still largely deemed as a lengthy and time-consuming process, with inherent 

complexities related to managing and interpreting unstructured and unorganized data derived, e.g., from laser scanning or 

photogrammetry. Tackling this issue and starting from reality-based surveying, the purpose of this paper is to semi-automatically 

reconstruct parametric representations for H-BIM-related uses, by means of the most recent 3D data classification techniques that 

exploit Artificial Intelligence (AI). The presented methodology consists of a first semantic segmentation phase, aiming at the automatic 

recognition through AI of architectural elements of historic buildings within points clouds; a Random Forest classifier is used for the 

classification task, evaluating each time the performance of the predictive model. At a second stage, visual programming techniques 

are applied to the reconstruction of a conceptual mock-up of each detected element and to the subsequent propagation of the 3D 

information to other objects with similar characteristics. The resulting parametric model can be used for heritage preservation and 

dissemination purposes, as common practices implemented in modern H-BIM documentation systems. The methodology is tailored to 

representative case studies related to the typology of the medieval cloister and scattered over the Tuscan territory. 

 

 

1. INTRODUCTION 

In recent years, the field of architectural heritage has benefited 

from an increasing use of digital information models, such as 

Heritage-Building Information Modeling (H-BIM) systems, 

which have enabled the exploitation of digital replicas as 

integrated tools to archive, retrieve and disseminate the 

knowledge related to the documentation and preservation of a 

heritage asset (Croce et al., 2019). 

In this context, it has become increasingly essential to implement 

and characterize the different digital 3D surveying outputs, as 

obtained from laser scanning or photogrammetry (Bevilacqua et 

al., 2018), in order to make them more easily interpretable and 

shareable, in terms of both inclusion and visualization of the 

information related, e.g., to the results of material analysis, to the 

level of degradation of surfaces, to the state of conservation or to 

the architectural components represented (Croce et al., 2020).  

Hence, the correct construction of an information model for the 

handling of digital heritage data should follow the consecutive 

phases of: data acquisition; semantic segmentation -i.e. the 

distinction of the represented elements and their classification 

according to a certain grouping criterion; 3D restitution of the 

geometric shapes for H-BIM applications.  

To date, however, this workflow proves to be time-consuming 

and barely automated, which often leads experts to forego Scan-

to-BIM solutions in practical applications (Andriasyan et al., 

2020; López et al., 2018). 

To the other hand, Machine Learning (ML) and Deep Learning 

(DL) techniques, derived from Artificial Intelligence (AI), are 
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offering promising results for the classification, hence 

interpretation, of digital heritage data (Fiorucci et al., 2020). 

In this context, starting from the reality-based surveying, the 

purpose of this paper is to propose a semi-automatic approach to 

the construction of parametric models for H-BIM related uses. 

This approach is based on: i) 3D data classification techniques 

that exploit AI to distinguish architectural components of historic 

buildings within point clouds; ii) generative algorithms, built in 

visual programming environments, for the reconstruction and 

subsequent propagation of each component identified (Figure 1). 

The methodology is validated on relevant case studies of cloisters 

of Italian medieval buildings. 

 

Figure 1. The steps of the proposed methodology illustrated for 

the main cloister of the Museo di San Matteo dataset. 
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2. PREVIOUS WORKS 

In the architectural heritage domain, a very active research topic 

that has increasingly emerged in recent years involves the 

application of ML and DL techniques, fields of AI, to assist the 

digital data interpretation, logical organization, and semantic 

enrichment of a given asset being studied (Fiorucci et al., 2020) 

e.g. in terms of recognition of architectural elements (Pierdicca 

et al., 2020), re-assembly of dismantled fragments (Paumard et 

al., 2020) and detection of occluded or damaged wall regions 

(Ibrahim et al., 2020).. 

In the case of survey data, the attention is devoted to the 

possibility to recognize and annotate, in much straightforward 

manner, the specific characteristics of a building or site: from the 

former experiments geared towards the semantic segmentation of 

heritage 2D images (Manfredi et al., 2013; Korc and Forstner, 

2009; Ibrahim et al., 2020), the investigations moved on to 

studying more automatic annotations directly on 3D media, i.e. 

point clouds (Grilli et al., 2018) and/or textured polygonal 

meshes (Grilli and Remondino, 2019). 

