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A family of mem-models, including the mem-dashpots,

mem-springs, and most recently, mem-inerters, is emerging

as a new and powerful way of capturing complex nonlinear

behaviors of materials and systems under various types of

dynamic loads involving different frequency, amplitude, and

loading histories (e.g., hysteresis). Under the framework of

nonlinear state-space representation and hybrid dynamical

systems, mem-springs may be formulated to effectively rep-

resent an inherent degradation of material state. It is shown

in this study, for the first time, how the absement (time inte-

gral of strain /displacement), a signature state variable for a

mem-spring, can be connected with the damage variable, a

key quantity in continuum damage mechanics (CDM). The

generalized momentum (time integral of stress), on the other

hand, is shown to be efficient in modeling strain ratchet-

ing via the concept of mem-dashpot. It is also shown in this

study, for the first time, how two formulations of the memca-

pacitive system models (for mem-springs) are special cases

of the Preisach model.

Keywords: Mem-models, absement, generalized momen-

tum, nonlinear state-space representation, hybrid dynami-

cal system, continuum damage mechanics, damage variable,

strain ratcheting, Wiechert model, classical Preisach model

1 INTRODUCTION

Classical theories treating viscoelasticity, viscoplasticity,

damage, and hysteresis modeling constantly call for a

continuous development to accommodate the require-

ments/opportunities of never-ending real-world challenges,

active engineering innovations, and greatly enhanced infor-

mation technology capabilities. In this study, classical the-

ories are identified and connected with an emerging new

family of models called “mem-models” that originated from
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bond graph theory, and has evolved to underpin hybrid dy-

namical system theory. Figs. 1 to 3 are snapshots demon-

strating modeling capabilities of mem-models that comple-

ment those of the existing models and are achieved in a com-

putationally efficient manner. For each of these sets of re-

sponses, we will show how existing concepts from different

fields can be connected to mem-models. These new connec-

tions will enrich mem-modeling development and applica-

tion and provoke a new appreciation of classical theories in

damage mechanics and hysteresis modeling. Specific defini-

tions of mem-dashpots and mem-springs will be introduced

as we proceed as a partial overview of mem-models; see

Pei et al (2015) for background material and general defi-

nitions. The relevant classical theories in damage mechan-

ics and hysteresis modeling will also be briefly reviewed for

clarity.
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(a) cycle-to-cycle recovery in-

troduced by using absement-

based mem-spring modeling
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(b) dissipative and symmetri-

cal responses in two directions

enabled by mem-spring mod-

eling

Fig. 1: Modeling capabilities of a specific 1-D damage model in CDM

(a mem-spring model in fact) after being improved by using the hybrid

dynamical system view that is introduced to mem-spring modeling fol-

lowing Pei (2018). The model will be given in conjunction with Fig. 8;

the inputs are σ(t) = 0.3(1 − cos(6t)) and σ(t) = 0.3 sin(2t) for

(a) and (b), respectively. Arrowheads in red, orange, green and blue (in

this order) are used for the orientation of the loops herein

1.1 Motivation for Mem-Modeling

Complex nonlinear dynamic behaviors/responses have been

studied for the purposes of modeling, simulation, monitor-

ing, and control. Linear and nonlinear state-space repre-

sentations are attractive given that they bridge the gap be-

tween data and model, and facilitate system identification

and control in a reduced-order modeling fashion. Nonethe-

less, the choice of state variables has been (and is) a chal-

lenge. Kalman (1967) pp. 135 states: “the state is the least

amount of information we need about past inputs to deter-

mine the output resulting from any future input”. Willems

(1972), pp. 325 states: “It is, however, impossible to deduce
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(a) softening memristor
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(b) hardening-softening mem-

ristor

Fig. 2: Fatigue softening and fatigue hardening-softening strain ratch-

eting responses efficiently simulated by using generalized momentum-

based mem-dashpot modeling. The models for the ratcheting strain εd
will be presented in conjunction with Fig. 11 (b) and (c)
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(a) An assembly whose param-

eters follow Table 4 Case 1
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(b) An assembly whose param-

eters follow Table 4 Case 2

Fig. 3: Nonlinear periodic responses to sinusoidal input enabled by as-

semblies of a mem-spring and mem-dashpot that have the same creep

response to two different Wiechert models. These are snapshots ex-

tracted and rescaled from Fig. 18

a priori, in physical terms what will be the state. This in-

deed, is a very difficult problem even for relatively simple

systems, and it appears to be the cause for much of the reluc-

tance of introducing this concept in physics”. Analogously,

within the field of continuum constitutive theory, the ther-

modynamic state of a system is a full description of its in-

stantaneous condition which is identified by a set of state

variables. The set of state variables represent the minimum

information to define all thermodynamic properties of the

system.

The same may be said about mem-spring models that be-

long to the mem-model class. Not only is the choice of state

variables unclear, but also the required functional forms

defining both the state evolution and input-output mappings

are not precisely defined. Material stress-strain behaviors

and system load-displacement responses characterized by

the “origin-crossing” input-output feature (meaning that the
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input and output become zero simultaneously) under repeti-

tive loading and unloading conditions may be modeled effi-

ciently by mem-spring models.

Mem-springs are from a new family of state-space hys-

teresis models called “mem-models” introduced to engineer-

ing mechanics in Pei et al (2015, 2017); Pei (2018); Pei

et al (2020a,b); Wagg and Pei (2020). They are based on a

suite of new concepts for the memristor, memcapacitor, and

meminductor developed in electrical engineering originated

in Chua (1971), catching attention since Strukov et al (2008)

and being generalized in Di Ventra et al (2009). The publi-

cations on mem-dashpots, mem-springs, and mem-inerters

followed the lead of Oster and Auslander (1973); Jeltsema

(2012) when the memristor was first introduced to engineer-

ing mechanics.

Unlike mem-dashpot models, mem-spring models are

fundamentally new, and as such there are no well-

established existing examples for these models. Devising

a mem-spring model by defining the required functional

forms does not have general guidelines, which are the

focus of our pursuit. To construct mem-models, we have

tried using experimental data and secant quantities (Pei et al

(2020a)). This is one way of obtaining mem-spring mod-

els, which may work. However, it neither helps to explain

why or when it works, nor to predict situations when it does

not work. Another way we have tried is to overcome the

limitation of mem-spring models that are revealed by the

phenomenon to be modeled and then supplement the mod-

els with other theories/techniques, e.g., modify the original

definitions of the mem-models by following hybrid dynam-

ical system theory (Pei (2018)). In this study, we try a dif-

ferent approach. We start with some existing theories that

have no apparent connections to mem-models and arrive at

some specific forms of mem-spring models. This is a rigor-

ous but limited way of constructing mem-models; however,

the connections with established physical models provide

potentially better insights. This path was previously exer-

cised in Pei (2018), which examined creep and relaxation

responses in viscoelasticity.

We start with a simple 1-D damage model in CDM and

show that it is actually a mem-spring model. In addition,

we explain what absement could mean and also what the

CDM damage variable signifies physically from this mem-

model viewpoint. We then go further to improve a subset of

the 1-D damage models by using techniques developed for

mem-springs. We also examine a mem-spring model by us-

ing the definition of hyperelasticity, e.g., Houlsby and Puzrin

(2007), which is akin to augmenting the state description

of the material with a set of internal state variables, the so-

called internal state variable theory (ISV) of both kinematic

and kinetic types as enabled by the mem-models.

Next, we take the simplest mem-dashpot model called

a mechanical memristor to show its usefulness in model-

ing ratcheting strain and its potential in viscoplasticity. We

then turn to assemblies of one mem-spring and one mem-

dashpot. In a parametric study, we calibrate such a mem-

model assembly with a two-arm Wiechert model (Roylance

(2001)) in terms of one particular creep response, after

which we compare the two different models for both si-

nusoidal and consecutive positive loading responses. The

Wiechert model is a popular choice in viscoelasticity, mak-

ing such a connection useful.

Then, we examine a subset of the classical Preisach

models (Preisach (1935); Krasnosel’skii and Pokrovskii

(1989); Mayergoyz (2003)) that can be represented by mem-

models. We show, step by step, how an order-1 Preisach

model can be written as a mem-spring model by assigning

a proper state variable under the state-space representation.

We arrive at two forms of mem-models, one being exact and

the other approximate. Both of them are loading rate inde-

pendent. As the order of the Preisach response increases,

we need more state variables for the mem-models. This is

a constructive approach for devising mem-spring model ar-

chitectures.

Finally, we examine the generalized Duhem

model (Padthe et al (2008)) and point out its relation-

ship with the mem-models.

