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[1] Any earthquake can trigger more earthquakes. This triggering occurs in both
the classical aftershock zone as well as the far field. These populations of triggered
earthquakes may or may not be distinct in terms of triggering mechanism. Here we
look for a distinction between the populations by examining how the observed intensity
of triggering scales with the amplitude of the triggering strain in each. To do so, we apply
a new statistical metric based on earthquake interevent times to a large data set and
measure earthquake triggering as a function of dynamic strain amplitude, where strain is
estimated from empirical ground motion regressions. This method allows us to identify
triggering at dynamic strain amplitudes down to 3 × 10−9, orders of magnitude smaller
than previously reported. This threshold appears to be an observational limit and shows
that extremely small dynamic strains can trigger faults that are sufficiently near failure.
Using a probabilistic model to transform measured interevent times to seismicity rate
changes, we find that triggering rates in the far field scale with peak dynamic strain.
This scaling, projected into the near field, accounts for 15%–60% of earthquakes within
6 km of magnitude 3–5.5 earthquakes. Statistical seismicity simulations validate the
interevent time method and show that the data are consistent with the number of far‐field
triggered earthquakes being linearly proportional to peak dynamic strain. We interpret
the additional near‐field component as reflecting either static stress triggering, more
effective dynamic triggering at higher frequencies, or a concentration of aftershock
nucleation sites very near main shocks.

Citation: van der Elst, N. J., and E. E. Brodsky (2010), Connecting near‐field and far‐field earthquake triggering to dynamic
strain, J. Geophys. Res., 115, B07311, doi:10.1029/2009JB006681.

1. Introduction

[2] Triggered earthquakes provide a window into the phys-
ics of earthquake nucleation because the forces initiating rup-
ture can be inferred. Because the strain at which a fault is
triggered is a measure of its strength, it may be possible to
gain insight into the distribution of fault strength by studying
the statistics of earthquake triggering [Brodsky and Prejean,
2005; Gomberg, 2001].
[3] One strategy for ultimately determining the processes

involved in triggering is to first identify the stresses that acti-
vate the process. The types of stresses that have been pro-
posed as the agents by which one fault transmits a triggering
signal to another include coseismic static strain changes, pro-
gressive postseismic strain changes (including afterslip and
viscous creep), and dynamic strains from radiated seismic
waves [Freed, 2005]. These agents may each trigger earth-
quakes through a number of mechanisms, including direct
Coulomb frictional failure, reduction in fault strength, and pore

fluid pressure changes. Different triggering agents may be
expected to be relatively more or less effective at activating
different failure mechanisms. Therefore, understanding the
relative contribution of triggering agents may help constrain
triggering mechanisms.
[4] The proposed triggering agents have different strengths

and weaknesses in explaining observed triggering. Coseismic
static strain changes are the increase or decrease in strain at
one fault due to the relaxation of strain at another during an
earthquake. Static strain changes are permanent and there-
fore can easily explain triggering for an extended period of
time [King et al., 1994], but the stresses decay in amplitude
quickly with distance away from a fault and are thus unlikely
to trigger distant earthquakes. Multiple stress interactions,
i.e., secondary triggering or aftershocks of aftershocks, can
extend the reach of static stresses to a few times the length
of the primary rupture [Ziv, 2003], but not to the tens of
times observed for remote triggering [Hill et al., 1993].
Postseismic static strain changes are generated by afterslip
or lower crustal ductile creep and also produce prolonged
stresses. Afterslip produces a quasi‐static near‐field stress
change that has comparable distance decay to coseismic static
stress changes and thus cannot explain triggering at great
distances. Viscous deformation can propagate to great dis-
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tances but takes years to reach hundreds of kilometers [Freed
and Lin, 1998; Pollitz et al., 1998] and thus cannot explain
distant triggering that is sometimes seen within days or even
seconds [West et al., 2005]. Dynamic triggering is associ-
ated with transient strains carried by radiated seismic waves
[Hill and Prejean, 2007]. Dynamic strains decay less quickly
with distance and therefore do well at explaining remote trig-
gering but present a challenge in explaining prolonged trig-
gering [Brodsky, 2006; Gomberg, 2001].
[5] The above summary highlights that there is more cer-

tainty about the agent of triggering for a special subset of
earthquake triggering: distant triggering over time scales of
less than a few years. These remotely triggered earthquakes
are believed to result entirely from dynamic triggering, both
because static strains are negligible at large distances, and
because distant triggering often coincides with the arrival of
surface waves [Anderson et al., 1994; Brodsky et al., 2000;
Gomberg and Johnson, 2005; Hill et al., 1993]. On the other
hand, short‐range triggering is much more ambiguous and
has been attributed to static, postseismic, or dynamic agents
by different researchers [Felzer and Brodsky, 2006; Gomberg
et al., 2003; Kilb et al., 2000; Perfettini and Avouac, 2007;
Pollitz and Johnston, 2006; Stein et al., 1994; Velasco et al.,
2008]. Spatial correlations between calculated coseismic static
stress fields and aftershock patterns appear to support coseismic
static stress triggering [King et al., 1994; Stein et al., 1994].
On the other hand, correlations between temporal aftershock
evolution and geodetic strain measurements support pro-
gressive postseismic strain [Freed and Lin, 1998; Peng and
Zhao, 2009; Perfettini and Avouac, 2007]. Still other studies
that compare near‐field aftershock locations to the static and
dynamic strains for earthquakes with strong directivity con-
clude that dynamic strains correlate better with the ensuing
seismicity [Gomberg et al., 2003; Kilb et al., 2000].
[6] In this study, we exploit the understanding that dynamic

strain is the dominant triggering agent at large distances and
relatively short time scales in order to constrain the contri-
bution of additional triggering agents in the near field. We
first determine an empirical relationship between a measure
of triggering intensity and peak dynamic strain in the far
field based on the waiting time to early triggered earthquakes.
Then we compare this far‐field relationship to near‐field
observations to assess the proportion of near‐field earth-
quakes that can be explained by the far‐field proportionality.
We ultimately find that dynamic triggering can account for a
significant portion of near‐field aftershocks, but that there is
an additional triggering component in the near field.
Whether this reflects additional triggering agents (e.g., static
strain, afterslip) or the effect of second‐order aspects of the
dynamic strain (e.g., duration, frequency) we cannot resolve.
In the process, we develop a measure of earthquake trig-
gering that is significantly more sensitive to low triggering
rates than previous measures and place a new bound on the
threshold for far‐field dynamic triggering.
[7] The first several sections of this article concern the

development of the triggering metric. First, we define a
statistic based on earthquake interevent times and establish
the expectation for this statistic, assuming a simple proba-
bilistic model for earthquake occurrence times. Next, we
delineate populations on the basis of local dynamic strain
and describe the data selection and processing. In section 4,

we apply the method and show that the dynamic triggering
relationship determined for far‐field quakes can account for
roughly half of near‐field aftershock triggering. We also
report a new estimate on the dynamic triggering threshold in
California of 3 × 10−9 strain, several orders of magnitude
lower than previous estimates. A statistical seismicity sim-
ulation is then used to interpret and validate the results.
Finally, we evaluate the implications and robustness of the
results.

2. Measuring Earthquake Rate Changes Using
Interevent Times

[8] A comparison of triggering rates in the near field and
far field requires a metric that can be applied to both popu-
lations of earthquakes. This metric needs to be sensitive
enough to detect the very small triggering rates associated
with the very small dynamic strains common to the far field.
Previously, triggered earthquakes have been identified by
inspecting seismicity rates [Harrington and Brodsky, 2006;
Hill et al., 1993; Stark and Davis, 1996] or by filtering wave-
forms to emphasize short‐period energy within the surface
wave trains of large, distant earthquakes [Brodsky et al.,
2000; Hill and Prejean, 2007; Velasco et al., 2008]. Quanti-
tative estimates of triggering usually involve calculating
the likelihood of observing a number of posttrigger events
given the previous seismicity rate [Anderson et al., 1994;
Gomberg et al., 2001; Hough, 2005]. If the likelihood of the
rate increase occurring by chance is low enough, triggering
is inferred.
[9] Any estimate that computes the likelihood of trigger-

ing based on counting the number of triggered earthquakes
relative to a pretrigger count, like the b statistic [Matthews
and Reasenberg, 1988], is limited in several ways. First,
the pretrigger seismicity rate must be resolved for compari-
son, and this is inherently difficult. Because most earthquakes
occur as clusters of aftershocks, the seismicity rate is always
changing. Background seismicity level should therefore be
measured at a time as close to the purported trigger as pos-
sible in as short a window as possible. Different areas will
permit different length windows depending on their back-
ground level of seismicity, and thus, a constant window for
an entire data set may not sufficiently capture the data.
Second, an earthquake count can only resolve an integer
increase in the number of earthquakes for any individual
sequence. A slight advancement in the timing of subsequent
earthquakes will only rarely result in an additional triggered
earthquake within the counting time window, so only
large levels of triggering can be resolved with statistical
significance. Finally, an earthquake count also includes all
secondarily triggered earthquakes, that is, aftershocks of
aftershocks. These secondary earthquakes are not strictly
problematic, because they should still be produced in pro-
portion to the number of primary triggered earthquakes when
averaged over many events, but they complicate the rela-
tionship between trigger amplitude and number of triggered
quakes by introducing variance into the measurements.
[10] To detect triggering at very low dynamic strain ampli-

tudes, our metric must use an adaptive time window to
measure background rates, be sensitive to small increases in
seismicity rates, and be insensitive to secondary aftershocks.
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2.1. Interevent Time Ratio R

[11] We meet the above requirements by developing a
statistic based only on the interevent times between the last
earthquake before a trigger and the first earthquake after.
We define the interevent time ratio R as

