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Abstract

The invariant manifold structures of the collinear libration points for the

restricted three-body problem provide the framework for understanding

transport phenomena from a geometrical point of view. In particular, the stable

and unstable invariant manifold tubes associated with libration point orbits

are the phase space conduits transporting material between primary bodies

for separate three-body systems. These tubes can be used to construct new

spacecraft trajectories, such as a ‘Petit Grand Tour’ of the moons of Jupiter.

Previous work focused on the planar circular restricted three-body problem.

This work extends the results to the three-dimensional case.

Besides providing a full description of different kinds of libration motions

in a large vicinity of these points, this paper numerically demonstrates the

existence of heteroclinic connections between pairs of libration orbits, one

around the libration point L1 and the other around L2. Since these connections

are asymptotic orbits, no manoeuvre is needed to perform the transfer from

one libration point orbit to the other. A knowledge of these orbits can be very

useful in the design of missions such as the Genesis Discovery Mission, and

may provide the backbone for other interesting orbits in the future.
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1. Introduction

New space missions are increasingly more complex, requiring new and unusual kinds of orbits

to meet their scientific goals, orbits which are not easily found by the traditional conic approach.

The delicate heteroclinic dynamics employed by the Genesis Discovery Mission dramatically

illustrates the need for a new paradigm: study of the three-body problem using dynamical

systems theory as laid out by Poincaré [16, 20, 26].

The dynamical structures of the three-body problem (such as stable and unstable manifolds,

and bounding surfaces), reveal much about the morphology and transport of particles within

the solar system, be they asteroids, dust grains, or spacecraft. The cross-fertilization between

the study of the natural dynamics in the solar system and engineering applications has produced

a number of new techniques for constructing spacecraft trajectories with desired behaviour,

such as rapid transition between the interior and exterior Hill’s regions, resonance hopping,

and temporary capture [27].

The invariant manifold structures associated with the collinear libration points for the

restricted three-body problem, which exist for a range of energies, provide a framework for

understanding the aforementioned dynamical phenomena from a geometrical point of view.

In particular, the stable and unstable invariant manifold tubes associated with bounded orbits

around the libration points L1 and L2 are phase space structures that conduct particles to and

from the smaller primary body (e.g. Jupiter in the Sun–Jupiter–comet three-body system), and

between primary bodies for separate three-body systems [28], e.g. Saturn and Jupiter in the

Sun–Saturn–comet and the Sun–Jupiter–comet three-body systems.

Petit Grand Tour of Jovian moons. The invariant manifold tubes can be used to produce new

techniques for constructing spacecraft trajectories with interesting characteristics. These may

include mission concepts such as a low energy transfer from the Earth to the Moon [29] and a

‘Petit Grand Tour’ of the moons of Jupiter, described below and in [30].

Using the phase space tubes in each three-body system, we are able to construct a transfer

trajectory from the Earth which executes an unpropelled (i.e. ballistic) capture at the Moon. An

Earth-to-Moon trajectory of this type, which utilizes the perturbation by the Sun, requires less

fuel than a transfer trajectory using segments of Keplerian motion, i.e. the ‘patched-conics’

approach [2].

Similarly, by approximating a spacecraft’s motion in the (n + 1)-body gravitational

field of Jupiter and n of its planet-sized moons into several segments of purely three-body

motion—involving Jupiter, the ith moon, and the spacecraft—we can design a trajectory for

the spacecraft which follows a prescribed itinerary in visiting the n moons. In an earlier study

of a transfer from Ganymede to Europa [30], we found our fuel consumption for impulsive

burns, as measured by the total norm of velocity displacements, �V , to be less than half the

Hohmann transfer value. We found this to be the case for the following example tour: starting

beyond Ganymede’s orbit, the spacecraft is ballistically captured by Ganymede, orbits it once,

escapes in the direction of Europa, and ends in a ballistic capture at Europa.