Among these approaches, supervised learning ones, relying on 

annotated training data as input, are more suitable to describe the 

complexity and morphology of historical buildings: (Grilli et al., 

2019) presented a robust approach that exploits one such 

algorithm, the Random Forest (RF) (Breiman, L., 2001). A small 

portion of the 3D point cloud is manually annotated, and 

appropriate features are extracted, describing the elements of the 

dataset, e.g. columns, walls, floors, vaults and so on. Then, the 

RF classifier is trained to identify the same classes in new, unseen 

and non-manually annotated parts of the point cloud. 

Further developments of this approach led to test the algorithm 

also for multi-level and multi-scale semantic segmentation 

(Teruggi et al., 2020). With the same goal, (Murtiyoso and 

Grussenmeyer, 2020) presented an algorithmic approach in the 

form of a toolbox that supports the manual segmentation of large 

point clouds, including several semi-automated pipelines. 

As of today, ML approaches prove to be more efficient than the 

DL subset, mainly due to the limited availability of semantically 

annotated data that would be needed to train deep artificial neural 

networks (Matrone et al., 2020). In 2020, however, the ArCH 

benchmark dataset presented in (Matrone et al., 2020) provided 

the first real attempt to solve this bottleneck by bringing together 

a collection of manually labeled heritage point clouds. 

Concurrent with developments in semantic segmentation of 

survey data, the widespread use of Building Information 

Modeling techniques applied to cultural heritage is also 

significant, as confirmed by the extensive literature reviews 

provided by (López et al., 2018; Tang et al., 2010). 

H-BIM methods allow today to bring together, in a unique 

environment, the geometric representation of a heritage artifact 

to the knowledge related to its study and analysis; this feature has 

doubtlessly contributed to the wide diffusion of Scan-to-BIM 

practices, intending to reconstruct an information model starting 

from 3D laser scanner or photogrammetric survey data. 

The use of AI-derived techniques for the automation of such 

processes -to date still lengthy, mostly manual and time-

consuming- has been first tested in the work by (Croce et al., 

2021a), demonstrating the effectiveness and feasibility for the 

reconstruction of H-BIM models. The present work shows a 

further step: stemming from the analysis of the recurring 

architectural elements typical of the medieval cloister typology, 

visual programming algorithms are used for the reconstruction 

and propagation of conceptual geometries derived from 

surveying and identified over the annotated point cloud.  

 

3. METHODOLOGY 

The present research starts from the insight that semantic 

segmentation techniques exploiting ML can optimize the Scan-

to-BIM process, making the latter faster and more effective and 

thus improving the interpretation and reconstruction phases.  

The proposed approach combines: 

 

1. Semantic segmentation via ML, to increase automation in 

recognition and classification of element classes in both 2D- 

and 3D- heritage survey data. The RF algorithm is used for 

the classification purpose; 

2. Parametric reconstruction of the classes of elements, by 

making use of visual programming languages (Rhino & 

Grasshopper for Rhinoceros), in view of implementation in 

H-BIM platforms. 

 

3.1 Semantic segmentation via Machine Learning 

The approach to the semantic segmentation of heritage data 

leverages RF as a supervised learning algorithm and it is 

implemented according to the successful strategies described by 

(Croce et al., 2021a; Grilli et al., 2019).  According to the learning 

process illustrated by (Weinmann, 2016) and starting from an 

initial point cloud obtained by laser scanner or photogrammetry, 

the process is articulated in the following phases: neighborhood 

selection, feature extraction and selection, manual annotation and 

classification. 

A suitable set of features is extracted and selected from the 

original point cloud data: these can be radiometric (color values) 

or geometric features (computed considering a spherical 

neighborhood of each 3D point). These data, alongside the 

manual identification (annotation) of a reduced portion of the 

cloud, are used to train a RF to classify new data. 

In addition to the geometric features derived from the covariance 

matrix and the R, G, B color data, we hereby consider a curvature 

measure, the Normal Change Rate, which describes for each 

point the speed of the orientation change. 