R � t2
t1 þ t2

; ð1Þ

where t1 and t2 are the waiting times to the first earthquake
before and after the putative trigger (Figure 1). The intere-
vent time ratio R was originally developed to study triggered
quiescence [Felzer and Brodsky, 2005]; we use it here to
look for a triggered rate increase.
[12] Because R is normalized by the average seismicity

rate at the time of the trigger, we can pool and compare
measurements made within a highly heterogeneous earth-
quake catalog. The strategy in this study is to measure the
distribution of R on a population of earthquakes that are
subject to similar triggering conditions. For instance, the
population can be drawn from a variety of areas subject to
the same dynamic strain. The metric R is a random variable
distributed between 0 and 1. If there is no triggering in the
population and t2 is on average equal to t1, then R is dis-
tributed uniformly with a mean value R = ½. On the other
hand, if triggering does occur, t2 will be on average smaller
than t1 and R < ½. More triggering results in a smaller R
(Figure 2). Therefore, the statistic R provides a measure of
triggering intensity within a population of earthquakes.
[13] The interevent time ratio R naturally solves the three

problems identified with earthquake counting methods by
defining an appropriate time window for each event based
on the interevent times, utilizing the statistics of large popu-
lations, and focusing on the first recorded earthquake rather
than the entire triggered sequence.
[14] One of the unusual features of the interevent time

method is that there is no time limit for the inclusion of
triggered events. Both instantaneous and delayed triggering
are included in the measurements. This comprehensiveness
is desirable because of issues of catalog completeness, as
well as the physical implications of delayed triggering.
Instantaneous triggering (t2 ∼ 0) should be reflected in the R
distribution as a strong spike at R ∼ 0 with a uniformly
depressed probability density at higher values. Delayed

triggering (0 < t2 < t1) should cause the spike to be spread
out to larger R values (e.g., Figure 2). In principle, the
distribution of R should therefore reflect the time decay of
the triggered rate change. For the purposes of this study,
however, we restrict ourselves to calculations involving
the sample mean R and do not consider the precise shape
of the distribution. We will return to the issue of delayed
triggering at the end of the paper after the metric has been
implemented.

2.2. Interpreting R as Seismicity Rate Change

[15] The purpose of this study is to compare dynamic
triggering levels in far‐field and near‐field populations of
triggers. However, the range of dynamic strain amplitudes
observable in each population is different, at least in the
California study region focused on here. This is because
even the largest far‐field earthquakes generate only low‐
amplitude waves at great distance (so small that equivalent
near‐field triggers are too low in magnitude to be detected in
regional catalogs). Consequently, we measure the scaling of
R with dynamic strain in each population and compare the
respective trends. Because R must asymptote to 0.5 for zero
rate change and to 0 for extreme rate increases, R must
scale nonlinearly with rate change. This nonlinearity com-
plicates the comparison of trends between the two dynamic
strain ranges. In order to compare triggered rate changes in
the two populations, we first establish the expected behavior
of R as a function of rate change.
[16] To derive the expectation of R as a function of seis-

micity rate change, we use a model that relates interevent
times to earthquake rate. If earthquake occurrence were per-
fectly periodic and uniform, the expectation of R would
follow directly from equation (1) with t1 and t2 equal to the
inverse of the earthquake rate. However, earthquakes are for
the most part not periodic. Detailed studies of earthquake
catalogs find that the distribution of interevent times is best

Figure 1. Cartoon timeline illustrating the variables con-
tributing to the interevent time ratio R (equation (1)). The
trigger earthquake is labeled B, and the first earthquake
before and after the trigger are labeled A and C, respec-
tively. The time t1 is the time to the first earthquake before
the trigger, and t2 is the waiting time to the first earthquake
after the trigger.

Figure 2. Schematic cartoon illustrating the distinction
between the distribution of R in a case with no triggering
(dashed) and a simulated case of strong triggering (solid).
The integral of the probability density is 1 in both cases.
The mean value of R is 0.50 in the nontriggered case and
0.46 in the triggered example.
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characterized by a combination of Poisson distributed back-
ground earthquakes and triggered aftershocks that decay in
time according to Omori’s law [Gardner and Knopoff, 1974;
Hainzl et al., 2006; Molchan, 2005; Saichev and Sornette,
2006]. The time‐decaying Omori’s law component can be
considered a nonhomogeneous Poisson process, that is, a
Poisson process where the intensity is a function of time.
This is a standard model for aftershock forecasting and is
frequently used to analyze the significance of earthquake
triggering metrics [Kagan and Jackson, 2000;Marsan, 2003;
Matthews and Reasenberg, 1988; Ogata, 1999; Reasenberg
and Jones, 1989; Wiemer, 2000]. We use it here to determine
the expectation of R as a function of triggered rate change.
[17] Calculating the expectation of R for this nonhomoge-

neous Poisson process requires an estimate of the background
rate and the parameters in Omori’s law (Appendix A). These
parameters may be heterogeneous in time and space and
are impossible to determine for the single earthquakes that
go into measurements of R. However, since we deal only
with single earthquakes before and after the trigger, the details
of the underlying interevent time distribution are relatively
unimportant. Rather, we expect R to be primarily sensitive to
average rates. This restricted sensitivity allows us to approxi-
mate the nonhomogeneous process as a simple stepwise
homogeneous process, characterized by an average rate l1
before the trigger and a new average rate l2 afterward. For
the stepwise homogeneous Poisson process, the expectation
of R is given by (Appendix A)

Rh i ¼ 1

n2
nþ 1ð Þ ln nþ 1ð Þ � n½ �; ð2Þ

which is a function only of the normalized difference in
average rate or fractional rate change,

n � �2 � �1

�1
: ð3Þ

As anticipated, the expectation of R scales nonlinearly
with rate change for the three models mentioned above:
periodic, nonhomogeneous Poisson, and stepwise homoge-
neous (Figure 3). To emphasize the scaling for the small
fractional rate changes, Figure 3 shows both the value of
Rh i and DRh i ≡ 0.5 − Rh i. The stepwise homogeneous model
is found to be an excellent approximation of the more com-
plex nonhomogeneous model, especially for the small rate
changes we expect to deal with in this study. This demon-
strates that the metric R is primarily sensitive to average
seismicity rate change rather than the details of the intere-
vent time model.
[18] As stated above, the nonlinearity in the scaling of R

complicates the assessment of continuity between discon-
tinuous far‐field and near‐field populations. We can address
this complication by transforming the observations using
equation (2) to map the measured R into a modeled fractional
rate change n. That is, we can interpret the measured R in
terms of the number of triggered earthquakes required to pro-
duce that R. Although we had no a priori expectation for the
scaling of R with dynamic strain, we do have an expectation
for the scaling of n with dynamic strain. Studies of tradi-
tional aftershock zones have found that the number of after-
shocks scales with main shock magnitude as log N / M
[Felzer et al., 2004; Gasperini and Lolli, 2006; Helmstetter
et al., 2005; Ogata, 1992; Yamanaka and Shimazaki, 1990].
Since peak ground velocity (a proxy for dynamic strain) also
scales with magnitude as log PGV / M, the aftershock
scaling with magnitude is consistent with a power law scal-
ing of aftershock rate with dynamic strain. Studies com-
paring aftershock rates directly to peak ground velocities
suggest that aftershock rates may even be linearly propor-
tional to dynamic strain, i.e., with a power law exponent of
∼1 [Gomberg and Felzer, 2008]. If our probabilistic model
(equation (2)) is adequate and assuming that at least the
more conservative power law scaling hypothesis holds,
then the transformed statistic n should scale linearly on a
log‐log scale. In section 4, we will show that this hypothesis
is confirmed by the data. This gives us the tool we need to
compare relative triggering rates in near‐field and far‐field
populations.
[19] In what follows, we refer to n as triggering inten-

sity to emphasize that it is a transformed statistic and not a
direct measurement of fractional rate change. Nevertheless,
equation (2) represents a smoothly continuous transforma-
tion, and therefore, the transformed statistic n should not
scale continuously with dynamic strain amplitude unless the
primary statistic R does so as well.

3. Defining Populations

[20] The statistic R (or the transformed statistic n) measures
triggering intensity in a population of earthquakes. There-
fore, the first step in applying the interevent time method to
a real data set is to define reasonable populations so that we
can evaluate the different rate changes in each one.

Figure 3. Expectation of R (equation (A10)), i.e., predicted R,
as a function of fractional rate change for three probabilistic
models for earthquake occurrence, as described in the text.
“Omori” refers to the nonhomogeneous Poisson model with
Omori decay in triggered rate change. Inset shows the expec-
tation of R on a linear‐log scale, while the larger figure shows
the value hDRi = 0.5 − hRi on a log‐log scale to emphasize the
scaling at small fractional rate changes, like those sought in
this study. Fractional rate change is the normalized triggered
earthquake rate defined in equation (3). The curves are all
very similar, especially for small rate change.
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[21] Because long‐range triggering is clearly associated
with dynamic strain, we start by constructing sets of earth-
quakes with common dynamic strain amplitude. Other aspects
of the seismic waves may be important in terms of trig-
gering earthquakes, such as duration or frequency of the
seismic waves. For instance, some studies suggest that higher‐
frequency waves are more effective triggers [Gomberg and
Davis, 1996] while some attribute more triggering power to
lower frequencies [Brodsky and Prejean, 2005]. Other stud-
ies find that frequency or number of oscillation cycles may
modulate triggering power slightly, but these aspects are of
secondary importance to peak amplitude [Savage and Marone,
2008]. Comparison between radial aftershock decay and ground
motion attenuation at intermediate distances supports a scal-
ing with peak or average ground velocities, independent of
duration [Gomberg and Felzer, 2008]. Given the uncertainties
regarding other aspects of the seismic waves, we choose to
define populations based only on peak amplitude. Observed
differences between near‐field and far‐field triggering inten-
sities may therefore be attributed to second‐order aspects of
the wavefield and not only to other triggering agents such as
static and postseismic strain.
[22] Peak dynamic strain is roughly proportional to the

amplitude of seismic waves

" � A

L
� V

CS
; ð4Þ

where A is displacement amplitude, L is wavelength, V is
particle velocity, and CS is seismic wave velocity [Love,
1927]. In principle, dynamic strain can therefore be calcu-
lated wherever there is a seismogram. In this study, we use
empirical ground motion regressions to approximate seismic
wave amplitude, allowing us to extend strain estimates to
any point on the map. Ground motions are converted to
dynamic strain estimates by dividing by wavelength or wave
speed, depending on whether the regression is for dis-
placement or velocity, respectively.
[23] In the near field, S waves should carry the largest

dynamic strains, with a dominant period on the order of 1 s
[Boatwright et al., 2001]. S wave velocity at seismogenic
depths is roughly 3.5 km/s. In the far field, surface waves
with periods near 20 s dominate ground motion, as smaller
period waves tend to be scattered and attenuated [Lay and
Wallace, 1995]. Both Love and Rayleigh waves can trigger
earthquakes [Hill, 2008; Velasco et al., 2008], but the 20 s
Rayleigh wave, with a velocity of ∼3.5 km/s, is usually asso-
ciated with the surface wave magnitude equation we use
to estimate peak ground motions [Lay and Wallace, 1995].
We therefore treat this phase as representative of far‐
field dynamic strains. We note that if triggering is in fact
dominated by Love waves, with a velocity of ∼4.3 km/s,
equation (4) may overestimate strain by ∼20% for equiva-
lent amplitude waves.
[24] Previous work has investigated the accuracy of using

ground motions as a proxy for dynamic strain at depth by
comparing strain estimated from seismometer data to strain
measured by strainmeters [Gomberg and Agnew, 1996].
This study found that although there was considerable
deviation in observed strains from those expected for a
simple layered earth model, the dynamic strain amplitudes
calculated from ground motions generally agreed within