One advantage of this Petit Grand Tour as compared with the Voyager-type flybys is

the ‘leap-frogging’ strategy. In this new approach to mission design, the spacecraft can

orbit a moon in a loose temporary capture orbit for a desired number of circuits, escape

the moon, and then perform a transfer �V to become ballistically captured by a nearby moon

for some number of orbits about that moon, etc. Instead of brief flybys lasting only seconds, a

scientific spacecraft can orbit several different moons for any desired duration. Furthermore,

the total �V necessary is much less than that necessary using purely two-body motion

segments.
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Figure 1. The patched three-body model. (a) The co-orbiting frame with Europa is shown,

otherwise known as the rotating frame. The spacecraft’s motion in each Jupiter–Moon–spacecraft

rotating frame is limited to the region in white due to constant energy in that system (constant Jacobi

integral). We work with three-body energy regimes where the region surrounding the moon’s orbit

(shaded) is energetically forbidden to spacecraft motion. Note the small opening near the moon,

permitting capture and escape. (b) The four-body system approximated as two nested three-body

systems: this picture is only a schematic, as the spacecraft’s motion conserves the Jacobi integral in

only one system at a time. (c) We seek an intersection between the dynamical channel enclosed by

Ganymede’s L1 periodic orbit unstable manifold and the dynamical channel enclosed by Europa’s

L2 periodic orbit stable manifold (shown in schematic). Integrate forward and backward from the

patch point (with �V to take into account velocity discontinuity) to generate the desired transfer

trajectory between the moons.

The design of the Petit Grand Tour in the planar case is guided by two main ideas (see [30]).

(i) The motion of the spacecraft in the gravitational field of the three bodies Jupiter, Ganymede

and Europa is approximated by two segments of purely three-body motion in the planar,

circular, restricted three-body model. The trajectory segment in the first three-body

system, Jupiter–Ganymede–spacecraft, is appropriately patched to the segment in the

Jupiter–Europa–spacecraft three-body system.

(ii) For each segment of purely three-body motion, the invariant manifold tubes of L1 and L2

periodic orbits (p.o.) leading towards or away from temporary capture around a moon, as

in figure 1, are used to construct an orbit with the desired behaviour. This initial solution

is then refined to obtain a trajectory in a more accurate four-body model.

The patched three-body model considers the motion of a particle (or spacecraft) in the field

of n bodies, considered two at a time, e.g. Jupiter and its ith moon, Mi . When the trajectory of
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a spacecraft comes close to the orbit of Mi , the perturbation of the spacecraft’s motion away

from purely Keplerian motion about Jupiter is dominated by Mi . In this situation, we say that

the spacecraft’s motion is well modelled by the Jupiter–Mi–spacecraft restricted three-body

problem.

Switching orbit. There comes a point along the spacecraft’s trajectory at which a rocket burn

manoeuvre—effecting a change in velocity of magnitude �V —will make the spacecraft’s

perturbation switch from being dominated by Mi to being dominated by another moon, Mk .

The set of possible ‘switching orbits’, which we will refer to as the switching region, is the

analogue to the ‘sphere of influence’ concept used in the patched-conic approach to trajectory

design, which guides a mission designer in determining when to switch the central body for

the model of the spacecraft’s Keplerian motion. In this paper, Jupiter is always considered,

but one switches the third body in the three-body model from Mi to Mk .

Our goal is to find piecewise continuous trajectories in the phase space which lead a

spacecraft from a loose orbit about Mi to a loose orbit about Mk , trajectories continuous in

position, but allowing for discontinuities in the velocity, for which impulsive rocket burns will

be necessary. We refer to the phase space of these loose orbits as the ‘capture realm’. In the

procedure we outline, we seek intersections between invariant manifold ‘tubes’ which connect

the capture realm of one moon with that of another moon. In the planar case, these solid tubes

are bounded by stable and unstable invariant manifold tubes of L1 and L2 p.o.’s, which act

as separatrices separating transit orbits from non-transit orbits. Transit orbits lead towards

or away from a capture realm, whereas non-transit orbits do not. The stable and unstable

manifolds of L1 and L2 p.o.’s are the phase space structures that provide a conduit for orbits

between realms within each three-body system as well as between capture realms surrounding

primary bodies for separate three-body systems [27].