With a view to inserting this study in a wider context and to share 

the results more effectively, the identification of the classes of 

elements is performed by relying on the subdivision proposed by 

the state-of-the-art 3D ArCH benchmark (Matrone et al., 2020), 

that distinguishes ten classes: arch, column, molding, floor, 

door/window, wall, stair, vault, roof, other. 

The predictive model is validated on a subset of annotated data 

(the 25%), thus sorting a confusion matrix, that shows the 

comparison between true and predicted classes. The procedure is 

performed using MATLAB’s Machine Learning Toolbox.  

The visualization of True Positives (TP), True Negatives (TN), 

False Positives (FP) and False Negatives (FN) values, over the 

confusion matrix, allows to estimate the performance measures 

of the predictive model (1-4):  

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∶ TP

TP + FN
 

 

(1) 

𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∶ TP

TP + FP
 

 

(2) 

𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝑃𝑃𝑅𝑅𝑅𝑅𝐴𝐴 ∶ TP + TN

TP + TN + FP + FN
 

 

(3) 

𝐹𝐹1 𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅: 2 TP

2 TP + FP + FN
 

(4) 
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3.2 H-BIM reconstruction via visual programming 

An annotated point cloud is obtained at the end of the semantic 

segmentation process: therein, the different architectural 

components are distinguished in accordance with the ten classes 

identified by (Matrone et al., 2020). 

With this outcome, each class of architectural elements can be 

processed separately and treated independently of each other, by 

building a conceptual reference model for each geometry. This 

indeed is in line with the rationale of the H-BIM process, 

whereby the model is generated through smart objects, 

appropriately distinguished in terms of typology and 

morphology, e.g., roof, wall, floor, column etc. 

A simplified 3D model is thus generated from the classified point 

cloud: for each class, the three-dimensional objects are 

reconstructed relying on reference geometries and proportions 

derived from treatises of historical architecture. The 

reconstruction of the architectural components, indeed, follows 

the modeling rules as proposed by (De Luca et al., 2007), where 

an ideal shape is reconstructed through recognition and 

parametric reconstruction of atoms, profiles and surfaces that 

compose it. 

The procedure is broken down class by class and it is 

accomplished by exploiting the visual programming language, 

respectively following these steps: 

 

1. Structuring of the class element to be reconstructed through 

definition of basic construction plans, constraints and atoms, 

base profiles and ensuing functions of extrusion, loft, sweep 

etc. 

2. Subsequent modifications of a given class element based on 

proportional variations or changes noted in the reality-based 

model; 

3. Definition of element replica operations. The duplicates of a 

class object allow for the propagation of the defined 

conceptual geometry to multiple model elements that present 

the same characteristics. 

 

The mathematical and conceptual representation of each class is 

managed through generative modeling procedures, based on the 

creation of Non-Uniform Rational B-Splines (NURBS) and 

Boundary-Representations (B-Reps). 

In detail, we leverage on the graphical algorithm editor 

Grasshopper, integrated with Rhino, for the generation, real-time 

modification, and graphical control of the architectural forms. 

The model obtained at the end of the process can be used to build 

H-BIM type representations, i.e., to construct 3D repositories of 

the architectural heritage, that can be further enriched with 

information related to conservation and documentation. 

4. CASE STUDIES 

The case studies analyzed in this contribution refer to the 

architectural typology of the cloister, a characteristic structure 

that can be found in several historical buildings, both civil and 

religious, and in which recurring typological elements (e.g., 

columns, vaults, arches, on several orders) are reunited in a 

courtyard space closed along the perimeter by open vaulted 

galleries. 

Three cloisters of the territorial ambit of the Province of Pisa 

(Tuscany, Italy) are taken into consideration (Figure 2): 

 

i) The Grand cloister of the Pisa Charterhouse.  

Built starting from 1375, it undertook important renovations 

during the 17th century. This cloister develops on a single 

level, with cross-vaulted spans that open towards the internal 

garden and a system of marble columns. The doors along the 

perimeter of the cloister mark the access to the ancient cells 

of the Carthusian Fathers. The cloister has a surface of about 

70x45 m and the point cloud is obtained as a result of a Leica 

ScanStation C10 laser scanner survey (about 10 M points). 

ii) The Grand-Ducal cloister of the Pisa Charterhouse. 