1.2 Motivation from Continuum Damage Mechanics and

Rheological Models

Eq. (1.6) in Kachanov (1986) gives the elastic strain of a

damaged material as ε = 1
E

σ
Φ , where Φ is called “continu-

ity”, a positive monotonically decreasing function of time,

i.e., Φ̇ < 0 and 1 ≥ Φ ≥ 0. A simple form of the kinetic

equation in the case of uniaxial tension is given in Eq. (1.8)

in Kachanov (1986) as dΦ
dt = −A

(

σ
Φ

)n
. Lemaitre (1996)

states: “... About fifteen years later D = (1 − Φ) received

the status of an internal state variable in the thermodynam-

ical sense: 0 ≤ D ≤ 1 (0 for the undamaged state and 1

for failure)”, where D is ξ in this paper. The damage vari-

able is an abstract concept as it was created for modeling

purpose. This concept is typically introduced to represent

a phenomenological degradation in material response, often

without a precise physical definition.

An internal state variable is often not directly measur-

able making it harder to comprehend. In this study, we use

the mem-spring theory to quantitatively express the dam-

age variable by using absement, a concept essential in mem-

spring theory. When the exponent n = 1, the damage vari-

able depends on the absement only. When n 6= 1, the dam-

age variable rate depends on the absement rate. Even though

absement is not often used, it indeed is a kinematic quantity

that could be obtained from time integral of strain. Thus, we

demystify the concept of the damage variable. We make

this internal state variable more observable.
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Damage functions in CDM are nonlinear and gener-

ally irreversible. Mem-models are also fundamentally non-

linear, rate-dependent (but can be made rate-independent),

and can be made hysteretic. This versatility suggests to us

that mem-models may allow more versatile damage mech-

anisms, and overcome some current limitations of CDM,

e.g., nonlinear accumulation of damage and the effect of

mean stress in fatigue (see page 98 in Lemaitre (1996));

see Fig. 2. Mem-models offer an alternative framework for

CDM damage functions to improve, generalize, and evolve

in modeling both elasticity and plasticity with history de-

pendency. The hybrid dynamical system framework (men-

tioned in Fig. 1), secant modulus-based identification, and

dual input-output pairs are among new techniques/ways of

thinking that mem-models can bring to “classical” CDM as

described in Kachanov (1986); Lemaitre (1996).

Networks of mechanical elements (spring, dashpot, etc.)

have been used as rheological models, e.g., in viscoelastic-

ity, viscoplasticity and even extended to material damage

(e.g., Houlsby and Puzrin (2007)). As a source of nonlin-

earity and degradation, damage variables are treated as in-

ternal state variables separately from other state variables

that are kinematic quantities. In contrast, mem-dampers and

mem-springs individually are more powerful than their lin-

ear counterparts in modeling (Pei et al (2020a)). This hints at

a simpler network involving fewer parameters to be identi-

fied when introducing mem-models in a network. See Fig. 3

for richer responses that the smallest mem-model assembly

can bring about with the same number of parameters as its

linear counterpart (a Wiechert model in that case). Mathe-

matically, mem-dashpots and mem-springs can degenerate

into their linear counterparts.

1.3 Motivation from Hysteresis Modeling

Hysteresis modeling has a long and still active history,

see Morris (2011) for a review. Herein, we examine whether

mem-models can be useful for hysteresis modeling. There

are two types of hysteresis models: physics-based and phe-

nomenological. The latter is excellent for minor loop predic-

tion. There are several sub-types under phenomenological

models, for example, differential equation-based, hysteresis

operator-based, summation of elements-based. See Table 1.

Mem-models can be classified as belonging to the first two

sub-types: differential-equation-based models (e.g., Pei et al

(2017)) and as shown in this study, classical Preisach models

(which are hysteresis operator-based).

Not to be exhaustive, Table 2 lists some hysteresis

operator-based models, which are all classical Preisach

models. In particular, DEM, extended Masing, and Maxwell

slip models are equivalent, being a subset of the classical

Preisach model. As reviewed in Pei and Beck (2020), this

understanding comes from model equivalency, which was

initiated in Jayakumar (1987); Jayakumar and Beck (1988);

Beck and Jayakumar (1996), peaked in Lubarda et al (1993),

and promoted in Segalman and Starr (2004, 2008); Royston

(2008). We will show that mem-spring models can be for-

mulated into a subset of the classical Preisach models.

Table 1 uses four popular model classes for hysteresis to

examine the three sub-types under phenomenological rep-

resentation, where the importance of nonlinear state space

modeling can be seen; mem-models are naturally nonlinear

state space models.

Gorbet et al (1998) invokes the classical state-space rep-

resentation of Willems (1972) to show that the classical

Preisach model falls within the standard dynamical sys-

tem framework, legitimizing the representation using state

space. Since extended Masing and DEM are equivalent and

are a subset of the classical Preisach model, they follow

suit. We highlight the necessity of using differential alge-

braic equation (DAE) and hybrid system, as elaborated and

demonstrated in Pei and Beck (2020) to implement the hys-

teresis rules defining the extended Masing model. Note that

the Bouc-Wen model is not a subset of classical Preisach

models (Pei and Beck (2020)). The use of a summation of

elements starts with the well-known Kelvin and Maxwell

models assembled from spring and dashpot elements. DEM

and extended Masing have been presented by a summation

of stops or plays (Iwan (1966, 1967); Jayakumar (1987);

Jayakumar and Beck (1988); Beck and Jayakumar (1996)),

while the classical Preisach model is a summation of relay

hystrons (Krasnosel’skii and Pokrovskii (1989); Mayergoyz

(2003)).

1.4 Contributions and Structure of this Paper

An overarching goal of this work is to further the under-

standing of mem-modeling by building connections to clas-

sical theories, showing how mem-models either complement

or improve these existing theories, and reciprocally, how the

latter can inspire new development in mem-modeling.

In Section 2, we identify an existing simple 1-D CDM

model as a mem-spring model so that we can learn from the

choice of functional forms that mem-spring modeling has

been lacking. We quantify the relationship between the dam-

age variable in this CDM model and the state variable called

absement in mem-modeling (time integral of strain). For a

subset of this 1-D CDM model with n = 1, we improve it

by using mem-spring modeling techniques to produce new

or more desirable responses. We outline what a 3-D mem-

spring model would look like.

In Section 3, we point out the usefulness of another state

variable called generalized momentum in mem-modeling

(time integral of stress), in the context of modeling 1-D

ratcheting strain. We develop a mechanical memristor-based
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Table 1: Three sub-types for phenomenological hysteresis models. †with a necessity of involving differential algebraic equation (DAE) and hybrid

system

Model Sub-Type of Phenomenological Representation

Class Nonlinear State-Space Classical Preisach Summation of Elements

Bouc-Wen Yes No No

Classical Preisach Yes in Principle † Yes Yes

(Gorbet et al (1998); Pei et al (2017)

and this study)

(Krasnosel’skii and Pokrovskii

(1989); Mayergoyz (2003))

Extended Masing Yes † Yes Yes

(Jayakumar (1987); Jayakumar and

Beck (1988); Beck and Jayakumar

(1996); Pei and Beck (2020))

(Lubarda et al (1993)) (Jayakumar (1987); Jayakumar and

Beck (1988); Beck and Jayakumar

(1996))

DEM Yes in Principle † Yes Yes

(Lubarda et al (1993)) Iwan (1966, 1967)

Table 2: Some hysteresis operator-based models

Model Name Selected Reference

1 Classical Preisach models Preisach (1935); Krasnosel’skii and Pokrovskii (1989); Mayergoyz (2003)

2 Play & stop Visintin (1994)

3 Generalized play & generalized stop Krasnosel’skii and Pokrovskii (1989); Visintin (1994)

4 Prandtl-Ishlinskii model Visintin (1994)

5 Krasnosel’skii-Pokrovskii model Krasnosel’skii and Pokrovskii (1989)

6 Maxwell slip model Goldfarb and Celanovic (1996)

(Maxwell resistive capacitive model)

7 Distributed-element model (DEM) Iwan (1966, 1967)

8 Extended Masing model Masing (1926); Fan (1968); Pyke (1979); Jayakumar (1987); Jayakumar and Beck (1988);

Beck and Jayakumar (1996)

model for this application. We compare a two-arm Wiechert

model with the smallest assembly of a mem-spring and a

mem-dashpot to exploit the richness of the mem-models’

dynamic responses, in relation to their linear counterparts.

In Section 4, we connect two forms of mem-spring mod-

els to a subset of classical Preisach models. Overall, even

though we make a connection between mem-springs and

the classical Preisach models, non-deteriorating hysteresis

model, we highlight the inherent “damaging”, or “degrad-

ing” properties that are built into the mem-models, which

we exploit for CDM and viscoelasticity.

2 MEM-SPRING MODELS AND CONTINUUM

DAMAGE MECHANICS

There is a connection between mem-spring models and the

damage function in continuum damage mechanics. Under-

standing and exploiting this connection will help advance

both mem-models and continuum damage mechanics.