±20% of the strainmeter measurements for periods between
∼10 and 25 s and within ±50% outside this band. These
uncertainties are smaller than the factor of two uncertainties
related to the empirical regressions used to estimate peak
ground motions (see below). Since we are interested in the
first‐order scaling of triggering intensity with dynamic strain
amplitude averaged over many earthquakes, we consider
peak ground motions to be an adequate order‐of‐magnitude
proxy for peak dynamic strains.

3.1. Estimating Dynamic Strain With Empirical
Ground Motion Regressions

[25] In order to take full advantage of the large number of
earthquakes in the catalog, we must calculate dynamic strain
at any point on the map for any trigger in the catalog, not
only where we have seismic stations and archived wave-
forms. We therefore use empirical ground motion regres-
sions to estimate strain as a function of distance from the
potential trigger earthquakes. Peak ground motions are well
studied at near and intermediate distances for estimating
seismic hazard and at regional and teleseismic distances for
calibrating magnitude scales [Abrahamson and Silva, 2008;
Boatwright et al., 2003; Campbell and Bozorgnia, 2007;
Joyner and Boore, 1981; Lay and Wallace, 1995; Richter,
1935]. However, published regressions rarely focus on the
very near‐field distances and small magnitudes of interest
in this study and are insufficient for our purposes. Pre-
vious researchers comparing aftershock distribution to peak
ground motions have performed their own regressions with
an emphasis on the near field [Gomberg and Felzer, 2008].
We also perform our own small‐magnitude, near‐field peak
ground velocity (PGV) regression, using California Shake-
map data [Wald et al., 1999]. Boatwright et al. [2003] also
used Shakemap data to make an empirical ground motion
regression, but used only a small subset of the data available
today and did not focus on the small distances of interest in
this study.
[26] For the near‐field regression, we follow the Next

Generation Attenuation study of Campbell and Bozorgnia
[2007] and use an equation of the form

log10 PGV ¼ c1 þ c2M � c3 log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c24

q
; ð5Þ

where PGV is peak ground velocity (in cm/s), M is earth-
quake magnitude, r is hypocentral distance (in km), and ci
are fit parameters. The fit parameters are found by regres-
sion analysis using ∼2000 PGV measurements from the
Shakemap archives (Table 1). The details of the regression
are given in Appendix B.
[27] For far‐field dynamic strain, we use the surface wave

magnitude relation [Lay and Wallace, 1995],

log10 A20 ¼ MS � 1:66 log10 D� 2; ð6Þ

where A20 is in micrometers and D is in degrees. This
equation is commonly used to assign a catalog magnitude
based on measured amplitude at some distance. We turn the
procedure around and use the catalog magnitude to calculate
amplitude. This approach uses the long‐period waves (T =
20 s) as indicators of the peak dynamic strain, implicitly
assuming that the short‐period body waves are attenuated at
large distances. The displacement A20 is converted to velocity
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for the 20 s waves by the approximation V ≈ 2pA20/T [Aki
and Richards, 2002]. Equation (6) was historically calibrated
using a similar catalog of global earthquakes to the one we
use for potential triggers and so provides a good measure of
average amplitude despite being imperfect for any individ-
ual earthquake. The standard magnitude error for this regres-
sion, reflecting both interevent variations (e.g., source depth)
and intraevent variations (e.g., radiation pattern), has been
tabulated for a selection of seismic stations [Rezapour and
Pearce, 1998], and we compute a pooled standard error of
0.28 units. Through equation (6), this corresponds to a factor
of ∼2 uncertainty in the estimated strain amplitude. The
surface wave magnitude equation is designed for distances
on the order of at least 800 km [Lay and Wallace, 1995], and
this sets the minimum distance for the population of long‐
range triggers in this study.

3.2. Defining Populations Over Space

[28] A large far‐field quake may trigger numerous earth-
quakes distributed throughout the study area. We therefore
split the study region into spatial bins and calculate R for
each of these bins (Figure 4). This generates a number of R
values for each trigger and ensures that the measurements
are not dominated by any single region with particularly
high activity. Using a spatial bin that is much smaller than
the wavelength of the long‐range trigger also ensures that
measured triggering intensity reflects the dynamic strain at
that site. These R values are then pooled according to peak
dynamic strain as calculated by equation (6) rather than
according to their particular trigger. In this way, each strain
bin incorporates numerous triggers at various combinations
of distance and magnitude.

Table 1. Best Fit Regression Constants for Equation (5)a

c1 c2 c3 c4 (km)

Unconstrained −2.29 (−2.79, −1.80) 0.85 (0.75, 0.96) 1.29 (1.58, 1.00) 0 (0, 0)
Constrained −2.83 (−3.13, −2.56) 1 1.34 (1.59, 1.03) 0 (0, 0)

aValues in parentheses are 95% confidence limits from 1000 bootstrap resamplings of the underlying peak ground velocity
data set. The regression always prefers c4 = 0. The second row of constants is used in the ETAS simulation, in which case c2 is
constrained to equal 1 to match observed aftershock scaling.

Figure 4. Cartoon illustrating the construction of earthquake populations for analysis with the interevent
time method. For the long‐range case (red), various combinations of magnitude and distance are com-
bined to create populations of earthquakes bracketing potential triggers of common dynamic strain ampli-
tude at the site of the triggered quakes. The study area is gridded, and the interevent time ratio R is
calculated in each bin for each trigger. Zones of common dynamic strain form arcs within the study zone.
For the short‐range case (blue), populations are constructed by combining all earthquakes within some
small radius of potential triggers of common magnitude. Spatial grid is not to scale.
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[29] The higher the number of bins, the higher the number
of bracketing pairs for each trigger quake, down to a lower
size limit where single earthquakes begin to be isolated. A
bin size of 0.1° × 0.1° gives the maximum number of brack-
eting pairs for the whole catalog of potential triggers, but we
perform the analysis using several different bin sizes to ensure
robustness of the results with respect to parameter choices
(section 6.3).
[30] To measure the time ratio R for near‐field triggering,

we search for the first earthquake before and after a potential
trigger in a disk centered on the trigger earthquake epicenter.
The radius of the disk is set to give the same area as in the
far‐field bins, e.g., for a far‐field bin of 0.1° × 0.1° we
define the near‐field radius as ∼6.2 km. The time ratios R
are then associated with the mean peak dynamic strain over
the area of the disk. Assuming radial symmetry (i.e., approxi-
mating the trigger as a point source) and using equations (4)
and (5), the average peak dynamic strain in the near‐field
disk is

" ¼ PGV

CS
¼ 1

CS�D2

Z D

0
PGV rð Þ2�rdr; ð7Þ

where CS is shear wave velocity, PGV(r) is given by
equation (5), and D is the radius of the disk.
[31] We estimate the uncertainty in near‐field peak dynamic

strain by bootstrap resampling the Shakemap data directly,
refitting the regression formula, and recalculating the mean
peak strain according to equation (7). This is preferable to
using the uncertainties in the regression constants them-
selves, because it accounts for strong correlations between the
regression parameters. We resample 1000 times and report
95% confidence levels.

3.3. Earthquake Catalogs

[32] Using the interevent time method on earthquake
populations requires large catalogs for both potential trigger
earthquakes and for local seismicity. The trigger catalog is
drawn from the global Advanced National Seismic System
(ANSS) catalog from 1984 through April 2008. We choose
the ANSS catalog because it includes both global earth-
quakes and local California earthquakes in a self‐consistent
catalog. More specialized regional or global catalogs may
contain more carefully determined moment magnitudes and
refined earthquake locations, but given the order of magni-
tude nature of our strain estimates, the small potential increase
in accuracy is not worth the sacrifice in consistency.
[33] For the global catalog, a depth cutoff is imposed at

100 km, because deep earthquakes do not generate signifi-
cant surface waves. Only earthquakes with surface wave
amplitude greater than 10 mm displacement are treated as
potential triggers. This minimum corresponds to a MS4.5
earthquake at 800 km. We find that this cutoff is sufficiently
small to resolve an observational threshold for long‐range
triggering.
[34] Potential near‐field triggers are drawn from the ANSS

catalog for the California study region. Other regional cat-
alogs have considerably smaller location errors than the
ANSS catalog but contain considerably fewer earthquakes.
However, location error should not be a significant source
of error for this study, because the required spatial preci-

sion is on the order of the spatial bin size. We therefore
choose the catalogwith the largest number of earthquakes. The
interevent time method should not be sensitive to regional
variations in completeness magnitude, because the incom-
pleteness should affect the pretrigger and posttrigger cata-
logs in a consistent way. However, we impose a magnitude
threshold of 2.1, based on the roll‐off in the Gutenberg
Richter distribution for the catalog as a whole, to protect
against large swings in completeness level with time. An
upper magnitude cutoff is imposed to prevent the rupture
length from exceeding the radius of aftershock collection.
For a spatial bin size of 0.1° × 0.1°, this corresponds to a
magnitude of about 5.5. The study area extends from 114° to
124° west and from 32° to 42° north.
[35] We also look at the scaling of triggering intensity

with dynamic strain in Japan. Here we use the Japan
Meteorological Agency (JMA) catalog from 1997 through
March 2006. For consistency with California, we limit the
catalog of local events to shallower than 15 km within the
land area of the four main islands of Japan. The magnitude
of completeness for the JMA catalog of shallow crustal
earthquakes may be below 2.1, but we impose this larger
magnitude cutoff for consistent comparison with California.