Extending results from planar model to spatial model. Previous work based on the planar

circular restricted three-body problem (PCR3BP) revealed the basic structures controlling the

dynamics [27–30]. But current missions such as the Genesis Discovery Mission [20, 21], and

future missions will require three-dimensional capabilities, such as control of the latitude and

longitude of a spacecraft’s escape from and entry into a planetary or moon orbit. For example,

a future mission to send a probe to orbit Europa may desire a capture into a high inclination

polar orbit around Europa [38, 31, 37, 41]. Three-dimensional capability is also required when

decomposing a multibody system into three-body subsystems which are not co-planar, such as

the Earth–Sun–spacecraft and Earth–Moon–spacecraft systems. (The tilt in the orbital planes

of the Earth around the sun and the moon around the Earth is about 5˚.) These demands

necessitate dropping the restriction to planar motion, and extension of earlier results to the

spatial model (CR3BP).

In our current work on the spatial three-body problem (also see [13]), we show that

the invariant manifold structures of the collinear libration points still act as the separatrices

between two types of motion: (i) inside the invariant manifold tubes, the motion consists of

a transit through a neck, a set of paths called transit orbits; (ii) outside the tubes, no such

transit motion is possible. We design an algorithm for constructing orbits with any prescribed

itinerary and obtain some initial results for a basic itinerary. Furthermore, we apply these new

techniques to the construction of a three-dimensional Petit Grand Tour of the Jovian moon

system. By approximating the dynamics of the Jupiter–Europa–Ganymede–spacecraft four-

body problem as two three-body subproblems, we seek intersections (in position space only)

between the tubes of transit orbits enclosed by the stable and unstable manifold tubes. As shown



The spatial restricted three-body problem 1575

Figure 2. The three-dimensional Petit Grand Tour space mission concept for the Jovian moons.

(a) We show a spacecraft trajectory coming into the Jupiter system and transferring from Ganymede

to Europa using a single impulsive manoeuvre, shown in a Jupiter-centred inertial frame. (b) The

spacecraft performs one loop around Ganymede, using no propulsion at all, as shown here in the

Jupiter–Ganymede rotating frame. (c) The spacecraft arrives in Europa’s vicinity at the end of

its journey and performs a final propulsion manoeuvre to get into a high inclination circular orbit

around Europa, as shown here in the Jupiter–Europa rotating frame.

in figure 2, we design a sample low energy transfer trajectory from an initial Jovian insertion

trajectory, leading to Ganymede and finally to Europa, ending in a high inclination orbit around

Europa.

Heteroclinic connections between libration orbits. Besides stable and unstable manifold

tubes, centre manifolds of the collinear libration points have played a very important role

in space mission design for a long time. Since 1978, when NASA launched the ISEE-3

spacecraft [7, 36], Lissajous and halo type trajectories around the collinear libration points

have been considered in the trajectory design of many space missions. The SOHO spacecraft

has used a halo orbit around L1 in the Earth–Sun system as a nominal station orbit since

1996. In the near future, the European Space Agency is considering two missions to L2 in

the Sun–Earth system, FIRST and PLANK. Furthermore, for NASA’s Next Generation Space

Telescope, the follow-on to the Hubble Telescope, an L2 orbit is also being considered. All

this interest in libration point orbits justifies the study of the dynamics around an extended

neighbourhood of these points in order that more complex missions can be envisaged.



1576 G Gómez et al

In this paper, besides providing a full description of different kinds of libration motions

in a large vicinity of these points, we show the existence of heteroclinic connections between

pairs of libration orbits, one around the libration point L1 and the other around L2. Since these

connections are asymptotic orbits, no manoeuvre is needed to perform the transfer from one

libration orbit to the other. Knowledge of these orbits could be very useful in the design of

missions such as Genesis [21], and may inspire the use of similar orbits in the future.

Computation of the centre manifold and its stable and unstable manifolds. It is well known

that the linear behaviour of collinear libration points is of the type saddle×centre×centre. This

behaviour is inherited by the libration orbits, all of which are highly unstable [10,11,39]. Hence,

numerical exploration in the neighbourhood of the libration points is not straightforward for two

reasons. The first one is the high dimensionality of the problem (six phase space dimensions),

which makes the exploration time consuming, even using simple models like the CR3BP. The

second reason is the highly unstable character of the solutions near the libration points. Due

to this instability, errors in the initial conditions multiply by a factor of the order of 1500 every

half revolution of the secondary around the primary, making it difficult to get an idea of the

flow and the orbits in the vicinity of these points.