2.1 Relationship of 1-D CDM Damage Model and

Memcapacitive System Model

An effort-controlled (i.e., force/stress-controlled) memca-

pacitive system model can be expressed as follows:

state equations: ẏ(t) = f (y(t), r(t), t) (1)

input-output equation: x(t) = C (y(t), r(t), t) r(t), (2)

where y(t) is a state vector, r(t) is the restoring force/stress,

and x(t) is the displacement/strain. In this constitutive rela-

tion, the input is r(t), while the output is x(t). In general, the

secant compliance function, C, depends on the states and in-

put. To arrive at specific functional forms for this model, we

examine a specific CDM model for hints.

Isolating the 1-D continuum damage mechanics (CDM)

model from Kachanov (1986) and casting it into the for-

mat for an effort-controlled memcapacitive system model,

we have the following:

state equation: ξ̇ = A

(

σ

1− ξ

)n

(3)

input-output equation: εD =
1

E(1− ξ)
σ, (4)

where A > 0 and n ≥ 1 are material properties. In this con-

stitutive relation, the input r(t) is the stress σ(t), while the

output x(t) is the “elastic-damage” strain εD(t). The scalar

state variable y(t) in Eq. (1) is the damage variable ξ(t),



6 Jin-Song Pei et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) A = 0.5, n = 1, and
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cos(2t))
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(b) A = 0.5, n = 1, and

E = 1 with σ(t) = 0.3(1 −

cos(6t))
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(c) A = 1, n = 1, and E = 1
with σ(t) = 0.3 sin(2t)
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(d) A = 1, n = 1, and E = 1
with σ(t) = 0.3 sin(6t)

Fig. 4: Two different 1-D CDM damage models with n = 1 subject

to a total of four specific stress inputs. Note that (b) does not take into

consideration partial recovery from cycle to cycle. (c) and (d) are not

physically meaningful. Improved models are shown in Fig. 1 with de-

tails to be given in Section 2.3

and E is the initial modulus of elasticity. In a continuum

thermodynamics setting of CDM, Eq. (4) would be identi-

fied as the “state relation” and Eq. (3) as the “kinetics.” It

is important to note that εD is the total damaged and elastic

strain. This is not reversible nonlinear elasticity; rather the

process is irreversible and dissipative but the strain can all be

recovered by removing the stress; i.e., σ → 0 and εD → 0

simultaneously, conforming to the so-called zero-crossing

property. Figs. 4 and 5 give two numerical examples with

n = 1 and n = 2, respectively; the issues specified in the

figure captions in these two examples will be addressed later.

Eq. (3) does not guarantee 0 ≤ ξ ≤ 1, which is needed in

Eq. (4); See Eq (5). The simulation must be terminated when

ξ reaches 1 as typified in Fig. 6.

ξ(t) = 1−

[

1− (n+ 1)A

∫ t

0

σ(τ)ndτ

]

1
n+1

(5)

It can be seen that the 1-D CDM damage model is

a special time-invariant effort-controlled memcapacitive

system model with the single state variable ξ. In this

model, C in Eq. (2) does not depend on time or the input

r(t). This should not come as a surprise since CDM is an in-

ternal state variable (ISV)-based formulation; our interest is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) A = 0.775, n = 2, and

E = 1 with σ(t) = 0.3(1 −

cos(2t))
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(b) A = 0.775, n = 2, and

E = 1 with σ(t) = 0.3(1 −

cos(6t))
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with σ(t) = 0.3 sin(2t)
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(d) A = 2, n = 2, and E = 1
with σ(t) = 0.3 sin(6t)

Fig. 5: Two different 1-D CDM damage models with n = 2 subject

to a total of four specific stress inputs. Note that (b) does not take into

consideration partial recovery from cycle to cycle. (c) and (d) are physi-

cally meaningful, however antisymmetric patterns may be desired from

time to time. Improved models are shown in Fig. 1 with details to be

given in Section 2.3
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Fig. 6: A typical set of time histories, which matches Fig. 5(b) high-

lighting the need for 0 ≤ ξ ≤ 1
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whether mem-models can provide a broader framework for

CDM.

2.2 Relationship between 1-D CDM Damage Variable and

Absement

Equations (3) and (4) can be rewritten as a single equation

by eliminating σ:

ξ̇

A
= (EεD)

n
(6)

Based on the definition of absement a(t), we have:

ȧ = εD (7)

Substituting Eq. (7) into Eq. (6), we have the following:

ξ̇(t) = AEnȧ(t)n (8)

ξ(t) = AEn

∫ t

0

(ȧ(τ))
n
dτ assuming ξ(0) = 0, (9)

where Eq. (8) is in a differential form, while Eq. (9) is in an

integral form. Conversely, we have:

ȧ(t) =
1

E

(

ξ̇(t)

A

)
1
n

(10)

a(t) =
1

E

∫ t

0

(

ξ̇(τ)

A

)
1
n

dτ assuming a(0) = 0 (11)

For n = 1, a(t) = 1
EAξ(t). Since failure of the system

occurs at ξ = 1 in this damage mechanics model, the failure

absement is afailure = 1
EA , giving an interpretation of the

material parameter A.

These equations give a physical interpretation of the

damage variable: The absement rate and damage variable

rate follow a nonlinear static one-to-one mapping. This

one-to-one mapping follows a power law of n. In partic-

ular, for n = 1, the two rates are proportional and so are

a(t) and ξ(t) if ξ(0) = a(0) = 0.

2.3 Benefits of Absement as State Variable

A flow-controlled (i.e., displacement/strain-controlled)

memcapacitive system model can be obtained analogous to

Eqs. (1) and (2):

state equations: ẏ(t) = g (y(t), x(t), t) (12)

input-output equation: r(t) = S (y(t), x(t), t)x(t) (13)

where, as before, y(t) is the state vector, r(t) is the restoring

force/stress, and x(t) is the displacement/strain. In this con-

stitutive relation, the input is x(t), while the output is r(t). S

is the secant stiffness function and can be seen as the general

spring stiffness, a function of the states and input.

When n = 1 in the model in Eq. (8), the 1-D CDM

damage model is equivalent to using absement a as the state

(damage) variable. Furthermore, the mem-spring model is

reduced to its simplest form, a mechanical memcapacitor

(which is an element model), defined as follows:

σ(t) = E(1− EAa(t))εD(t), (14)

where ȧ(t) = εD(t), a trivial state equation. Since ξ(t) ≤ 1,

a(t) ≤ 1
EA must hold. It can be seen that the secant stiff-

ness function is a function of a: S(a(t)) = E(1−EAa(t)),
which is a one-to-one mapping that can be exploited in ana-

lyzing proper data (Pei et al (2015)).

Integrating both sides of Eq. (14) with respect to time t

and introducing the concept “ generalized momentum” (Pei

et al (2018)):

ṗ(t) = σ(t) (15)

we arrive at the following one-to-one mapping from a to p

that defines the mechanical memcapacitor:

p(t) = −
E2A

2

(

a(t)−
1

EA

)2

+
1

2A
, (16)

where a ≤ 1
EA . Clearly, p(t) ≤ 1

2A . Equivalently, we have

the inverse one-to-one mapping from p to a as follows:

a(t) = −

√

(

−
2

E2A

)(

p(t)−
1

2A

)

+
1

EA
(17)

using which we have:

εD(t)

=
σ(t)

E
{

1− EA
[

1
EA −

√

(

− 2
E2A

) (

p(t)− 1
2A

)

]}

(18)

which is a special case of an effort-controlled memcapaci-

tive system model with ṗ(t) = σ(t), a trivial state equation,

and the secant compliance function being a function of p:

C(p) =
1

E
{

1− EA
[

1
EA −

√

(

− 2
E2A

) (

p− 1
2A

)

]}

which is a one-to-one mapping that can also be exploited in

analyzing proper data (Pei et al (2015)).

Equations (14) and (18) are equivalent, being in the flow-

and effort-controlled form, respectively. This is the conve-

nience of having an element model, which belongs to the

family of higher-order elements (Chua (2003); Biolek et al

(2016)) with each model governed by a one-to-one mapping

of the defining kinematic and kinetic quantities. The two

specific one-to-one mappings used in Fig. 4(a) and (b), and

(c) and (d) are presented in Fig. 7 (a) and (b), respectively.
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Fig. 7: The one-to-one mappings between a(t) and p(t) used in Fig. 4

The response presented in Fig. 4(b) does not take par-

tial recovery from cycle to cycle into account. Following the

technique and examples in Pei (2018), a one-mode hybrid

system model can be adopted to improve the current model.

Namely, “reset” is applied to both a(t) and p(t) whenever a

new consecutive positive cycle starts. These reset quantities

are denoted as ā(t) and p̄(t). The one-to-one mapping be-

tween a and p still holds but in terms of ā(t) and p̄(t); see

Figs. 8(a) and 1(a) for the improved one-to-one mapping and

the response, respectively.