The original structure dates to the 14th century, but several 

transformations performed during the 17th century have given 

it its current layout, with a series of vaulted galleries facing 

the internal courtyard and a central cistern. The survey was 

performed by laser scanner and was later integrated with 

drone-based photogrammetry to restitute the roofing 

elements; it returned a point cloud of 6 M points. 

iii) The third cloister is located inside the medieval convent of 

San Matteo in Pisa, founded in the 11th century and turned 

today into a National Museum. The structure underwent 

major changes during the 16th century with the construction 

of the portico: a granite-columned loggia with Gothic 

windows and a cross-vaulted ambulacrum currently closes 

the central space, which covers around 20x35 m. The survey 

in this case was carried out by ground-based photogrammetry 

and the resulting point cloud consists of about 12 M points. 

In the considered point clouds, the minimum space between 

points was set to 0,01 m. 

 

5. RESULTS 

5.1 Semantic segmentation via Machine Learning  

For the three case studies, the semantic segmentation approach 

relying on the RF algorithm is applied on a case-by-case basis: 

for each case study, a sufficiently exhaustive portion of the 

model, describing all the classes that are present, is chosen as the 

 

a)                                                                  b)            c) 

 

Figure 2. The case studies analyzed in this work: the Grand cloister (a, 10 M points) and the Grand-Ducal cloister (b, 6M points)  

of Pisa Charterhouse and the cloister of the National Museum of San Matteo (c, 12 M points). 
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training set, i.e. a dataset of examples used for the learning 

process.  

This set is manually annotated with the classes detected by 

(Matrone et al., 2020). However, the number of classes is reduced 

to 9 in two cases: for the Grand cloister, in fact, there are no 

objects belonging to the class ‘6 – Stair’, while for the San Matteo 

point cloud the class ‘9 – Roof’ is missing, since the survey, 

performed by ground-based photogrammetry, did not allow to 

detect the covering elements. 

The training set was composed by almost 1,8 M points for the 

Grand cloister dataset, by 2 M points for the Grand-Ducal cloister 

dataset and by 3 M points for the National Museum of S. Matteo. 

Once the manual annotation of this portion of the point clouds is 

completed, the next step consists in the extraction and subsequent 

selection of geometric features: some of the features selected 

through predictor importance estimate are shown in Figure 3. To 

them are then added, as additional predictors, the color values (R, 

G and B) and the Z coordinate. 

The selected features, associated to the manually annotated 

training set, allow to train the RF classifier, in order to extend the 

classification to the whole point cloud. This procedure is 

followed for each one of the cases under investigation.  

The result of the semantic segmentation procedure is then 

evaluated by a holdout subset (25%), and the resulting confusion 

matrix provides a final estimation of the ML model's 

performance after it has been trained (Figures 4-5, Table 1). 

The final classification is shown in Figure 6 and forms the basis 

for the subsequent construction of the H-BIM model. 

 

 Grand 

cloister 

Grand-Ducal 

cloister 

Museum  

of S. Matteo 

N. of 

classes  
9 10 9 

Avg. 

Recall 
93,49 % 86,25 % 84,37 % 

Avg. 

Precision 
95,56 % 85,26 % 89,71 % 

Avg. 

Accuracy 
99,30 % 98,12 % 98,73 % 

Avg.  

F1 score 
94,44 % 85,66 % 85,98 % 

 

Table 1. Average performance measures for the three case 

studies. 

 
 

Figure 4. Confusion matrix for the National Museum of San Matteo dataset with related training set. 

 
 

Figure 3. Examples of geometric features: normal change rate (0.4, a) and linearity (0.4, e) for the Grand cloister; omnivariance 

(0.2, b) and planarity (0.6, e) for the Grand-Ducal cloister; verticality (0.2, c) and surface variation (0.4, f) for the National Museum 

of S. Matteo. 
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Reconstruction of parametric geometries 

 

Figure 5. Confusion matrix for the Grand cloister dataset with related holdout validation set. 