However, the instability can be handled and the dimensionality reduced by a procedure

called reduction to the centre manifold, to be introduced shortly (see also [10, 23]). The

fundamental idea is based on canonical transformations of the Hamiltonian equations by

the Lie series method, implemented in a different way from the ‘standard’ procedure introduced

in [6]. The change of variables allows us to have a two degree of freedom Hamiltonian

containing only the orbits in the centre manifold. Roughly speaking, this means we remove

the main instability. For each level of energy, the orbits are in a three-dimensional manifold

that can be represented and viewed globally in a two-dimensional Poincaré surface of section.

The procedure gives a complete description of the libration orbits around an extended

neighbourhood of the collinear libration points. The main objects found are: planar and vertical

families of Lyapunov p.o.; Lissajous orbits; periodic halo orbits; and quasi-halo orbits. An

approach that is not entirely numerical in nature has been used to compute these orbits in the

past; starting from the equations of motion of the CR3BP and implementing semi-analytic

procedures based on asymptotic series of the Lindsted–Poincaré type [10, 17, 18, 23].

In this paper, we implement a slightly different procedure for the computation of the

reduction to the centre manifold, in order to have all the possible initial conditions in the centre

manifold of a selected level of energy (i.e. the Jacobi constant of the CR3BP). The connections

between the orbits of L1 and L2 are constructed looking for the intersections of the unstable

manifold of a libration orbit around Li with the stable one of a libration one around L3−i for

i = 1, 2. The orbits are asymptotic to both libration orbits in the same level of energy and

thus, in the ideal situation of the CR3BP, no �V is required to perform the transfer from one

orbit to the other.

This efficient way of computing stable and unstable manifolds for the centre manifold of

a selected level of energy allows us to construct the Petit Grand Tour of Jovian moons.

Similarity between celestial mechanics and chemical dynamics. We note that there is some

overlap between the mathematical problem considered here and the chemical dynamics

problem considered by Uzer et al in [40]. This is due to the considerable mathematical

similarities between some problems in celestial mechanics and problems in chemical dynamics,

which has been noted previously in a successful application of ideas from chemistry to the

problem of asteroid escape rates [22]. However, due to the different physical focus of these
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two communities, the specific questions that are posed and the results that are presented can

be quite different. A key difference between this paper and [40] is that we globalize the stable

and unstable manifold tubes far from the vicinity of the equilibrium points, with the goal

of constructing individual trajectories that traverse more than one ‘potential barrier’, to use

chemical dynamics terminology. In [40], the main concern is with the computation of chemical

reaction rates.

Structure of the paper. In sections 2 through 4, we review some known mathematical and

numerical results which guide the numerical explorations of sections 5 through 8. In the

appendix, we give a description of the software used for the numerical explorations.

2. Circular restricted three-body problem

The orbital planes of Ganymede and Europa are within 0.3˚ of each other, and their orbital

eccentricities are 0.0006 and 0.0101, respectively. Furthermore, since the masses of both

moons are small, and they are on rather distant orbits, the patched spatial CR3BP is an excellent

starting model for illuminating the transfer dynamics between these moons. We assume the

orbits of Ganymede and Europa are co-planar, but the spacecraft is not restricted to their

common orbital plane.

The spatial circular restricted three-body problem. We begin by recalling the equations for

the CR3BP. The two main bodies, which we call generically Jupiter (denoted J ) and the

moon (denoted M), have a total mass that is normalized to one. Their masses are denoted

by mJ = 1 − µ and mM = µ, respectively (see figure 3(a)). These bodies rotate in the

plane counterclockwise about their common centre of mass and with the angular velocity

normalized to one. The third body, which we call the spacecraft, is free to move in three-

dimensional space and its motion is assumed not to affect the primaries. Note that the mass

parameters for the Jupiter–Ganymede and Jupiter–Europa systems are µG = 7.802 × 10−5

and µE = 2.523 × 10−5, respectively.

Choose a rotating coordinate system so that the origin is at the centre of mass and

Jupiter and the moon are fixed on the x-axis at (−µ, 0, 0) and (1 − µ, 0, 0), respectively

(see figure 3(a)). Let (x, y, z) be the position of the spacecraft in the rotating frame.