3.4. Practicalities of Implementation

[36] In order to evaluate the significance of R as an
indicator of triggering, we require confidence bounds on R.
We use the bootstrap method to generate confidence bounds
by randomly resampling the R distribution for a given pop-
ulation to generate a suite of estimates of R [Casella and
Berger, 2002]. The confidence bounds on triggering inten-
sity n are then calculated by applying the transformation
(equation (2)) to the bounds computed for R.
[37] We also take into consideration two potential sources

of undesirable bias for realistic sets of earthquakes: (1) the
superposition of Omori’s law on measurements made in
aftershock sequences and (2) the finiteness of the earthquake
catalog. The reader should note that understanding these
practicalities is important for implementing the interevent
time method but is not crucial for understanding the results
presented in subsequent sections.
[38] The superposition of Omori’s law on the measure-

ments is a significant issue for near‐field triggering, but not
far field, and thus could affect the two populations differ-
ently. Consider the three earthquakes shown in Figure 1.
The metric R is designed to measure whether or not earth-
quake B affects the timing of earthquake C. However, for
the near‐field case, it is possible that earthquakes B and/or
C are aftershocks of earthquake A. In this case, the times t1
and t2 are not uncorrelated. An Omori rate decay (∼t−1) is
instead superimposed on the timing of both the trigger quake
(quake B) and the subsequent quake. Measuring R in an
aftershock sequence, where seismicity rates are decreasing,
can spuriously associate the trigger with a seismicity rate
decrease. On the other hand, the far‐field population is not
subject to this effect, as it is very unlikely that a distant
earthquake B is an aftershock of a local earthquake A.
[39] Since the Omori’s law bias only affects the near‐field

population of quakes, it could interfere with the compari-
son of triggering intensity between the populations. This
bias is suppressed by requiring that any event treated as a
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trigger (earthquake B) must be larger than the preceding
local event (earthquake A). The condition ensures that the
rate increase due to the trigger is much larger than any
Omori’s law rate decrease associated with the prior quake. A
higher magnitude difference better ensures against bias at
the cost of reducing the number of eligible trigger quakes.
We find that R is stable for a magnitude difference of at
least one unit. One magnitude unit corresponds to a roughly
tenfold increase in total triggering power [Reasenberg and
Jones, 1989], and Omori’s law ensures that the difference
is in general much greater than this, because the influence of
the previous earthquake decays rapidly with time.
[40] The second potential source of bias is related to the

finiteness of the catalog. This is especially problematic in
regions where seismicity rates are low. To understand this
effect, consider an ideal catalog with no triggering and uni-
formly distributed earthquake interevent times. Now con-
sider a distant earthquake with a time near the beginning of
the catalog as a potential trigger. Since there is no triggering
in this hypothetical catalog, the times to the first earthquake
before and after (t1 and t2) should be distributed identically,
taking values between 0 and infinity, and R should be 0.5.
However, for a finite catalog, larger values of t1 and t2 are
missing, because they fall outside the bounds of the catalog.
For our hypothetical trigger near the beginning of the cat-
alog, we can only measure R when t1 happens to be small
enough to appear in the catalog, while t2 can take much
larger values and still make it into the catalog. This sampling
bias causes R to differ from 0.5. The bias is unique for each
spatial bin, as it depends on the particular combination of
trigger times and the average seismicity rate in the bin.
[41] We compute this bias stochastically by determining R

for 1000 simulated catalogs in which local earthquake occur-
rence times are replaced by uniformly distributed random
times. The calculated bias is subtracted from the values of

R measured for the actual catalog. This means that, in effect,
R is reported relative to a simulated control case with zero
triggering. For simplicity, the bias‐corrected mean is referred
to below as R.
[42] Correcting for the finite catalog bias somewhat

reduces the apparent triggering for the far‐field triggers but
does not significantly alter the near‐field data, presumably
because near‐field triggers tend to be located in regions with
very high seismicity rates. The selection criteria for avoiding
the Omori’s law bias are only applied to the near‐field
triggers. We demonstrate that these bias corrections are ade-
quate by applying the interevent time method to a simulated
earthquake catalog in section 5. First, however, we show
the results for the real seismicity catalogs.

4. Observed Triggering Intensity as a Function
of Dynamic Strain

4.1. Proof of Concept: Denali

[43] We begin attacking real data by measuring the inter-
event times for a well‐known case of pervasive triggering in
order to establish that R and n behave as designed. The 2002
magnitude 7.9 Denali earthquake generated peak dynamic
strains on the order of 2–3 × 10−7 for the California study
area, according to the empirical regressions, and is known
to have triggered significant seismicity [Gomberg et al., 2004;
Prejean et al., 2004]. For this initial case study, we disregard
dynamic strain amplitude variations and define a population
consisting of the full gridded study area. The resulting R dis-
tribution reflects significant triggering (Figure 5). The sample
mean R (with 95% confidence limits) is 0.475 (0.461–0.488),
corresponding to a fractional rate change n of 0.16 (0.08–
0.26) according to equation (2). A simple earthquake count
in the 24 h before and after the Denali earthquake indicates
a 22% seismicity rate increase in the following 24 h. These
estimates agree within error. We conclude that R is capable
of capturing triggering in a case with known seismicity rate
increases.

4.2. Triggering Intensity in the Full Catalog

[44] The real utility of the method becomes apparent when
it is applied to the full ANSS data set with over 3000
potential far‐field triggers and 12,000 near‐field triggers
meeting our criteria. Figure 6 shows measured R distribu-
tions for different dynamic strain amplitudes, corresponding
to various combinations of magnitude and distance for the
long‐range data set and various magnitudes at constant
distance for the short‐range data. The distributions show
evidence of both immediate triggering (t2 ∼ 0), in the form
of large spikes at R ≈ 0, and protracted or delayed triggering
(0 < t2 < t1), in the form of a gradual decrease in probability
density with increasing R. The distributions show larger
proportions of small R for higher dynamic strain amplitudes,
as expected.
[45] To assess whether the intensity of dynamic triggering

in the far field can account for the observed intensity of
triggering in the near field, we plot the sample mean R
and the transformed triggering intensity n, calculated from
equation (2), as a function of peak dynamic strain for both
near‐field and far‐field populations (Figures 7a and 7b). To
emphasize the scaling of R at small strains, Figure 7a shows
the value DR = 0.5 − R, as in Figure 3. Triggering intensity

Figure 5. Distribution of R for the 2002 M7.9 Denali earth-
quake. Individual R values are computed in 0.1° × 0.1°
spatial bins. The high proportion of small R values demon-
strates triggering in a large proportion of the bins. The mean
of R is 0.475. Data are smoothed by a 0.09 unit cosine filter
for clarity.
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in the far field scales with the amplitude of peak dynamic
strain. Comparing the triggering intensity for the near‐field
population to a trendline fit to the far‐field data, we find that
the far‐field (dynamic) triggering relationship can account for
roughly half of the near‐field triggering intensity (Figure 7d).

Although triggering intensity is best interpreted as a qualita-
tive measure of actual rate change, the relative values should
be fairly robust. The uncertainty is large, but the hypothesis
that both populations of triggered quakes are produced in
simple proportion to peak dynamic strain can be rejected at the
95% confidence level. Nevertheless, the far‐field triggering
relationship accounts for a significant portion of the near‐field
aftershocks, accounting for about 60% of earthquakes within
∼6 km of a M3.1 near‐field trigger and about 15% within the
same distance of a M5.5 trigger.
[46] We can define a dynamic triggering threshold in the

far field as the smallest dynamic strain for which the 95%
confidence limits on R fall above 0.5. By this definition, the
dynamic triggering threshold in California is approximately
3 × 10−9 strain. Note that this threshold is not dependent on
the transformation from R to triggering intensity n, because
the significance is evaluated through bootstrap resampling
of R itself. For a crustal shear modulus of 30 GPa, this
corresponds to a dynamic stress of 0.1 kPa. This estimate is
several orders of magnitude smaller than previously reported
for dynamic triggering [Brodsky and Prejean, 2005; Gomberg
and Davis, 1996; Gomberg and Johnson, 2005; Stark and
Davis, 1996]. We attribute this improvement in sensitivity
to the interevent time method, which can detect small rate
changes by using large populations. The threshold is dis-
cussed in more detail below.
[47] We also apply the interevent time method to Japan,

assuming that the near‐field regression determined in Cali-
fornia can be applied to shallow crustal earthquakes in Japan
at these small distances. In Japan, the dynamic strains from
the largest far‐field earthquakes are large enough to overlap
in amplitude with the smallest of the near‐field triggers.
Where the two populations overlap, we again find a small
additional near‐field component, though not at the 95%
confidence level (Figure 7c). Unfortunately, the uncertainty
ranges are too large to assess the relative contributions with
any confidence.
[48] Triggering intensity in shallow crustal Japan (Figure 7c)

is reduced relative to California in both the near‐field and
far‐field populations, with a higher dynamic triggering thresh-
old of 10−6 strain. The relative paucity of long‐range trig-
gering in Japan has been documented before [Harrington
and Brodsky, 2006], but this study shows that the reduced
triggering susceptibility extends to the near field, as well.
This difference in triggerability may reflect the difference in
tectonic style (compressive versus transpressive) between
the two study areas.

4.3. Dynamic Strain Threshold

[49] The interevent time method resolves triggering at
dynamic strains as low as 3 × 10−9. Many faults are regu-

Figure 6. Empirical probability densities (distributions)
for R. (a) Far‐field California data (trigger distance > 800 km)
for four dynamic strain increments. (b) Near‐field data for
magnitudes 3.1–5.1 in five increments. Curves have been
smoothed for clarity using a cosine‐weighted running aver-
age with a window width of 0.09 units. The oscillations at
this wavelength are therefore a spurious effect of the
smoothing. Curves are truncated at the limits to avoid plot-
ting edge effects of the smoothing.