 

 

 
 

Figure 6. Training set (a) and segmentation results (b, c) for the three case studies. 
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5.2 H-BIM reconstruction via visual programming 

The result of the semantic segmentation procedure, i.e. the 

annotated point cloud, provides a 3D datum that is already 

segmented: the classes are thus isolated and imported, one by 

one, for reconstruction in the parametric modeling environment. 

Each class of components thus constitutes a separate file in .e57 

format, that is imported in Rhino environment for further 

generative modeling. 

At this stage, by the use of graphical algorithms implemented in 

the visual programming interface Grasshopper, the conceptual 

geometry is reconstructed based on procedures of interpretation 

and formalization of the shape grammar of the represented 

elements (Figures 7-8).  

An example is provided in Figure 7 for the ‘column’ class of the 

Grand cloister dataset: at first, descriptors and geometrical 

attributes are defined for the construction of this architectural 

component. Hence, the column shaft is constructed relying on the 

study of the dimensional relationships between the column base 

diameter and its height, which allows to establish, at different 

heights, reference circles.  

Then, these selected profile circles are used to define, via a loft 

function, the conceptual surface shape of the column's shaft.  

Once this reference geometry is constructed, the information can 

be propagated to the entire ‘column’ class, considering the parts  

 
Figure 7. Construction of the column’s shaft by visual 

programming: base geometry, loft function and propagation. 

 

Figure 8. Examples of reconstruction of parametric components: original class (a), conceptual reference geometry (b) and 

propagation of the information to the whole class (c). 
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of the original point cloud that fall under the same category of 

elements; this is done through duplication/replica operations and 

subsequent modification and/or adjustment of the class’ 

parameters, again performed through Grasshopper’s visual 

programming language.  

Such a process can be reiterated each time for each class. With 

similar principles, the reconstruction takes into account the 

relationship between one class and another. 

Figure 8 shows the results obtained in the construction of some 

significant classes extracted from the considered datasets: the 

‘column’ class for the Grand cloister, the ‘vault’ class for the 

Grand-Ducal cloister and the ‘arch’ class for the National 

Museum of San Matteo. The creation and propagation of 

conceptual geometries via generative design rules allows to 

manipulate each time the repetition – and, eventually, the 

parameters’ modification – of these reconstructed graphic 

elements. 

By extending this procedure to the whole classes of the three 

datasets, the result is a conceptual model, as displayed in Figures 

9-10, that can be leveraged in the future for further semantic 

enrichment, e.g., in terms of addition of documentary resources 

or information on the state of preservation, recovery projects, and 

so forth. 

 

 

 
Figure 9. Resulting conceptual model for a portion of the 

National Museum of San Matteo. 

 

 
Figure 10. Resulting conceptual model for the Grand cloister. 

 

The conceptual representation obtained provides indeed an 

effective support tool in the documentation of each architectural 

asset: being based on conceptual geometries, it is always possible 

to add, retrieve or update information directly within the 3D 

representation, as a basis for H-BIM type information systems 

(Figure 11), 

 

 
Figure 11. The Grand-Ducal cloister visualized in Autodesk 

Revit. 

 

6. CONCLUSIONS 

New ways of interpreting 3D data through AI allow to shift the 

focus from the raw survey output to the reconstruction and 

subsequent enrichment of an H-BIM model, for cultural heritage 

documentation and conservation policies.  

As for the proposed approach, originally, a predictive ML model 

allows to semantically organize the information contained within 

raw survey data. Then, by recognizing ideal geometries from 

these segmented data and by reconstructing each class in a 

parametric environment, a conceptual representation is derived.  

This representation can be used as an information system where 

to store knowledge-related data: the latter may be graphically 

associated to the whole class of elements, or to the single 

elements, or to parts of them, as expressed in (Croce et al., 2020). 

As a further development of this work, our aim is to define, 

distinguish and model these different types and levels of 

annotations, also considering the possibility to transfer 

information from a segmented class of the point cloud to its 

parametric H-BIM representation.  

The results are promising in terms of increasing automation in 

Scan-to-BIM processes, for a more effective documentation of 

architectural assets. The extension of the proposed methodology 

to other datasets, but also the implementation of a unique training 

model to be used to classify multiple datasets of the same type 

(e.g., referring to the architectural typology of the cloister), are 

developments of the research currently underway. 
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