Equations of motion. There are several ways to derive the equations of motion for this

system. An efficient technique is to use the covariance of the Lagrangian formulation and

use the Lagrangian directly in a moving frame (see [32]). This method gives the equations

in Lagrangian form. Then, the equations of motion of the spacecraft can be written in

second-order form as

ẍ − 2ẏ = �x, ÿ + 2ẋ = �y, z̈ = �z, (1)

where

�(x, y, z) = x2 + y2

2
+

1 − µ

r1

+
µ

r2

+
µ(1 − µ)

2

and �x, �y , and �z are the partial derivatives of � with respect to the variables x, y and z.

Also, r1 =
√

(x + µ)2 + y2 + z2, r2 =
√

(x − 1 + µ)2 + y2 + z2. This form of the equations of

motion has been studied in detail (see [39]) and they are called the equations of the CR3BP.
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Figure 3. (a) Equilibrium points of the CR3BP as viewed, not in any inertial frame, but in

the rotating frame, where Jupiter and a Jovian moon are at fixed positions along the x-axis.

(b) Projection of the three-dimensional Hill’s region on the (x, y)-plane (schematic, the region

in white), which contains three large realms connected by neck regions about L1 and L2. (c) The

flow in the L2 neck region is shown projected on the (x, y)-plane, showing a bounded orbit around

L2 (labelled B), an asymptotic orbit winding onto the bounded orbit (A), two transit orbits (T) and

two non-transit orbits (NT), shown schematically. A similar figure holds for the region around L1.

After applying the Legendre transformation to the Lagrangian formulation, one finds that

the Hamiltonian function is given by

H = 1
2
{(px + y)2 + (py − x)2 + p2

z } − �(x, y, z). (2)

Therefore, Hamilton’s equations are given by

ẋ = ∂H

∂px

= px + y, ṗx = −∂H

∂x
= py − x + �x,

ẏ = ∂H

∂py

= py − x, ṗy = −∂H

∂y
= −px − y + �y,

ż = ∂H

∂pz

= pz, ṗz = −∂H

∂z
= �z.

Jacobi integral. The system (1) has a first integral called the Jacobi integral, which is given by

C(x, y, z, ẋ, ẏ, ż) = −(ẋ2 + ẏ2 + ż2) + 2�(x, y, z) = −2E(x, y, z, ẋ, ẏ, ż).

We shall use E when we regard the Hamiltonian as a function of the positions and velocities

and H when we regard it as a function of the positions and momenta.
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Equilibrium points and Hill’s regions. The system (1) has five equilibrium points, all of which

are in the (x, y) plane: three collinear points on the x-axis, called L1, L2, L3 (see figure 3(a))

and two equilateral points called L4 and L5. These equilibrium points are critical points of

the (effective potential) function �. The value of the Jacobi integral at the point Li will be

denoted by Ci .

The level surfaces of the Jacobi constant, which are also energy surfaces, are invariant

five-dimensional manifolds. Let H be that energy surface, i.e.

H(µ, C) = {(x, y, z, ẋ, ẏ, ż) | C(x, y, z, ẋ, ẏ, ż) = constant}.
The projection of this surface onto position space is called a Hill’s region

H(µ, C) =
{

(x, y, z) | �(x, y, z) �
C

2

}

.

The boundary of H(µ, C) is the zero velocity surface. The intersection of this surface with

the (x, y)-plane is the zero velocity curve. The spacecraft can move only within this region.

Our main concern here is the behaviour of the orbits of equations (1) whose Jacobi constant

is just below that of L2; that is, C < C2. For this case, the three-dimensional Hill’s region is

partitioned into three large realms connected by neck regions about L1 and L2, as shown in

figure 3(b). Thus, orbits with a Jacobi constant just below that of L2 are energetically permitted

to make a transit through the two neck regions from the interior realm (inside the moon’s orbit)

to the exterior realm (outside the moon’s orbit) passing through the moon (capture) realm.