Figure 7. (a) The mean interevent time ratio R, in terms of the deviation from the value in the absence of triggering (DR =
0.5 − R). Compare to Figure 3. Long‐range (>800 km) triggers are in red, and short‐range triggers (<6 km) are in blue.
Vertical and horizontal error bars are 95% confidence limits. The green point corresponds to the Denali earthquake. The red
horizontal bar shows the 2s uncertainty associated with the far‐field peak ground motion estimates. Triggering intensity n
(R transformed via equation (2)) as a function of peak dynamic strain in (b) California and (c) Japan. The black dashed line
in Figures 7a and 7b shows the weighted least squares fit to the California far‐field data, along with 95% confidence levels.
The best fit curve for California is also shown in Figure 7c for comparison with Japan. (d) The fraction of near‐field
triggered quakes accounted for by the far‐field scaling relationship. First and second error bars represent 64% and 95%
confidence limits, respectively.
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larly exposed to such small dynamic strain amplitudes with-
out being triggered [Spudich et al., 1995]. The scaling of R
with dynamic strain may therefore best reflect the distri-
bution of fault strengths. The very low triggering intensity

at the threshold would then reflect the scarcity of faults so
very near failure.
[50] The dynamic strain threshold is also smaller than

tidal strain fluctuations [Cochran et al., 2004; Scholz, 2003].

Figure 7
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This is somewhat puzzling, because tidal strains might be
expected to activate all available nucleation sites on a daily
basis and set a lower limit for dynamic triggering. Strain
tensors associated with crustal earthquakes are likely ori-
ented with more variety than those due to the tides, however,
and may access faults that tides are incapable of triggering.
In addition, the forcing at the relatively long periods of the
tides may be intrinsically different from the dynamic strains
imposed at the short periods of seismic waves [Beeler and
Lockner, 2003; Gomberg et al., 1997; Savage and Marone,
2008].
[51] Evaluating the probability of triggering as a function

of dynamic strain (Figure 8) aids in the interpretation of the
observed triggering threshold. Probability is calculated from
the triggering intensity n using the same Poissonian statis-
tical model as before (Appendix C). This is not a new devel-
opment, as the Poisson model is commonly used to transform
an estimate of the number of triggered events into a prob-
ability of earthquake occurrence in a given time period
[Reasenberg and Jones, 1989]. We discuss the probability
of triggering in order to address (1) whether we would expect
to resolve triggering below the threshold we have identified
and (2) why previous studies may have failed to identify
triggering at the very low levels identified here.
[52] The probability of triggering an earthquake within its

own recurrence interval, as a function of n, is given by

P NEQs � 1
� � ¼ 1� exp � nþ 1ð Þf g: ð8Þ

The baseline probability of having an earthquake in the
absence of any rate change (n = 0) is ∼63%. A positive n
produces a positive probability gain. Figure 8 shows that the
probability gain decreases smoothly to zero as n decreases.
For the ∼3 × 10−9 strain bin in California, there are ∼105
interevent time measurements (∼103 triggers × ∼102 bins
containing local earthquakes), and this number of events
is sufficient to find R less than 0.5 at the 95% confidence
level. We estimate (based on an assumed

ffiffiffi
n

p
scaling of the

confidence bounds) that an order of magnitude more observa-
tions would be needed to push the observable threshold an
order of magnitude lower. This exceeds the size of the
earthquake catalog, and we infer that the absence of detected
triggering at dynamic strains of less than 3 × 10−9 reflects an
observational limit and not necessarily a physical threshold.
If triggering occurs at lower dynamic strain amplitudes, we
would not expect to resolve it.
[53] Understanding the probability of triggering also helps

explain why previous studies have not identified dynamic
triggering at the threshold reported here. Previous esti-
mates of the dynamic triggering threshold have been based
on waveform inspection, counting statistics, and/or likeli-
hood methods. If triggering intensity n > 1, the change in
seismicity rate is comparable to the background rate, and
triggering is easily observable by inspection. Perhaps the
conventional division between aftershocks and the more
recently discovered far‐field triggered populations results
from the ease of observing large seismicity increases (n > 1)
compared to the more subtle far‐field triggering (n < 1). For
a Poisson process, the variance is equal to the average rate,
so n > 1 also roughly corresponds to the threshold for sta-
tistical significance using an earthquake count. Therefore,
only the seismicity rate increases corresponding to n > 1,
i.e., dynamic strains of nearly 10−5 are easily observable by
these methods. Likelihood‐based methods, in which trig-
gered earthquakes are identified by determining whether the
modeled likelihood of their occurrence is otherwise small,
cannot resolve triggering where the triggering probability
itself is very small. Figure 8 shows that the probability of
observing a triggered earthquake does not exceed 5% below
10−6 dynamic strain. If triggering results in an additional
earthquake fewer than 5% of the time, we cannot be 95%
confident that the resulting earthquake count did not occur by
chance. These considerations may explain why previous
studies have not identified dynamic triggering at the level of
3 × 10−9 strain.

5. Validation and Calibration Through Statistical
Seismicity Simulations

5.1. Effect of Triggering Cascades on the Measured
Scaling of Triggering Intensity With Strain

[54] We have shown that triggering intensity scales with
dynamic strain in both near‐field and far‐field populations,
with a moderate additional component in the near field.
However, there is a problem interpreting the quantitative
slope of this trend. Previous work using earthquake counting
and carefully declustered seismicity catalogs has shown that
the number of local aftershocks following a main shock of
magnitude M goes as 10aM, with a ≈ 1 [Felzer et al., 2004;
Helmstetter et al., 2005]. Since dynamic strain scales with
magnitude as " / 10M (equations (5) and (6)), this implies a

Figure 8. Probability of having an earthquake within the
pretrigger recurrence interval (equation (8)) as a function
of peak dynamic strain in California. Colors and error bars
are as in Figure 7. The horizontal dotted line shows the
baseline probability of having an earthquake within its own
recurrence interval in the absence of triggering (∼63%). The
black dashed line is the best fit line from Figures 7a and 7b
transformed using equation (8) and shows that the rapid
increase in probability is consistent with a smooth increase
in triggering intensity. The threshold for dynamic triggering
(black arrow) is seen to be an observational threshold, with
the probability of observed triggering going smoothly to
zero with decreasing dynamic strain.
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linear scaling of aftershock rate with peak dynamic strain.
Studies comparing aftershock spatial decay directly to peak
ground velocities also find aftershock rates to be consistent
with a linear scaling with strain [Felzer and Brodsky, 2006;
Gomberg and Felzer, 2008]. In contrast, this study suggests
that triggering intensity varies with dynamic strain roughly
as n / "0.5 in both populations (Figure 7b). We will now
show that this discrepancy arises from the application of a
probability model derived for isolated earthquake sequences
to a catalog containing superimposed triggering cascades. In
essence, the transformation fails to take into account that the
interevent times are effectively sampled from two underly-
ing distributions: the distribution of interevent times for
triggered earthquakes and the distribution of times for back-
ground or uncorrelated quakes. The observed distribution of
R is therefore a superposition of the two distributions illus-
trated in Figure 2. Fortunately, this effect can be quantified
and calibrated using statistical simulations.
[55] As described in section 2.2, the sample mean R is

transformed to triggering intensity n via a probabilistic model
for earthquake occurrence times. This transformation is
adequate for recovering the qualitative scaling of triggering
rate change with dynamic strain amplitude. However, in
order to recover absolute rates, we must employ a more
sophisticated model that considers the effect of earthquake

cascades. The simple transformation from R to n implicitly
assumed that we correctly associate earthquakes with their
respective triggers, but a real catalog contains numerous
superimposed triggering cascades. The first earthquake before
and after a trigger may or may not then be causally related.
If they belong to a different earthquake sequence, they will
introduce R values sampled from a uniform distribution,
and the resulting distribution will be some combination of
the two curves illustrated in Figure 2. This has the effect of
dampening the observed triggering signal.

5.2. Modeling Earthquake Cascades:
Epidemic‐Type Aftershock Sequence

[56] To evaluate whether the presence of superimposed
earthquake cascades can explain the discrepancy between
our recovered slope in Figure 7b and previous work based
directly on earthquake counts, we generate an artificial earth-
quake catalog that follows the usually observed statistics of
magnitude, timing, and triggering distributions (Appendix D).
Because causality is known in the simulation, we can inves-
tigate how the use of the first earthquake before and after the
trigger affects the recovered scaling relationship.
[57] A well‐established method for generating such a cat-

alog is the epidemic‐type aftershock sequence (ETAS) [Ogata,
1992]. ETAS uses well‐known empirical statistical seis-
micity laws as probability distributions to generate sto-
chastic seismicity catalogs. Numerous researchers have
used ETAS models to study the complex statistical repercus-
sions of simple earthquake cascades [Felzer et al., 2002, 2004;
Hardebeck et al., 2008; Helmstetter and Sornette, 2003;
Holliday et al., 2008]. Here we use ETAS to study the effects
of superimposed earthquake triggering sequences on our
transformation of R to an estimate of fractional rate change.
[58] We first apply the interevent time method to a zero‐

dimensional ETAS catalog. The zero‐dimensional model
simulates earthquakes in time only, disregarding spatial dis-
tribution, in order to isolate the effect of the earthquake
cascade. The triggering law in the simulation corresponds to
the case of the nonhomogeneous Poisson process with an
Omori decay and the number of triggered earthquakes scales
with a = 1. We measure R for this simulated catalog using
the first earthquake before and after each trigger (unknown
causality) and also along individual branches of the trig-
gering cascade (known causality). Both the stepwise homo-
geneous Poisson and the nonhomogeneous (Omori) model
are then used to transform R to a triggered rate change.
[59] If interevent times are measured with respect to

known branches of the cascade, i.e., if the causal relation-
ships are known, the transformation from R to n recovers
the scaling law that was put into the model (Figure 9). If
we instead use the first earthquake before and after a puta-
tive trigger, a scaling with a = 0.5 is recovered, similar
to that recovered for the real catalog. This demonstrates
that the discrepancy between our scaling and that found in
other studies is due to the inclusion of some noncausally
related interevent times in the R distribution. The simulation
therefore suggests that our interevent time observations are
consistent with the number of triggered earthquakes being
directly proportional to dynamic strain, as found in previous
studies. Consequently, the triggering intensity calculated by
our transformation represents a lower bound on the real
fractional rate change.