Energy generating behavior (i.e., non-passivity) occurs

in both Fig. 4(c) and (d). This is a fundamental challenge

to overcome for mem-spring models as detailed in Pei et al

(2015); Pei (2018). In addition to the techniques exercised

there, we try the following “reset” in this study: the inte-

grations of εD and σ for a and p will be reset into ā and

p̄, respectively, whenever the loading changes its direction.

Under each loading direction, the one-to-one mapping be-

tween ā and p̄ is given as follows:

ā(t) = −

√

(

−
2

E2A

)(

p̄(t)−
1

2A

)

+
1

EA
, when ā ≥ 0

ā(t) = −

√

(

+
2

E2A

)(

p̄(t) +
1

2A

)

+
1

EA
, when ā < 0

See Figs. 8(b) and 1(b) for the improved one-to-one map-

ping and the response. The response, being passive, is phys-

ically meaningful.

Such one-to-one mappings including those between a

and p, a and S, and p and C and the subsequent “reset”

to correct or improve the responses cannot be offered by

mem-spring models using ξ as the state variable because

ξ is neither a higher-order integral for ε nor a higher-

order integral for σ. To assess the challenge of possibly

changing the state variable from ξ to a when n 6= 1, we

made the following manipulations:

σ = SεD, εD =
1

S
σ (19)
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(a) for Fig. 1(a) where A =
0.5, n = 1, and E = 1
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(b) for Fig. 1(b) where A = 1,

n = 1, and E = 1

Fig. 8: The one-to-one mappings between ā(t) and p̄(t) used in Fig. 1

When t = 0, we have:

εD(0) =
1

S0
σ(0) (20)

Normalize the secant function as follows:

εD =
1

S0

1
S
S0

σ (21)

Contrasting with the 1-D CDM damage model:

εD =
1

E

1

1− ξ
σ (22)

and substituting Eq. (9) into (22), we have:

εD(t) =
1

E

1

1−AEn
∫ t

0
(ȧ(τ))

n
dτ

σ (23)

Since we have S0 = E, we have:

S

S0
= 1−AEn

∫ t

0

(ȧ(τ))
n
dτ assuming ξ(0) = 0 (24)

We numerically verified that when n 6= 1, S is not even a

function of both a and εD, making a simple time-invariant

memcapacitive system model using a as a state variable im-

possible.

2.4 Possible 3-D Mem-Spring Model

A summary of CDM is given as follows. For 1-D, we have

Ψ(εD, ξ) =
1

2
Eε2D(1− ξ) (25)

σ =
∂Ψ

∂εD
= EεD(1− ξ) (26)

y =
∂Ψ

∂ξ
= −

1

2
Eε2D = −

1

2E

(

σ

1− ξ

)2

(27)

εD =
σ

E(1− ξ)
(28)

ξ̇ = A

(

σ

1− ξ

)n

(29)
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where Ψ is the free energy (per unit volume of material), and

y is the damage strain energy release rate (Lemaitre (1985)).

For 3-D and assuming isotropic damage, we have:

Ψ(εD, ξ) =
1

2
εD : E : εD(1− ξ) (30)

σ = E : εD(1− ξ) (31)

y =
∂Ψ

∂ξ
= −

1

2
εD : E : εD (32)

εD =
E
−1 : σ

1− ξ
(33)

ξ̇ to be discussed as follows, (34)

where εD and σ are now 3 × 3 symmetric second order

tensors and E is the fourth order tensor of elasticity.

Damage equations under multiaxial stress conditions

can be obtained by using an isotropic scalar-valued func-

tion χ(σ) of a symmetric second-order tensor, which can be

approximated as a linear function of at most three invariants

(forming irreducible basis functions). For example, follow-

ing Chaboche (1987), we can have:

χ(σ) = αI0(σ) + βI1(σ) + (1− α− β)J2(σ), (35)

where the maximum principal stress I0(σ) = σ1, which

opens the microcracks and causes them to grow. The hy-

drostatic stress I1(σ) = Tr(σ) = σ : 1 greatly affects the

growth of the cavities. The octahedral shear stress J2(σ) is

related to the effects of deviatoric stress, and α and β are

coefficients that depend on the material and temperature.

The missing Eq. (34) is recovered as follows:

ξ̇ = A

(

χ(σ)

1− ξ

)n

for example
= A

(

αI0(σ) + βI1(σ) + (1− α− β)J2(σ)

1− ξ

)n

The 3-D continuum damage mechanics (CDM) model is

as follows:

state equations: ξ̇ = A

(

χ(σ)

1− ξ

)n

(36)

input-output equation: εD =
E
−1 : σ

1− ξ
(37)

where A > 0 and n ≥ 1 are material properties. In this con-

stitutive relation, the input is σ(t), while the output is εD(t)

(damage strain). The input-output equation is no longer a

scalar equation as in the definition for memristive system

model in Chua and Kang (1976) and that for memcapacitive

system model in Di Ventra et al (2009). The input-output

equation is a tensorial equation, a necessary generalization

from 1-D to 3-D.

We have thus reviewed both the 1-D and 3-D CDM

formulas using Ψ(εD, ξ) = 1
2εD : E : εD(1 − ξ) and

σ = E : εD(1 − ξ). We have shown that one specific 3-D

mem-spring model can be obtained from the 3-D CDM the-

ory. As far as we can tell, there are no previously published

3-D mem-spring models. Inspired by this particular case, a

general effort-controlled memcapacitive system model in 3-

D intended for material constitutive modeling may be ex-

pressed as follows:

state equations: ẏ(t) = f (y(t),σ(t), t) (38)

input-output equation: εD(t) = C (y(t),σ(t), t) : σ(t)
(39)

where y(t) is the state vector, σ(t) is the stress tensor, and

εD(t) is the strain tensor. In this constitutive relation, the

input is σ(t), while the output is εD(t). C (y(t),σ(t), t) =
E
−1

(1−ξ) , where E
−1 stands for secant compliance matrix and

can be seen as the inverse of the generalized spring stiffness,

a function of the states and input.

For a given memcapacitive system, the absement,

strictly speaking, is defined as the primitive of εD, so it

should be a symmetric second-order tensor a with ȧ = εD.

If we want to adopt this point of view, by following more

closely the 1-D case, we have the following for an isotropic

case:

• 1-D: Using σ = EεD(1− ξ) we have

ξ̇ = A

(

σ

1− ξ

)n

= A(EεD)n = A (Eȧ)
n

• 3-D: Using σ = E : εD(1− ξ) we have

ξ̇ = A

(

χ(σ)

1− ξ

)n

= A (χ(E : εD))
n
= A (χ(E : ȧ))

n
,

where the absement is defined as ȧ = εD and we assume

that χ is a linear combination of stress invariants, as in (35).

2.5 Potential Connection with Hyperelasticity

Regarding the strain energy function, it was given in Pei

et al (2015) for the simplest case of mem-springs and is re-

derived here for hyperelasticity (e.g., Houlsby and Puzrin

(2007)):

σ =
∂Ψ

∂εD
(40)

σ = S (y, εD) εD (41)

∂Ψ

∂εD
= S (y, εD) εD (42)

for some free energy function Ψ (y, εD), where y is the state

vector. The last equation legitimizes the internal variable-

based strain energy function. Pei (2018) relaxes the continu-

ity of S, thus making more options for Ψ possible. As in Pei
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et al (2015), the simplest case would be as follows, still not

allowing a closed-form solution:

Ψ =

∫

σdεD =

∫

S(a)εDdεD (43)

This is a very challenging topic calling for further studies.

Other anecdotal facets are collected in Appendix A.1. With

the challenge acknowledged, some preliminary thoughts are

shared as follows:

For a flow-controlled setting in terms of σ(t) =

S(a(t))εD(t) and p(t) = G(a(t)), with ȧ(t) = εD(t) and
dG
da = S, we have:

Ψ(t) =

∫

σ(t)dεD(t) (44)

=

∫

S(a(t))εD(t)dεD(t) (45)

=

∫

S(a(t))ε̇D(t)εD(t)dt (46)

=

∫

ε̇D(t)S(a(t))da(t) (47)

=

∫

ε̇D(t)dG(a(t)) (48)

Ψ(t) =

∫

ε̇D(t)dp(t) (49)

Similarly, for an effort-controlled setting in terms of

εD(t) = C(p(t))σ(t) and a(t) = F (p(t)), with ṗ(t) = σ(t)

and dF
dp = C, we have:

Ψ(t) =

∫

εD(t)dσ(t) (50)

=

∫

C(p(t))σ(t)dσ(t) (51)

=

∫

C(p(t))σ̇(t)σ(t)dt (52)

=

∫

σ̇(t)C(p(t))dp(t) (53)

=

∫

σ̇(t)dF (p(t)) (54)

Ψ(t) =

∫

σ̇(t)da(t) (55)

Eqs. (49) and (55) are two forms of the energetics for a me-

chanical memcapacitor. For the special cases of εD(t) =

cεR(t) and σ(t) = cσR(t) where R is the linear ramp func-

tion, we have the following expressions, respectively:

Ψ(t) = cεp(t), Ψ(t) = cσa(t) (56)

which reveal a new insight into both absement and gener-

alized momentum: the energy can be either strain rate

times generalized momentum, as in Eq. (49), or stress

rate times absement, as in Eq. (55), in a strain- and

stress-controlled setting, respectively.