3. Invariant manifold as separatrix

Studying the linearization of the dynamics near the equilibria is of course an essential ingredient

for understanding the more complete nonlinear dynamics [1, 3, 27, 33]. We refer to the

neighbourhood of the equilibrium point Li restricted to an energy surface as the equilibrium

region, Ri . It can be shown that for a value of the Jacobi constant just below that of L1

(respectively L2), the nonlinear dynamics in the equilibrium region R1 (respectively R2) is

qualitatively the same as the linearized picture that we will describe later. For details, see the

appendix at the end of this paper as well as other references [15, 23, 19, 43]. This geometric

insight will be used later to guide our numerical explorations in constructing orbits with

prescribed itineraries.

Linearization near the collinear equilibria. We will denote by (k, 0, 0, 0, k, 0) the positions

and momenta of any of the collinear libration points. To find the linearized equations, we need

the quadratic terms of the Hamiltonian H in equation (2) as expanded about (k, 0, 0, 0, k, 0).

After making a coordinate change with (k, 0, 0, 0, k, 0) as the origin, these quadratic terms

form the Hamiltonian function for the linearized equations, which we shall call H2

H2 = 1
2
{(px + y)2 + (py − x)2 + p2

z − ax2 + by2 + cz2},
where, a, b and c are defined by a = 2c + 1, b = c − 1, and where

c = µ|k − 1 + µ|−3 + (1 − µ)|k + µ|−3.

A short computation gives the linearized equations in the form

ẋ = ∂H2

∂px

= px + y, ṗx = −∂H2

∂x
= py − x + ax,

ẏ = ∂H2

∂py

= py − x, ṗy = −∂H2

∂y
= −px − y − by,

ż = ∂H2

∂pz

= pz, ṗz = −∂H2

∂z
= −cz.
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It is straightforward to show that the eigenvalues of this linear system have the form ±λ, ±iν

and ±iω, where λ, ν and ω are positive constants and ν �= ω.

To better understand the orbit structure on the phase space, we make a linear change of

coordinates with the eigenvectors as the axes of the new system. Using the corresponding new

coordinates q1, p1, q2, p2, q3, p3, the differential equations assume the simple form

q̇1 = λq1, ṗ1 = −λp1,

q̇2 = νp2, ṗ2 = −νq2,

q̇3 = ωp3, ṗ3 = −ωq3

(3)

and the Hamiltonian function becomes

H2 = λq1p1 +
ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3). (4)

The solutions of equations (3) can be conveniently written as

q1(t) = q0
1 eλt , p1(t) = p0

1 e−λt ,

q2(t) + ip2(t) = (q0
2 + ip0

2) e−iνt ,

q3(t) + ip2(t) = (q0
3 + ip0

3) e−iωt ,

(5)

where the constants q0
1 , p0

1 , q0
2 + ip0

2 and q0
3 + ip0

3 are the initial conditions. These linearized

equations admit integrals in addition to the Hamiltonian function; namely, the functions q1p1,

q2
2 + p2

2 and q2
3 + p2

3 are constant along solutions.

The linearized phase space. For positive h and c, the region R (referring to either R1 or R2),

is determined by

H2 = h and |p1 − q1| � c.

It can be seen that R is homeomorphic to the product of a 4-sphere and an interval I , S4 × I ;

namely, for each fixed value of p1 −q1 in the interval [−c, c], we see that the equation H2 = h

determines a 4-sphere

λ

4
(q1 + p1)

2 +
ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) = h +

λ

4
(p1 − q1)

2.

The bounding 4-sphere of R for which p1 − q1 = −c will be called n1, and that where

p1 −q1 = c, n2 (see figure 4). We shall call the set of points on each bounding 4-sphere where

q1 + p1 = 0 the equator, and the sets where q1 + p1 > 0 or q1 + p1 < 0 will be called the north

and south hemispheres, respectively.

The linear flow in R. To analyse the flow in R, one considers the projections on the (q1, p1)-

plane and (q2, p2)×(q3, p3)-space, respectively. In the first case we see the standard picture of

an unstable critical point, and in the second, of a centre consisting of two uncoupled harmonic

oscillators. Figure 4 schematically illustrates the flow. The coordinate axes of the (q1, p1)-

plane have been tilted by 45˚ and labelled (p1, q1) in order to correspond to the direction of the

flow in later figures which adopt the NASA convention that the larger primary is to the left of

the smaller secondary. With regard to the first projection we see that R itself projects to a set

bounded on two sides by the hyperbola q1p1 = h/λ (corresponding to q2
2 + p2

2 = q2
3 + p2

3 = 0,

see (4)) and on two other sides by the line segments p1 − q1 = ±c, which correspond to the

bounding 4-spheres.