Figure 9. Testing the effect of the earthquake cascade on
the transformation of R to triggering intensity n. A zero‐
dimensional (time only) ETAS model is used to generate a
simulated seismicity catalog in which the triggering law
and causal relationships are known. The nonhomogeneous
transformation using Omori’s law (thick lines) and the step-
wise homogeneous transformation (thin lines) recover simi-
lar triggering intensities. If the interevent time ratio R is
calculated using the first causally related earthquake before
and after the trigger, the transformation recovers the
imposed triggering law (solid curves). If the R calculation
is not restricted to known causally related earthquakes (as
occurs for real catalogs), the method recovers a reduced
scaling exponent (dashed curves). Error bars are 95% confi-
dence limits. Reference lines show a slope of 1 (the input
relationship) and 0.5.
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[60] We have claimed that triggering intensity n serves as
a good qualitative measure of the scaling with dynamic
strain amplitude as long as it scales in a consistent manner
with R. The zero‐dimensional simulation shows that n indeed
scales consistently, but the zero‐dimensional simulation
only considered near‐field aftershock triggering, not trig-
gering from distant earthquakes unconnected to the local
earthquake cascade. It is possible that the effect of unknown
parentage will be different in the near field and far field.
Since our conclusions about the relative contribution of
dynamic strains in triggering near‐field earthquakes is based
on a projection of the far‐field relationship into the near
field, we need to confirm that the two populations are
affected identically, despite the imperfect transformation to
modeled rate change (i.e., equation (2)).

5.3. Space‐Time ETAS Simulation

[61] To verify the robustness of the comparison between
populations, we apply the interevent time method to a simu-
lated earthquake catalog in which earthquakes are produced
in simple proportion to peak dynamic strain at all distances.
If the interevent time method recovers a continuous trend
between the simulated near‐field and far‐field populations,
we can then interpret the observed offset between the real
populations as reflecting an additional near‐field triggering
component.
[62] To appropriately represent the two populations defined

in this study, we use a full space‐time simulated ETAS cat-
alog (Appendix D). We make a key modification to the
model, introducing far‐field triggering in direct proportion
to dynamic strain, as calculated from the empirical ground
motion regression in equation (6). We also modify the near‐
field triggering rules to reflect the empirical PGV constants
in equation (5). This requires very minor adjustments of
published ETAS parameters. In order to match the known
scaling of aftershock productivity with main shock magni-
tude, we set the regression constant c2 = 1. This produces a
negligibly larger misfit than the unconstrained PGV regres-
sion and does not significantly change the spatial decay
(Table 1). This allows us to generate both near‐field after-
shock triggering and long‐range triggering from distant
sources with a consistent triggering rule.
[63] Applying the interevent time method, we recover a

continuous trend for a representative set of ETAS parameter
taken from the literature (Table 2 and Figure 10). This verifies
that the method is capable of qualitatively measuring trig-
gering in an ideal catalog with triggering proportional to
strain. We are therefore justified in interpreting the offset
in near‐field and far‐field triggering as reflective of an addi-
tional near‐field triggering process.

[64] In section 5.2, we found that the transformation from
R to triggering intensity n underestimates the actual pro-
ductivity scaling a because of the superposition of trigger-
ing cascades. In the space‐time ETAS simulations, we
find that the slope of the trend is also reduced relative to
the input value and varies slightly for different simulation
runs, perhaps correlating with the fraction of triggered ver-
sus background earthquakes in a particular realization. The
precise relationship between the absolute value of n and the
other statistics of the catalog is beyond the scope of this
study.

6. Discussion

6.1. Implications for Dynamic Triggering

[65] Triggering intensity scales with peak dynamic strain in
the far field. Triggering in the far field (further than 800 km)
can be confidently attributed to a dynamic agent, because
the triggered earthquakes are well beyond the several source
dimensions affected by static and postseismic stresses
and the waiting times to the first triggered earthquakes are
much less than the ∼10 years required to propagate stresses
viscously to these distances, as discussed in section 1. The
empirical proportionality between dynamic strain and trig-
gering intensity can account for a significant portion of
triggering in the near field, but not all. Additional near‐field
triggering may reflect any or all of the following factors:

Figure 10. Triggering intensity n, determined by the inter-
event time method, plotted as a function of peak dynamic
strain for simulated seismicity catalogs. Triggering is simu-
lated as an identical function of peak dynamic strain in both
near‐field (blue hues) and far‐field (red hues) populations.
Different point brightnesses correspond to different simu-
lation realizations. The recovery of a continuous trend
between near‐field and far‐field populations validates the
method and demonstrates that the offset in the observed
trend (Figure 7b) can be confidently interpreted as reflect-
ing an additional near‐field triggering component. Lines of
slope = 1 (the input relationship) and slope = 0.5 are plotted
to show that the recovered scaling is again reduced relative
to the input.

Table 2. Parameters Used in the ETAS Simulation, Representative
of Californiaa

A
c

(days) p
�

(events km−2 strain−1)

Hardebeck et al. [2008] 0.008 0.095 1.34 454

aA is the productivity constant that controls the number of aftershocks per
main shock, c is the time offset in the modified Omori’s law, p is the time
decay of aftershock rate in Omori’s law, and � is the productivity constant
as a function of dynamic strain, calculated according to equation (D7).
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(1) the effect of prolonged static or postseismic strain near
the main shock, (2) a dependence on frequency content
where higher‐frequency dynamic waves are more effective
triggers, or (3) the concentration of potential nucleation
sites (e.g., secondary fault strands, damage zones) in the
regions very near to main shocks. If the near‐field triggering
component reflects static stress triggering, then this obser-
vation suggests that dynamic and static strains produce
roughly equivalent numbers of earthquakes in the near‐field
of intermediate‐magnitude earthquakes. Therefore, both effects
must be taken into account to explain aftershock numbers
and spatial distributions.
[66] It is important to note that the interevent time mea-

surements do not simply reflect unusual behavior at the
beginning of aftershock sequences. In fact, for small near‐
field triggers near the magnitude of completeness, the first
triggered event is often the only aftershock in the sequence.
Furthermore, stacked sequences consisting of only the first
aftershocks of small main shocks follow the same Omori’s
law decay as single aftershock sequences of large main
shocks [Felzer et al., 2004; Felzer and Brodsky, 2006]. This
implies that there is no physical distinction between the
first cataloged aftershock and subsequent aftershocks in a
sequence.
[67] How do dynamic strains, which produce no perma-

nent load change, nonetheless account for a significant
portion of near‐field triggering? The low threshold for
dynamic triggering suggests that arbitrarily small dynamic
strains can trigger earthquakes on nucleation sites that are
sufficiently near failure. Without a physical threshold for
dynamic triggering, the question is one of a balance of two
time scales, the time scale over which a nucleation site is
loaded to failure quasi‐statically versus the time between
dynamic strain events large enough to push the fault the rest
of the way. If the dynamic trigger recurrence time is smaller
than the quasi‐static time to failure, the fault will be trig-
gered dynamically. A fault far from failure is unlikely to be
triggered by any but the largest dynamic strain events.
However, as the fault nears failure, not only are smaller and
smaller dynamic strains required for triggering, but the
availability of sufficient triggers increases due to the greater
abundance of small earthquakes.
[68] In fact, a simple scaling argument shows that a fault

is just as likely to be triggered by a small dynamic strain
event as by a large one. The ETAS models show that the
data are consistent with the number of dynamically trig-
gered earthquakes being linearly proportional to dynamic
strain. The number of earthquakes triggered by an earth-
quake of magnitude M therefore goes roughly as ∼10M. The
Gutenberg‐Richter distribution gives that the number of
earthquakes with magnitude M goes as ∼10−M. Therefore,
the total triggering power for each magnitude bin as a whole
is constant,

N ¼ NTriggers � NTriggered ¼ 10�M � 10M ¼ constant: ð9Þ

Small‐amplitude triggers and earthquakes with magnitudes
below the level of catalog completeness are therefore very
important in triggering subsequent earthquakes. Similar argu-
ments for the importance of small earthquakes have been
made previously based on statistical considerations [Felzer

et al., 2004; Felzer and Brodsky, 2006; Helmstetter et al.,
2005; Sornette and Werner, 2005a, 2005b].
[69] The low observational threshold and the linear rela-

tionship between triggering intensity and dynamic strain
amplitude place constraints on the mechanics of triggering.
For example, these observations are not consistent with the
exponential dependence between stress/strain and the num-
ber of triggered earthquakes predicted by classical rate and
state friction [Brodsky, 2006; Dieterich, 1994; Gomberg,
2001]. The simplest way to reproduce the far‐field observa-
tions may be to invoke a population of nucleation sites with
a uniform distribution of dynamic triggering thresholds and
a Coulomb‐type nucleation criterion.

6.2. How Delayed Earthquakes Can Be Triggered
Earthquakes

[70] Studies frequently identify only those earthquakes
occurring during the passage of seismic waves as dynami-
cally triggered. In applying the interevent time technique,
we include arbitrarily delayed “first” earthquakes after the
trigger. This inclusion is based on several considerations.
[71] First, the designation of an earthquake as “first” is a

threshold‐dependent, observational distinction. For a lower
catalog detection threshold, we should always be able to
find an earlier quake. This consideration is especially impor-
tant for near‐field triggering, where the detection threshold
can be temporarily elevated and a tremendous number of
early aftershocks are usually missing from earthquake cat-
alogs [Kagan, 2004; Peng et al., 2007]. Operationally, it is
impossible to distinguish between primary, secondary, and
delayed triggered earthquakes, as they share identical space,
time, and magnitude statistics [Brodsky, 2006; Felzer et al.,
2004; Kagan, 2004]. Regardless, the rates of all of these
classifications of earthquakes should be correlated, and sec-
ondary or delayed triggered earthquakes should reflect the
intensity of the primary triggering process.
[72] Second, we wish to allow for the possibility that

dynamic strains can trigger earthquakes by inducing a semi-
permanent change in the properties of the fault patch, rather
than only through transiently exceeding the fault strength.
Several studies have identified or posited long‐lasting chan-
ges in the mechanical properties or effective stresses within
fault zones related to the passage of high‐amplitude seismic
waves [Brodsky et al., 2003; Elkhoury et al., 2006; Johnson
and Jia, 2005; Parsons, 2005; Taira et al., 2009]. Delayed
triggering may then simply reflect the prolonged nature of
the triggering process.
[73] Regardless of whether delayed triggering reflects an

incompletely observed earthquake cascade or a prolonged
physical perturbation of the fault conditions, the inadvertent
inclusion of uncorrelated (nontriggered) events will not inval-
idate the interevent time method, because these interevent
times are drawn from a uniform distribution of R values and
will not impart a false positive bias.