3 MEM-MODELS AND VISCOELASTICITY

3.1 Relationship between Ratcheting Strain and

Generalized Momentum

Strain ratcheting refers to strain accumulation when the ap-

plied stress cycles have a non-zero mean stress, a.k.a., asym-

metric stress (e.g., Moosbrugger and McDowell (1990); Mc-

Dowell et al (1994)). Paul (2019) gives a recent review

of ratcheting fatigue, where “ratcheting strain accumulation

rate” plays an important role. See Fig. 9 for a numerical

example developed in this study to produce a total of six

different scenarios; the key statements made regarding the

controlling factors for strain ratcheting in Paul (2019) are

demonstrated as follows:

– The ratcheting strain accumulation rate is zero when the

mean stress is zero. See Fig. 9(a). A counter-example is

thermal expansion driven ratcheting, e.g. Bennett et al

(2020).

– The ratcheting strain accumulation rate increases with

the mean stress. Contrast Fig. 9(b) with Fig. 9(c).

– The ratcheting strain accumulation rate increases with

the stress amplitude. Contrast Fig. 9(b) with Fig. 9(d).

This may not be obvious visually, but the numerical val-

ues and Eq. (59) (later) support this claim.

– The ratcheting strain accumulation rate reduces with

the increment in the stress rate. Contrast Fig. 9(b) with

Fig. 9(e).

– The ratcheting strain accumulation rate is affected by

the sign of the mean stress. Contrasting Fig. 9(b) with

Fig. 9(f).

This numerical example was made by follow-

ing Houslby et al (2017) in terms of (i) making the

plastic strain and ratcheting strain additive; (ii) using a

Masing model for the plastic deformation, and (iii) making

the ratcheting strain a fraction of the plastic strain. In

particular, the Masing model in Fig. 9(a) to (e) adopts

the functional form of a virgin loading curve directly

from Jayakumar (1987): εM = −7.5 ln
(

1− σ
2.5

)

, or equiv-

alently, σ = 2.5
(

1− e−
εM
7.5

)

, where the subscript M is

for Masing model. The Masing model in Fig. 9(f) is simply

anti-symmetric. The ratcheting strain is not introduced

at the onset of the plastic strain. After the virgin loading

curve is completed, the first unloading curve is finished,

and when the reloading curve reaches the mean stress level,

the ratcheting strain is started. This arrangement is purely

meant to simplify the simulation by focusing on the new

part of this study.

The new ideas in this study include (I) the use of gener-

alized momentum, and (II) making ratcheting strain a static

function of generalized momentum. What is presented in

Fig. 9 is based on a linear relationship between ratcheting
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Fig. 9: Numerical example following Houslby et al (2017) for plastic and ratcheting strain additivity, with a Masing model for the plastic strain,

and ratcheting as a fraction of plastic strain. We use the new ideas (in the main text) of (I) using generalized momentum, and (II) using a one-to-one

mapping between the generalized momentum and ratcheting strain to make a mechanical memristor (here a linear function and so a linear dashpot

only): the full stress-strain plots are given for all six scenarios (a) to (f)

strain and generalized momentum (in fact, a linear dash-

pot model); the choices of nonlinear functions will lead to

the use of mechanical memristors, and will be given in Sec-

tion 3.2.

Generalized momentum p(t) is defined as the time inte-

gral of a stress time history σ(t) following the naming in Pei

et al (2018). For a periodic stress causing a strain ratcheting

response, we have the following for the generalized momen-

tum p as a function of time t:

p(t) =

∫ t

0

(σ0 sin(ωτ) + σ̄) dτ (57)

=
σ0

ω
(1− cos (ωt)) + σ̄t, (58)

where σ0 is the stress amplitude with σ0 ≥ 0, σ̄ is the mean

stress, and ω is the stress angular frequency. See Fig. 10 for

the time histories of p(t) corresponding to all six scenarios

in Fig. 9 where T is the period of the stress; the numerical

values used for σ̄, σ0, and ω for each scenario are given in

Table 3.

There is a periodic component and a linear component

in p(t), making the understanding of p(t) a little obscure. If

we track the maxima in a σ(t) time history, then we collect

Table 3: Numerical values of the parameters in Figs. 9 and 10

Scenario ID σ̄ σ0 ω

(a) 0 1 1

(b) 1.25 1 1

(c) 0.75 1 1

(d) 1.25 0.5 1

(e) 1.25 1 2

(f) -1.25 1 1

the time instants when ωt = (4n+1)π
2 with n ∈ N. Defining

these special time instants as tn = (4n+1)π
2ω , we have:

p (tn) =
σ0

ω
+ σ̄tn (59)

which is for a specific value of n. Holding n constant, it can

be seen that

– When σ̄ = 0, p (tn) is a constant with respect to tn.

– When σ̄ > 0, p (tn) increases with tn.

– When σ0 increases, p (tn) increases uniformly.

– When ω increases, p (tn) decreases uniformly.

– When σ̄ < 0, p (tn) decreases with tn and will eventu-

ally change its sign.
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Fig. 10: Same numerical example following Houslby et al (2017) as in

Fig. 9: the time histories of generalized momentum as given for all six

scenarios (a) to (f)

Now, it can be seen that p (tn) correlates well with

“ratcheting strain accumulation rate”. Moreover, p (tn) is

a quantitative measure. We directly apply the generalized

momentum concept in the mem-modeling. We follow the

“higher-order element” (HOE) (Chua (2003); Biolek et al

(2016)), which is another general theory that overlaps with

the mem-models. Like absement, a negative higher-order

kinematic quantity than the velocity or strain rate itself, gen-

eralized momentum is simply a negative higher-order ki-

netic quantity than the characteristic force or stress itself.

3.2 Potential Role of Memristor in Modeling Strain

Ratcheting and More

The strain ratcheting literature indicates the necessity for

constant, decreasing, and increasing ratcheting rate, e.g.,

see Fig. 3 in Paul (2019). Eq. (59) indicates a linear relation-

ship of the time instants tn (corresponding to the maxima in

σ(t)) and p(t). This means that a constant ratcheting rate can

be realized by using a linear mapping between generalized

momentum p(t) and ratcheting strain ε(t) in the following

two equivalent definitions through time differentiation:

εd(t) = wp(t), ε̇d(t) = wσ(t), (60)

where εd is ratcheting strain. w is the reciprocal of the vis-

cosity of the linear dashpot; the results given previously in

Fig. 9 use w = 0.1.
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Fig. 9
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Fig. 11: One-to-one mappings between the generalized momentum and

ratcheting strain to make mechanical memristors

A time-varying ratcheting rate can be realized through

a nonlinear mapping between generalized momentum p(t)

and ratcheting strain εd(t) in the following two equivalent

definitions through time differentiation:

εd(t) = F (p(t)) , ε̇d(t) =
dF (p(t))

dp
σ(t), (61)

where
dF (p)
dp = W (p) leading to ε̇d(t) = W (p(t))σ(t),

a differential form for a mechanical memristor. Fig. 2(a)

and (b) give two examples of memristor-based ratcheting re-

sponses with W (p) = 0.1+ p2

100000 and W = 0.01+ (p−30)2

10000 ,

respectively. Their nonlinear mappings between p(t) and

εd(t), as well as w = 0.1 for the linear mapping discussed

above, are given in Fig. 11.

The plastic and ratcheting strain and their sum for these

three models for Scenario (b) in Table 3 is given column-

wise in Fig. 12. The time in Fig. 12 is a delayed time com-

pared with Fig. 9 given the choice of the start of the ratchet-

ing strain.

Generalized momentum p(t) is exploited here as a surro-

gate for time parameterization, based on the mem-modeling

given in Pei (2018). Time, or equivalently number of cycles,

can be replaced with generalized momentum, after which

characteristic curves of ratcheting strain versus number of

cycles could be used to determine the one-to-one mapping

between generalized momentum p(t) and ratcheting strain

ε(t). In fact, this mem-model mode of thinking - namely ex-

ploiting a one-to-one p versus ε mapping - was instumental

in constructing all examples on the topic presented here.

Having explored a mechanical memristor to model

ratcheting strain, let us examine whether a mechanical mem-

ristor has more modeling potential for a viscosity-hardening

law. Following Section 6.2.4 in Lemaitre and Chaboche

(1990), the viscosity-hardening law can be written as:

σ = Kε1/Mp ε̇1/Np , (62)

where εp is the plastic strain, and N , M and K are three pa-

rameters that are functions of temperature and depend on the

material. It can be seen that the hardening-law is based on a
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Fig. 12: Same numerical example following Houslby et al (2017) as in Figs. 9 and 10. The one-to-one mapping between the generalized momentum

and ratcheting strain to make a mechanical memristor follow the three choices of (a) to (c) going from the left to right columns in Fig. 11. The

stress-strain plots are given for ratcheting strain only under Scenario (b) in Table 3. Note that the time here is a delayed time compared with Fig. 9

given the the choice of the start of the ratcheting strain there

flow-controlled time-invariant memristive system model

σ = D (ε, ε̇p) ε̇p (63)

Pei (2018) explores both the creep and relaxation re-

sponses of a mechanical memcapacitor. Here we discuss

creep, relaxation, and ramped strain responses of a me-

chanical memristor defined previously in Eq. (61) with the

subscript d replaced with p. The desired responses are de-

picted in Figs. 6.11, 6.25 and 6.26 in Lemaitre and Chaboche

(1990), respectively. Some simple derivations are presented,

along with a numerical example using W (p) = 6
1+ep + 1.

– First, we subject this memristor model to a creep test

where σ(t) = cσ0H(t), where c ∈ R and H(t) is

the Heaviside function. We then have p(t) = cσ0R(t)

where R is the linear ramp function. We have:

ε̇p(t) = W (p)σ(t) (64)

= W (cσ0R(t))cσ0H(t) (65)

εp(t) = F (cσ0R(t)) (66)

This reveals what creep responses mean for a memristor.

Comparison with Fig. 6.11 in Lemaitre and Chaboche

(1990) is given in Fig. 13(a).

– Relaxation response, however, cannot be captured well

by using one memristor model alone given σ(t) =
D(εp(t))ε̇p(t) with εp(t) = cε0H(t) and ε̇p(t) =

cε0δ(t), where δ(t) stands for Dirac delta function, mak-

ing the response non-physical, the same difficulty as

with a linear dashpot. Note that D is the inverse func-

tion of W .
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Fig. 13: Responses generated by a mechanical memristor defined by

W (p) = 6
1+ep

+1: (a) mimicking Fig. 6.11 in Lemaitre and Chaboche

(1990), and (b) mimicking Fig. 6.26 in Lemaitre and Chaboche (1990)

– Finally, we study how this memristor would respond to

ramped strain inputs with various strain rates in compar-

ison with Fig. 6.26 in Lemaitre and Chaboche (1990):

σ(t) = D(εp(t))ε̇p(t) (67)

When εp(t) = cR(t), we have ε̇p(t) = cH(t), and

σ(t) = D(cR(t))cH(t) (68)

p(t) = G(cR(t)) (69)

See Fig. 13(b), which exhibits some discrepancies from

Fig. 6.26 in Lemaitre and Chaboche (1990). Various

facets behind Fig. 13(b) are plotted in Fig. 14. Since

D (hence W ) is nonnegative, this is a passive mechan-

ical memristor, in accord with the passivity property

in Chua and Kang (1976). Thus, all these are one-to-one

mappings. Different strain rates do “activate” different

ranges in each one-to-one mapping. Nonetheless, it can
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be seen that W is the slope of εp-p and D is the slope of

p-εp. The inverse relationship between W and D can be

seen as well.
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Fig. 14: One-to-one mappings of a mechanical memristor defined by

W (p(t)) = 6
1+ep(t) + 1 subject to εp(t) = cR(t) with six different

strain rates c shown in the legend

The modeling power of an individual memristor for

creep, relaxation, and ramped strain responses thus seems

limited, which prompts the next topic.

3.3 Memristor and Memcapacitor Connected in Series

Assembling elementary models to make more complex

models has been a powerful approach in modeling represen-

tation. Following bond graph theory, flow-controlled, effort-

controlled and mixed assemblies, corresponding to connec-

tivities in parallel, series, and both, respectively, have been

used in mem-modeling (Jeltsema and Scherpen (2009)). In

this study, connecting in series a mechanical memristor for

ratcheting strain and a Masing model for plastic strain makes

it efficient to capture strain ratcheting response under an

asymmetric periodic stress, i.e., ε = εd + εM . Another ex-

ample for model assembly is the relation ε = εe + εp in

the literature (e.g., Lemaitre and Chaboche (1990)) for the

total strain as a summation of linear elastic strain and plas-

tic strain. Pei et al (2020a) introduces a means of exercising

various mem-springs connected in series with various mem-

dashpots; see Figs. 8 to 11 there for numerical examples. An

identification scheme is discussed there as well.

Having previously compared a mem-model assembly

with a Maxwell model (with two model parameters) in Pei

et al (2020a), we are curious to learn how the responses of

a mem-model assembly (one mem-spring and one mem-

dashpot connected in series) and a popular linear model

assembly (a Wiechert model with two arms) would dif-

fer from each other. To make a tangible comparison, we

start with the same creep response for the two types of

models and proceed to compare their sinusoidal response

and one specific strain ratcheting response.

For a Wiechert model subject to stress inputs, we have

the Voigt type as illustrated in Fig. 15 and its creep compli-

ance function as follows (when σ(t) = σ0H(t)):

C0

stress

C1

τ1=C1η1 τ2=C2η2

C2

Fig. 15: Voigt type Wiechert model following Roylance (2001) where

C = 1/E, and τ = η
E

Ccreep(t) =
ε(t)

σ0
= C0 +

∑

j

Ci

(

1− e
−

t
τj

)

, (70)

where τj =
ηj

Ej
, with j the number of the Kelvin arms. We

will restrict to the case of j = 2 herein for demonstration

purposes. Three sets of parameter values are chosen as listed

in Table 4; their corresponding creep response time histories

in log scale are plotted in Fig. 16, where Cases 2 and 3 dis-

play two inflection points corresponding to j = 2.

Table 4: Numerical values of the parameters in Eq. (70)

Case ID C0 C1 τ1 C2 τ2 σ0

1 1 1 1 1 1 1

2 1 1 0.1 1 5 1

3 1 1 0.5 2 20 1

We use a mem-spring to match the creep response of the

standard solid part of the Wiechert model. We use a mem-

ristor to match the creep response of the remaining Kelvin

arm. The total and individual targeted responses are given as

follows:

ε(t) = εs(t) + εd(t) (71)

εs(t) =
[

C0 + C1

(

1− e−
t
τ1

)]

σ0H(t) (72)

εd(t) = C2

(

1− e
−

t
τ2

)

σ0H(t), (73)

where the subscripts s and d represent mem-spring and

mem-dashpot, respectively.

For the mem-spring, we apply p(t) = σ0R(t) to the

manipulation to obtain the following:

εs(t) =
[

C0 + C1

(

1− e
−

p(t)
σ0τ1

)]

σ(t) (74)
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Fig. 16: Creep responses plotted in log scale for time

This is the model for the mem-spring that we are seek-

ing in terms of ε(t) = C (p(t))σ(t), where C(p) =
[

C0 + C1

(

1− e
−

p
σ0τ1

)]

. This is an effort-controlled me-

chanical memcapacitor model, which would generate en-

ergy if loaded in the opposite direction in a sinusoidal

test (Pei et al (2015); Pei (2018)). Therefore, as was pre-

viously done in Section 2.3, the integrations of εs and σ for

a and p will be reset into ā and p̄, respectively, whenever the

loading changes its direction. The one-to-one mappings be-

tween ā and p̄ in two directions are made anti-symmetrical.

Using Case 2 in Table 4 as an example, Fig. 17(a) presents

various facets of the mem-spring model with σ-εs as a loop,

p̄-ā being one-to-one and anti-symmetrical, and both S-ā

and C-p̄ being one-to-one and symmetrical.

For the mem-dashpot, we have the following step:

εd(t) = C2

(

1− e
−

t
τ2

)

σ0H(t)

= C2

(

1− e
−

σ0R(t)
σ0τ2

)

σ0H(t)

= C2

(

1− e
−

p(t)
σ0τ2

)

σ0, when t ≥ 0

so

ε̇d(t) =
C2

τ2
e
−

p(t)
σ0τ2 σ(t), when t ≥ 0 (75)

This is the model for a mechanical memristor that we

are seeking in terms of ε̇(t) = W (p(t))σ(t), where

W (p) = C2

τ2
e
−

p
σ0τ2 . Using Case 2 in Table 4 as an example,

Fig. 17(b) presents various facets of the mechanical mem-

ristor model with σ-ε̇d as a loop, and p-εd, D-εd and W -p

all being one-to-one.

In both Figs. 18 and 19, there are three columns pro-

gressing through a Maxwell model, a two-arm Wiechert

model, and a mem-model assembly consisting of a mem-

spring and a mem-dashpot. These three different kinds of

models are contrasted in terms of both sinusoidal and strain

ratcheting responses. The parameters of these model are

tuned as specified in the captions to enable a more reason-

able comparison. Such model calibrations are exercised for

both Kelvin and Maxwell models with each using a me-

chanical memcapacitor subject to a sawtooth input; this is

presented in Appendix A.2 where fundamental differences

can be seen between mem-spring models and classical lin-

ear models (with two parameters each).