6.3. Robustness of the Observations With Regard
to Parameters

[74] The binning of the data and the separation of trig-
gered quakes into far‐field and near‐field populations
required the introduction of arbitrary parameters. We want
to be certain that our conclusions are robust with respect to
these parameter choices. The success of the method in
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recovering a continuous trend for a control case using a
simulated catalog with a continuous triggering law is a good
confirmation, but we also check the robustness of the ob-
servations with respect to the data selection parameters.
[75] The first arbitrary parameter is the spatial bin size.

The results shown in Figures 7–8 use a bin size of 0.1°,
because this maximizes the number of R values we can
calculate. Figure 11 confirms that the measurements are not
sensitive to the spatial bin size, as long as the number of data
points remains high. We show results for bin sizes between
∼8 and 123 km2 (0.025°–0.1° on a side). For larger bins,
either the reduced quantity of data or the masking of trig-
gered activity by unrelated local aftershocks causes confi-
dence limits to exceed the mean triggering signal.
[76] The distance cutoff for far‐field triggers also does not

influence the results. Trials using minimum far‐field cutoff
distances of 800 km through 3200 km all recover essentially
the same far‐field scaling (Figure 12).
[77] Finally, to make sure the long‐range triggering signal

is not generated entirely by isolated geothermal areas, we
plot the contribution of each spatial bin to the total measured
triggering intensity, combining all the far‐field amplitude
bins (Figure 13). Geothermal regions (particularly Long
Valley and Salton Trough) contribute strongly, but virtually
all regions of active seismicity in California contribute to the
long‐range triggering signal.

6.4. Relation to Previous Work

[78] Dividing earthquakes into populations with common
strain is a novel way of looking at the scaling of triggering

intensity with dynamic strain. Previous work has shown the
relevance of dynamic triggering in the near field by com-
paring the falloff in aftershock density away from a main
shock to the falloff of seismic waves at near and interme-
diate distances [Felzer and Brodsky, 2006; Gomberg and
Felzer, 2008]. These correlations cannot be trivially mapped
to a particular function of dynamic strain, however, because
the decay in triggering intensity is superimposed on the
decay of available nucleation sites away from the main
shock. It is therefore necessary to carefully analyze the sta-
tistics of nontriggered (background) seismicity in order to
extract the triggering function. The method defined here
does not suffer from this ambiguity with respect to a back-
ground distribution, because each value of R reflects the
seismicity rate change at a single site. We therefore do not
need to be concerned about the geometry of the local fault
network.

7. Conclusion

[79] The observations presented here have the following
implications: far‐field triggering scales with peak dynamic
strain. This scaling, projected into the near field, accounts
for 15%–60% of earthquakes within 6 km of magnitude 3–
5.5 earthquakes. The additional near‐field triggering com-
ponent may reflect static stress triggering, frequency depen-
dence for dynamic triggering, or concentration of nucleation
sites very near main shocks. Extremely small dynamic
strains can trigger faults if they are sufficiently near failure,

Figure 11. Triggering intensity as a function of dynamic
strain for different bin sizes. Curves on the left are far‐field
data; curves on the right are near‐field. The legend gives the
far‐field spatial bin dimension in degrees for each curve.
The near‐field aftershock radius is scaled to cover the same
area as the far‐field bins. For clarity of presentation, data are
plotted against the peak dynamic strain integrated over the
bin rather than the averaged dynamic strain and are therefore
offset. The slopes of the curves and the absolute values of
the triggering intensity change slightly with bin size, but
the offset between trends is robust.

Figure 12. Sensitivity to long‐range trigger cutoff distance
for the California data set. The legend gives the minimum
distance used for potential far‐field trigger earthquakes.
Results are not sensitive to distance cutoffs above 800 km,
although uncertainties grow larger because of the reduced
catalog size for larger cutoffs. We do not investigate dis-
tance cutoffs below 400 km, because the surface wave mag-
nitude relation (equation (6)) is not appropriate for such small
distances.
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down to the observed level of 3 × 10−9 dynamic strain.
ETAS simulations in which earthquakes are produced in
direct proportion to dynamic strain reproduce the observed
scaling of triggering intensity versus strain, suggesting that
dynamic triggering intensity is linearly proportional to peak
dynamic strain amplitude. This places a useful constraint on
models for earthquake triggering mechanisms.

Appendix A: Expectation of R for a Poisson Process
With a Step Change in Intensity

[80] To find the expectation of the interevent time ratio R
as a function of rate change, we first derive the distribution

of R using an assumed distribution of interevent times t1
and t2 based on a probabilistic model. As discussed in the
text, the most widely accepted model for the interevent
time distribution is the nonhomogeneous Poisson process.
We approximate this model with a stepwise homogeneous
process. In a homogeneous Poisson process, events occur
randomly in time with some average rate l, known as the
intensity. If the intensity l is independent of time, the inter-
event times follow an exponential distribution,

f tð Þ ¼ � exp ��tf g: ðA1Þ

In a nonhomogeneous Poisson process, the intensity l is a
function of time and the interevent times are distributed as

f tð Þ ¼ � tð Þ exp �
Z t

0
� �ð Þd�

� �
; ðA2Þ

where l(t) is the intensity at time t. The term within the
exponential in both cases is the expected number of events at
time t. We define the expected number of events N(t) as

N tð Þ �
Z t

0
� �ð Þd� ðA3Þ

for use in subsequent equations.
[81] The joint distribution of two independent interevent

times is the product of two exponential distributions,

f t1; t2ð Þ ¼ �1 t1ð Þ�2 t2ð Þ exp �N1 t1ð Þ � N2 t2ð Þf g; ðA4Þ

where the subscripts 1 and 2 refer to intensities and times
before and after the trigger, respectively. We derive the joint
distribution of R (equation (1)) and a dummy variable T = t2
by substituting these variables into equation (A4) and multi-
plying by the absolute value of the Jacobian of the variable
transformation [Casella and Berger, 2002; Walpole and
Myers, 1989]. Expressed in terms of R and T,

t1 ¼ T

R
� T ;

t2 ¼ T :

ðA5Þ

The Jacobian of the transformation can be thought of as
describing how areas under the distribution are expanded
or contracted through the transformation. It is given by

J ¼ det

@t1
.
@R

@t1
.
@T

@t2
.
@R

@t2
.
@T

0
B@

1
CA ¼ det

� T

R2

1

R
� 1

0 1

0
@

1
A ¼ � T

R2
:

ðA6Þ

The joint distribution for R and T is then

f R; Tð Þ ¼ �1
T

R
� T

� �
�2 Tð Þ exp �N1

T

R
� T

� �
� N2 Tð Þ

� �
� T

R2

				
				:

ðA7Þ

Figure 13. The geographical distribution of triggering sus-
ceptibility in California partially reflects the background
activity rate. (a) Triggering intensity in 0.1° spatial bins
for dynamic strains above 10−9. (b) Background seismicity
rate [Hardebeck et al., 2008], expressed in terms of the
number of magnitude 4 and greater earthquakes per year in
each ∼0.5° bin. The plots are qualitatively similar, implying
that all regions of active seismicity are triggerable and no
single region dominates the triggering signal. Both maps are
smoothed by a 0.3° Gaussian kernel.

VAN DER ELST AND BRODSKY: CONNECTING TRIGGERING TO DYNAMIC STRAIN B07311B07311

16 of 21



The marginal distribution of R is obtained by integrating
equation (A7) with respect to T,

f Rð Þ ¼
Z 1

0
�1

T

R
� T

� �
�2 Tð Þ exp �N1

T

R
� T

� �
� N2 Tð Þ

� �
T

R2
dT :

ðA8Þ

The expectation of R is defined as

Rh i ¼
Z 1

0
Rf Rð ÞdR: ðA9Þ

Substituting equation (A8) into equation (A9) gives

Rh i ¼
Z 1

0

Z 1

0
�1

T

R
� T

� �
�2 Tð Þ exp �N1

T

R
� T

� �
� N2 Tð Þ

� �

� T
R
dTdR: ðA10Þ

For an otherwise homogenous Poisson process with a step
change in intensity l, the solution to equation (A10) is

Rh i ¼ �1�2

�2 � �1ð Þ2
�1

�2
þ ln

�2

�1

� �
� 1

� �
: ðA11Þ

Let us now define the fractional rate change as the number
of triggered earthquakes in some posttrigger time interval
normalized by the number that would be expected for the
pretrigger rate,

n � N2 tð Þ � N1 tð Þ
N1 tð Þ : ðA12Þ

For the stepwise homogeneous Poisson process, where l1
and l2 are each independent of time, this becomes

n ¼ �2 � �1

�1
: ðA13Þ

The expectation of R for the stepwise homogeneous process
(equation (A11)) can then be rewritten solely as a function
of fractional rate change n,

Rh i ¼ 1

n2
nþ 1ð Þ ln nþ 1ð Þ � n½ �: ðA14Þ

Equation (A14) is equation (2) in the main text with the
parameter n identified as triggering intensity. The sample
mean R is transformed to triggering intensity n by equating
R with the expectation hRi and solving numerically for n.
[82] We can also calculate the expectation of R for the

nonhomogeneous (Omori‐decaying) Poisson process, given
an estimate of the parameters in Omori’s law. In this case,
the posttrigger rate is given by

�2 tð Þ ¼ �1 þ k

t þ cð Þp : ðA15Þ

The number of expected events as a function of time is then

N2 tð Þ ¼ �1t þ k

1� p
t þ cð Þ1�p � c1�p

h i
; p 6¼ 1

N2 tð Þ ¼ �1t þ k ln
t

c
þ 1


 �
; p ¼ 1:

ðA16Þ

Substituting these definitions of l2 and N2 into equation (A10),
we integrate numerically to find the expectation of R.
[83] The transformation from observed R to fractional rate

change n with the nonhomogeneous Poisson process is
carried out by iteratively solving for the parameter k through
equation (A10) and then calculating the fractional rate
change n (equation (A12)) using equation (A16) for N2(t). A
natural time scale for calculating n is t = l1

−1, the expected
time to the first event given the pretrigger rate l1. The
definition of fractional rate change n for the nonhomoge-
neous model then reduces to

n ¼ k

1� p
��1
1 þ c

� �1�p � c1�p
h i

; p 6¼ 1

n ¼ k ln
1

c�1
þ 1

� �
; p ¼ 1:

ðA17Þ

In this case, we need to estimate a representative back-
ground rate, as well as the Omori’s law parameters. The
fractional rate change recovered using equation (A17) is
very similar to that recovered by the stepwise homogeneous
transformation, as reflected by Figure 3.