It can be seen that the Wiechert models lead to richer

linear responses than their Maxwell model counterparts. The

nonlinear responses of the mem-model assemblies are the

richest, hopefully mimicking some meaningful responses of

real-world applications. Again, fundamental differences can

be seen between mem-models and classical linear models.

4 CONSTRUCTING MEM-SPRINGS WITH

CLASSICAL PREISACH MODELS

4.1 Subset of Classical Preisach Models

We assume that there exists a classical Preisach model that

satisfies the origin-crossing property of the mem-models,

i.e., the input and output become zero simultaneously

(e.g., Song et al (2001)). It will be shown that this subset

of the classical Preisach model can be transformed into an

equivalent time-invariant memcapacitive system model.

Making this happen has two important practical impli-

cations. First, the identification and inversion of the clas-

sical Preisach model is computationally demanding, while

the identification and inversion of the time-invariant mem-

models is much less so. Second, the classical Preisach model

is considered a hysteresis operator confined within its own

rules and notations, while the mem-spring models fall under

the category of differential models, preferably using the no-

tation of hybrid dynamical system theory, and with a demon-

strated possibility of providing physical interpretations and

quantities that are enabled by a higher-order framework af-

fecting the choice of state variables.

The classical Preisach models are probably the most

celebrated hysteresis models. Mayergoyz (2003) contains

a comprehensive description of these models, which were

originally developed for magnetic hysteresis (Preisach

(1935); Krasnosel’skii and Pokrovskii (1989)) but are more

general. These models are made up of piecewise mono-

tonically increasing or decreasing input-output branches

(e.g., Mayergoyz (2003)). This is consistent with “monotone

operators” and discussions on “vibro-correctness” in Kras-

nosel’skii and Pokrovskii (1989). The input-output relation



16 Jin-Song Pei et al.

-1 0 1

-1

0

1

-1 0 1

-1

0

1

-1 0 1

0

0.5

1

-1 0 1

0

0.5

1

1.5

(a) mem-spring

-0.5 0 0.5

-1

0

1

0 0.5

0

0.5

1

1.5

0 0.5

0

2

4

6

0 1

0

0.5

1

(b) mem-dashpot (mechanical memristor)

Fig. 17: Behaviors of the mem-spring and mem-dashpot in Case 2 of Table 4, whose serial connection is calibrated against (in terms of creep
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Fig. 18: Sinusoidal responses of three different assemblies. Column-wise, they are a spring with C0+C1 connected in series with a linear dashpot

with τ2; the Wiechert model with two arms defined in Eqs. (71), (72) and (73), and the mem-model assembly defined in Eqs. (71), (74) and (75)

of the classical Preisach model is given as follows:

y(t) =

∫∫

T

ν (α, β)Rα,βu(t)dαdβ, (76)

where u(t) and y(t) are the input, and output, respectively.

Rα,β represents a relay hysteron operator with switching

down and up thresholds as α and β, respectively; ν (α, β)

is the Preisach (density, weighting, distribution) function; T

denotes the Preisach triangle with β ≥ α. See Fig. 20.

In the classical Preisach model, to determine the weigh-

ing function ν (α, β), one of the two options is to start with

a limiting ascending branch as in Fig. 20(a). Then, a set of

first-order transition curves is attached to this limiting as-

cending branch as in Fig. 20(b). In this figure, the shaded

area S+ inside the Preisach triangle has the relay hysteron

operator switched “on” corresponding to Rα,βu(t) = 1 for

that particular time instant. The unshaded area S− inside the

Preisach triangle has the relay hysteron operator switched

“off” corresponding to Rα,βu(t) = −1 for that particular

time instant. This leads to:

y(t) =

∫∫

S+

ν (α, β) dαdβ −

∫∫

S−

ν (α, β) dαdβ (77)

The following formulation is general from Mayergoyz

(2003), but we focus on the subset of the classical Preisach

model illustrated in Fig. 21(a). Define F (α′, β′) as follows:
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Fig. 19: Sinusoidal responses of three different assemblies. Column-wise, they area spring with C0 +C1 connected in series with a linear dashpot

with τ2; the Wiechert model with two arms defined in Eqs. (71), (72) and (73), and the mem-model assembly defined in Eqs. (71), (74) and (75)

F (α′, β′) =
fα′ − fα′β′

2
, (78)

where the input α′ is on the limiting ascending branch, and

its output is fα′ . The input β′ is on a first-order descending

branch that starts to descend from α′; the output correspond-

ing to this β′ is denoted as fα′β′ . It can be shown that:

F (α′, β′) =

∫ α′

β′

(

∫ α′

β

ν(α, β)dα

)

dβ (79)

from which, it can be derived that:

ν(α′, β′) = −
∂2F (α′, β′)

∂α′∂β′
(80)

4.2 Constructing Mem-Springs using Preisach Model

We choose an effort-controlled mem-spring model in

Fig. 21(b) that can be equivalently represented by a clas-

sical Preisach model in Fig. 21(a). We desire the follow-

ing state and input/output equations for this time-invariant

effort-controlled memcapacitive system model:

ẏ(t) = f (y(t), r(t)) (81)

x(t) = W (y(t), r(t)) r(t) (82)

from which we have

W (y, r) =
x

r
(83)

First, on the loading branch, because (α′, fα′ ) is on the

limiting ascending branch of the Preisach model, we have

from Eq. (77):

fα′ =

∫ α′

−∞

(
∫ α

−∞

ν(α, β)dβ

)

dα

−

∫ +∞

α′

(
∫ α

−∞

ν(α, β)dβ

)

dα (84)

This is a zero-crossing for x as a function of r with r = α′.

There is no need for a state variable, and W = W̃ (r)r would

suffice. So, we focus on the unloading branch, i.e., a first-

order reversal curve. Using Fig. 21(b), we have the following

expression for the secant stiffness of a generic point on the

descending branch:

W (α′, β′) =
fα′β′

β′
(85)

From Eq. (78), we have:

fα′β′ = fα′ − 2F (α′, β′) (86)

Substituting both Eqs. (84) and (79) into (86), it can be seen

that the numerator of the secant stiffness function W (α′, β′)

contains double integrals of the Preisach density function ν.

Next, we convert α′ and β′ into the input and state variables.

For the first-order reversal curve, we have r = β′. We have

two options of introducing the state variable.

Under the first option, we follow Gurtin and Francis

(1981) and Pei (2018) by introducing a maximum force rm
used to track the limiting ascending branch for this effort-

controlled setting. In a a flow-controlled setting in Gurtin

and Francis (1981) and Pei (2018), there is a maximum dis-

placement. Then, we have rm = α′. With this, we have:

W (α′, β′) = W (rm, r),
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where

W (rm, r) =
1st integral + 2nd integral + 3rd integral

r

1st integral =

∫ rm

−∞

(
∫ α

−∞

ν(α, β)dβ

)

dα

2nd integral = −

∫ +∞

rm

(
∫ α

−∞

ν(α, β)dβ

)

dα

3rd integral = −2

∫ rm

r

(
∫ rm

β

ν(α, β)dα

)

dβ

This applies to the first-order reversal curve. For the limiting

ascending branch, this also applies because rm = r and the

third integral vanishes.

By following Pei (2018), we have the following discrete-

time state equation for both branches:

rm(k + 1) = max(rm(k), r(k + 1)), with rm(1) = r(1)

which can be rewritten into a continuous-time format. With

this, we have constructed a time-invariant memcapacitive

system model as follows:

ṙm = f (rm, r) (87)

x = W (rm, r)r (88)

u

y
(a)

f
'

f
' '

''(0,0)

limiting ascending branch

first-order reversal curve

x

r
(b)

1

1/W

'

'

f
'

f
' '(0,0)

loading

unloading

Fig. 21: Input-output plot of a mem-spring in terms of (a) a classical

Preisach model, and (b) a mem-spring model

This formulation, in fact, is more general than that in Pei

(2018) based on Gurtin and Francis (1981). A strong limita-

tion is that this formulation only applies to both the limiting

ascending branch and first-order reversal curve. More state

variables are needed to track the first-, second-, etc. order

reversal curve(s) when higher-order reversal curves are an-

ticipated in the output.

The second option is taken in an approximate sense. As-

suming loading and unloading follows a constant loading

rate, we have:

p = α′
T

2
−

β′ β
′

α′

T
2

2
, (89)

where p is the generalized momentum in Pei et al (2018),

and T is the duration of one loading cycle. It can be seen

that α′ can be solved in terms of β′ and p. This leads to the

following:

W (α, β) = W̄ (p, r) (90)

In summary, when we can assume loading and unloading

with a constant loading rate, we have:

ṗ = r (91)

x = W̄ (p, r)r (92)
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which has the same strong limitation as the first option.

We note that the Masing model used to generate the plas-

tic strain in Section 3.1 could be reformulated in terms of

a mem-spring by applying a slightly extended version of

the methodologies presented above. The complete model to

capture strain ratcheting could then involve a mem-model

assembly with one mem-spring and one mem-dashpot con-

nected in series.

5 DUHEM MODELS

Here we examine a possible connection between the gen-

eralized Duhem model and the mem-models. From Padthe

et al (2008), we have the following definition (begin quote):

ẋ(t) = f (x(t), u(t)) g (u̇(t)) , x(0) = x0, t ≥ 0 (93)

y(t) = h (x(t), u(t)) , (94)

where x : [0,∞) → R
n is absolutely continuous, u :

[0,∞) → R is continuous and piecewise C1, f : Rn ×R →

R
n×r is continuous, g : R → R

r is continuous and satisfies

g(0) = 0 and y : [0,∞) → R, and h : Rn × R → R are

continuous. The value of ẋ at a point t at which u̇ does not

exist can be assigned arbitrarily. We assume that the solution

to Eq. (93) exists and is unique on all finite intervals. Under

these assumptions, x and y are continuous and piecewise C1.

... Assume that g is positively homogeneous, that is

g(αv) = αg(v), ∀α > 0 and v ∈ R (95)

then, the generalized Duhem model in Eqs. (93) and (94) is

rate-independent (end quote).

It can be seen that under this condition and assuming x

is a state variable, Eq. (93) becomes a differential form of

the mem-model in Pei et al (2018). Eq. (93) thus has zero-

crossing and rate-independence. This is one connection be-

tween the generalized Duhem and mem-models. A differ-

ence is that zero-crossing is a property of the vector state

equation rather than the scalar input-output equation.

6 CONCLUSIONS

Mem-models are a family of new models of dampers,

springs, inerters (and very likely, more) originally based

on nonlinear state-space representations. However, how to

choose state variables and define functional forms for mem-

models is unspecified and remains a major technical chal-

lenge. The connections made herein suggest specific and

potentially fruitful paths to search for state variables and

functional forms for mem-springs. One choice makes mem-

springs physically meaningful in modeling the basic kind

of damage that is defined and involved in continuum dam-

age mechanics (CDM) context. We also generalize mem-

springs from 1-D to 3-D for isotropic materials for future

work to validate. Tapping functional forms from viscoelas-

ticity is constructive and fruitful, however bear in mind that

mem-models are fundamentally nonlinear and thus are fun-

damentally different from classical linear theories.

We have confirmed the unique and significant model-

ing power when adopting both absement and generalized

momentum, the time integral of strain and stress in the

mem-springs and mem-dashpots for modeling elastic dam-

age strain and ratcheting strain, respectively. These choices

of state variables for the nonlinear state-space representa-

tion enable governing one-to-one mappings to be preserved

after introducing switching behaviors under a hybrid dy-

namical system viewpoint. One-to-one mappings are prob-

ably among the most desired portraits of complex time-

dependent and history/path-dependent and fundamentally

nonlinear dynamic systems that the mem-models contribute,

even with the necessity of adopting other state variables be-

ing acknowledged.

Since the classical Preisach model for hysteresis is rig-

orous, showing that two forms of time-invariant memca-

pacitive system models are a subset provides a rigorous

foundation for the latter. For this subset, using the mem-

models reduces computational demand and also enables a

physical interpretation. Nevertheless, the nonlocal memory

in Preisach model is still demanding computationally. More

state variables must be introduced and/or algebraic variables

are needed for capturing nonlocal memory when higher-

order responses of the Preisach model are anticipated.
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A Appendix

A.1 Some Basic Energy Relations

The following discussion is for a flow-controlled system, starting with

an imposed constant strain rate, followed by strain removal at the same

rate:

imposed strain, t ∈ [0, t0]: ε(t) = kεt (96)

strain removal, t ∈ [t0, 2t0]: ε(t) = kεt0
︸︷︷︸

ε0

−kε(t− t0), (97)

where kε is the strain rate, and t = t0 is the time when strain removal

starts.

The energy per unit volume of material, U , is the area under the

corresponding stress-strain curve:

U =

∫ ε0

0

σldεl +

∫ 0

ε0

σudεu (98)

where l and u are for loading and unloading, respectively.

1. Piece-wise defined nonlinear spring, i.e., σ = fi(ε)

U(t) =

∫ t0

0

fl (kετ) kεdτ +

∫ 2t0

t0

fu (−kετ + 2ε0) (−kε)dτ

= kε

∫ t0

0

[fl(kετ)− fu(−kετ + ε0)] dτ, (99)

where τ is the dummy index for time t. Notable examples includ-

ing Ramberg-Osgood models and Bouc-Wen models.

2. Viscoelastic material, i.e., σ = f(ε̇)

U(t) =

∫ t0

0

f(kε)kεdτ +

∫ 2t0

t0

f(−kε)(−kε)dτ

= kε

∫ t0

0

[f(kε)− f(−kε)] dτ (100)

3. Mechanical memcapacitor, i.e., σ = f(a)ε

U(t) =

∫ t0

0

f

(
kε

2
τ2

)

kεdτ

+

∫ 2t0

t0

f

(

−
kε

2
τ2 + 2ε0τ − εot0

)

(−kε)dτ

= kε

∫ t0

0

[

f

(
kε

2
τ2

)

− f

(

−
kε

2
τ2 + ε0τ +

1

2
ε0t0

)]

dτ

(101)
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A.2 Mem-Spring Calibrated to Linear Viscoelastic Models

Mem-springs, being fundamentally nonlinear, cannot be expected to

behave like linear models. Consequently, it was hard to avoid some

initial mistakes in the following effort, the goal being to calibrate a

mem-spring to make it respond the same as a linear model under a spe-

cific input (but only for a specific duration of time). Then, we change

the input to reveal their differences.

Element models are tried before system models for the mem-

spring. First of all, memcapacitor models are good for both ε(t) = kεt
and σ(t) = kσt to produce a maybe-valid stress-strain curve for vis-

coelastic material. Next, to what extent a memcapacitor model can be

calibrated to a linear model demands attention.

(i) Maxwell model: Only good for ε(t) = kεt (i.e., a = 1
2
kεt2) to

produce a typical stress-strain curve for viscoelastic material as

σ(t) = kεη
[

1− e
−

E
η
t
]

(102)

p(t) = kεηt+
kεη2

E
e
−

E
η
t
−

kεη2

E
(103)

We can calibrate a memcapacitor (i.e., an element) σ(t) =
S(a(t))ε(t), or equivalently, p(t) = G(a(t)) as follows:

p = G(a) = kεη

√
2a

kε
+

kεη2

E
e
−

E
η

√

2a
kε −

kεη2

E
(104)

with the understanding that Maxwell and mem-spring models

would only respond the same under any specific value of kε in

ε(t) = kεt. The corresponding one-to-one mapping S(a) = dG
da

is as follow:

S(a) =

η

[

1− e
−

E
η

√

2a
kε

]

√
2a
kε

(105)

Note that an attempt of continuing with the calibration using the

unloading behavior of the same Maxwell model failed. Details are

given as follow when a = −1
2
kε (t− t0)

2+2a0 for t ∈ [t0, 2t0]:

σ(t) = −kεη − kεηe
−

E
η
t
+ 2kεηe

−
E
η
(t−t0) (106)

p(t) = −kεηt+
kεη2

E
e
−

E
η
t
−

2kεη2

E
e
−

E
η
(t−t0) + p0 (107)

It would not be possible to use the same memcapacitor model for

this unloading behavior.

(ii) Kelvin model: Only good for σ(t) = kσt (i.e., p = 1
2
kσt2) to

produce a typical stress-strain curve for viscoelastic material as

ε(t) =
kσ

E
t−

kση

E2

[

1− e
−

E
η
t
]

(108)

a(t) =
kσ

2E
t2 −

kση

E2
t+

kση2

E3

[

1− e
−

E
η
t
]

(109)

We can calibrate a mem-spring (i.e., an element) ε(t) =
C(p(t))σ(t), or equivalently, a(t) = F (p(t)) as follows:

a = F (p) =
p

E
−

kση

E2

√
2p

kσ
+

kση2

E3

[

1− e
−

E
η

√

2p
kσ

]

(110)

with the understanding that Kelvin and mem-spring models would

only respond the same under any specific value of kσ in σ(t) =
kσt. The corresponding one-to-one mapping C(p) = dF

dp
is as

follow:

C(p) =
1

E
−

η
E2

[

1− e
−

E
η

√

2p
kσ

]

√
2p
kσ

(111)

The rest challenge remains as for calibrating using the Maxwell

model.

See Figs. 22 and 23 for two numerical examples.
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Fig. 22: One example of “calibrating” a particular Maxwell model with

E = 1, η = 1 and kε = 2
π
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Fig. 23: One example of “calibrating” a particular Kelvin model with

E = 1, η = 1 and kσ = 2
π