Appendix B: Shakemap Peak Ground Velocity
Regression

[84] We begin with an equation modified from the Next
Generation Attenuation study of Campbell and Bozorgnia
[2007],

log10 PGV ¼ c1 þ c2M � c3 log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c24

q
; ðB1Þ

where PGV is peak ground velocity (in cm/s), M is earth-
quake magnitude, r is hypocentral distance (in km), and ci
are fit parameters. This is equation (5) in the main text. This
equation differs from Campbell and Bozorgnia [2007] only
in the lack of magnitude dependence for the attenuation with
distance. We also try a functional form that includes an
exponential attenuation term but find that attenuation is
negligible at the small distances studied.
[85] The regression data set consists of peak velocities

from seismic stations within 15 km hypocentral distance
from all California earthquakes having an archived Shake-
map (http://earthquake.usgs.gov/earthquakes/shakemap). As
of November 2009, this constitutes just over 2000 PGV
measurements, with 140 within the ∼6.2 km range defined
as the near field in this study. PGV is corrected to hard rock
values following the Shakemap methodology, which uses
NEHRP site classifications based on shallow shear wave
velocity [Wald et al., 2006, section 2.4.3]. Data flagged as
outliers during the generation of the Shakemaps are
excluded. Since Shakemaps are generated very rapidly after
a quake, earthquake magnitudes and locations listed in the
Shakemap archive are often preliminary. Earthquake mag-
nitudes and locations are therefore taken from the ANSS
catalog for California, which combines locations from both
northern and southern California seismic networks and is a
more authoritative source. To reduce the potential impact of
errors in earthquake locations, only data from earthquakes
with catalog depths of at least 2 km are considered.
[86] A MATLAB nonlinear optimization algorithm (FMIN-

CON) is used to solve for the constants in equation (B1),
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with the constraint that constants c2, c3, and c4 be positive.
To make the regression as representative of near‐field mea-
surements as possible, the data are weighted by the space
between data points. This is roughly equivalent to fitting the
regression curve to binned data. The best fit regression para-
meters are given in Table 1 (first row). The 95% confidence
levels for each parameter are computed from 1000 bootstrap
resamplings of the Shakemap data. The regression always
finds c4 = 0 km, and therefore, we do not report error bounds
on this parameter. However, due to the lack of data at very

small distances, we must consider this parameter somewhat
ill‐constrained. The regression and regression misfit are
plotted against distance and magnitude in Figure B1, along
with several other published regressions for comparison.
This regression is the most appropriate proxy for dynamic
strain in our magnitude and distance range, as it is condi-
tioned entirely on data within this range.
[87] For use in the ETAS simulation, we also perform a

regression in which the magnitude scaling constant c2 is con-
strained to equal 1 (Table 1, second row). This is for con-

Figure B1. Peak ground velocity regression based on California Shakemap data. (a) PGV as a function
of distance for a M4 reference earthquake, using several published regressions (blue [Atkinson and Boore,
1997], magenta [Boatwright et al., 2003], green [Abrahamson and Silva, 2008], cyan [Campbell and
Bozorgnia, 2007]), as well as the regression found in this study (red curve). Gray dots are individual
PGV measurements, rescaled to the reference magnitude, using the regression from this study. The vertical
dashed line at ∼6.2 km marks the boundary of the near‐field region defined in this study. (b) Log10
misfit (the predicted PGV divided by the observed PGV) for each of the regressions in Figure B1a as a
function of distance. Misfits are averaged over magnitudes 3.5–5.5. Vertical dashed line as in Figure B1a.
(c) PGV as a function of magnitude at a reference distance of 5 km. (d) Log10 misfit as a function of
magnitude for the various regressions, averaged over distances from 0 to 15 km.
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sistency with known aftershock scaling with magnitude.
This constraint does not significantly alter the spatial com-
ponent of the regression.

Appendix C: Calculation of Earthquake
Probability From R

[88] Appendix A shows how to transform the distribution
of R into fractional earthquake rate change n, assuming
Poisson distributed interevent times. The same statistical
model can be used to calculate the probability of triggering
an earthquake given the estimated rate change. For a
homogeneous Poisson process, the probability of observing
exactly m events in time period t, given the average event
rate l, is given by

P NEQ ¼ mj�t� � ¼ �tð Þme��t

m!
: ðC1Þ

The probability of observing one or more events is equal to
1 minus the probability of observing zero events,

P NEQ > 0j�t� � ¼ 1� P NEQ ¼ 0j�t� � ¼ 1� exp ��tf g: ðC2Þ

Over one recurrence interval (time t = l1
−1), the probability

of observing at least one event given fractional rate change
n is

P NEQ � 1jn� � ¼ 1� exp � nþ 1ð Þf g: ðC3Þ

That is, if the average seismicity rate was one earthquake
per day, the probability of seeing an earthquake on any given
day, in the absence of triggering, is about 63%. Equation (C3)
then gives the adjusted probability of seeing that “daily”
earthquake given the increase in seismicity rate measured
by n. Equation (C3) is equation (8) in the main text.

Appendix D: Modified ETAS Simulation

[89] The epidemic‐type aftershock sequence (ETAS)
model uses empirical probability distributions to stochasti-
cally generate realistically clustered earthquake catalogs
[Ogata, 1998]. We briefly summarize the governing equa-
tions here and direct the interested reader to the studies cited
in the main text for more information.
[90] 1. Earthquake magnitudes are assigned from a

Gutenberg‐Richter probability distribution,

N Mð Þ ¼ 10a�bM ; ðD1Þ

where N is the number of earthquakes with magnitude
greater than or equal to M, and a and b are constants, with b
typically around 1.
[91] 2. The temporal decay of aftershock sequences is

governed by the modified Omori’s law, which states that
aftershock rate decreases approximately as 1 over the time
since the main shock,

R tð Þ / cþ tð Þ�p; ðD2Þ

where R is the instantaneous aftershock rate, c is a constant
that effectively keeps the rate finite at zero time, and p is the
decay exponent.

[92] 3. An aftershock productivity law is necessary to
close the equations in time and magnitude. Previous work
shows that the number of aftershocks scale exponentially
with main shock magnitude [Felzer et al., 2004; Helmstetter
et al., 2005].

NAS / 10�M ; ðD3Þ

where a is a constant near 1 and M is main shock magni-
tude. Equations (D2) and (D3) are related, in that the integral
of R(t) over the duration of the aftershock sequence equals
NAS, and we define a productivity constant A, such that

NAS ¼
Z1

0

A� 10� M�Mminð Þ

cþ tð Þp dt; ðD4Þ

where Mmin is the minimum magnitude in the simulation.
For p > 1, NAS is finite. For p ≤ 1, NAS must be calculated
over a finite time period. Equation (D4) is calibrated to
reproduce Båth’s law (with a = 1), which states that the
largest aftershock of a sequence is on average ∼1 magnitude
unit below the main shock magnitude.
[93] 4. A full space‐time simulation also requires a law

describing the spatial clustering of aftershocks. For example,
Felzer and Brodsky [2006] give

� rð Þ / r��; ðD5Þ

where r is linear aftershock density at distance r from the
main shock and g is a constant.
We replace rules (3) and (4) with an equivalent rule that also
reproduces Båth’s law and a power law decrease in linear
aftershock density but is based on dynamic strain rather than
magnitude. The equivalent rule specifies that the number of
aftershocks per unit area scales linearly with peak dynamic
strain,

NAS ¼ �"dyn: ðD6Þ

Accordingly, we set g = c3 from the constrained PGV
regression (Table 1, second row).
[94] The constant of proportionality � is found by divid-

ing the number of aftershocks predicted by equation (D4)
by the peak dynamic strain integrated over the aftershock
zone (equation (7)). This gives

� ¼ CSA� 10�c1�Mminc1�p 1� �ð Þ
2� p� 1ð Þ D1��

max � D1��
min


 � ; ðD7Þ

where CS is the shear wave speed, c1 is the first PGV
regression parameter (Table 1, second row), A, c, and p are
the ETAS constants, and Dmax and Dmin are the maximum
and minimum bounds of the local aftershock zone, imposed
to make the simulation numerically tractable. For the ETAS
simulation, we refit the PGV regression constraining c2 = 1,
consistent with a = 1 in equation (D3). The fit parameters
for the constrained regression are reported in Table 1 (second
row).
[95] Remotely triggered earthquakes are generated in

proportion to � times their dynamic strain amplitude. In this
way, triggering associated with both local earthquakes and
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the surface waves of distant earthquakes is simulated simul-
taneously in a self‐consistent manner.
[96] We use a version of Felzer and Felzer’s Matlab code,

modified to include a separate catalog of global triggers
(http://pasadena.wr.usgs.gov/office/kfelzer/AftSimulator.
html) [Felzer et al., 2002]. This code was also used by
Hardebeck et al. [2008]. An estimate of the spatially varying
California background seismicity rate is included with the
code (Figure 13b), as well as estimates of ETAS parameters
representative of California (Table 2). The dimensions of
the aftershock zone, specified for computational efficiency
and to keep the number of aftershocks finite, are left at the
default values of Dmin = 0.001 km and Dmax = 500 km,
respectively.
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