Since q1p1 is an integral of the equations in R, the projections of orbits in the (q1, p1)-

plane move on the branches of the corresponding hyperbolae q1p1 = constant, except in the

case q1p1 = 0, where q1 = 0 or p1 = 0. If q1p1 > 0, the branches connect the bounding
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Figure 4. The flow in the equilibrium region has the form saddle×centre×centre. On the left

is shown the projection onto the (p1, q1)-plane (note, axes tilted 45◦). Shown are the bounded

orbits (black dot at the centre), the asymptotic orbits (labelled A), two transit orbits (T) and two

non-transit orbits (NT).

line segments p1 − q1 = ±c and if q1p1 < 0, they have both end points on the same segment.

A check of equation (5) shows that the orbits move as indicated by the arrows in figure 4.

To interpret figure 4 as a flow in R, note that each point in the (q1, p1)-plane projection

corresponds to a 3-sphere S3 in R given by

ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) = h − λq1p1.

Of course, for points on the bounding hyperbolic segments (q1p1 = h/λ), the 3-sphere

collapses to a point. Thus, the segments of the lines p1 −q1 = ±c in the projection correspond

to the 4-spheres bounding R. This is because each corresponds to a 3-sphere crossed with an

interval where the two end 3-spheres are pinched to a point.

We distinguish nine classes of orbits grouped into the following four categories:

(i) The point q1 = p1 = 0 corresponds to an invariant 3-sphere S3
h of bounded orbits (periodic

and quasi-periodic) in R. This 3-sphere is given by

ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) = h, q1 = p1 = 0. (6)

It is an example of a normally hyperbolic invariant manifold (NHIM) (see [42]), where

stretching and contraction rates under the linearized dynamics transverse to the 3-sphere

dominate those tangent to the 3-sphere. This is clear for this example since the dynamics

normal to the 3-sphere are described by the exponential contraction and expansion of the

saddle point dynamics. Here, the 3-sphere acts as a ‘big saddle point’. See the black dot

at the centre of the (q1, p1)-plane on the left side of figure 4.

(ii) The four half open segments on the axes, q1p1 = 0, correspond to four cylinders of

orbits asymptotic to this invariant 3-sphere S3
h either as time increases (p1 = 0) or as time

decreases (q1 = 0). These are called asymptotic orbits and they form the stable and the

unstable manifolds of S3
h. The stable manifolds, W s

±(S3
h), are given by

ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) = h, q1 = 0, (7)
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Figure 5. (a) The cross-section of the flow in the R region of the energy surface. (b) The McGehee

representation of the flow in the region R. Adapted from [27].

where W s
+(S3

h) (with p1 > 0) is the branch going from right to left and W s
−(S3

h) (with

p1 < 0) is the branch going from left to right. The unstable manifolds, W u
±(S3

h), are

given by

ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) = h, p1 = 0, (8)

where W u
+ (S3

h) (with q1 > 0) is the branch from right to left and W u
−(S3

h) (with q1 < 0) is

the branch from left to right. See the four orbits labelled A of figure 4.

(iii) The hyperbolic segments determined by q1p1 = constant > 0 correspond to two cylinders

of orbits that cross R from one bounding 4-sphere to the other, meeting both in the same

hemisphere; the northern hemisphere if they go from p1 − q1 = +c to p1 − q1 = −c, and

the southern hemisphere in the other case. Since these orbits transit from one region to

another, we call them transit orbits. See the two orbits labelled T of figure 4.

(iv) Finally, the hyperbolic segments determined by q1p1 = constant < 0 correspond to two

cylinders of orbits in R each of which runs from one hemisphere to the other hemisphere

on the same bounding 4-sphere. Thus, if q1 > 0, the 4-sphere is n1 (p1 − q1 = −c)

and orbits run from the southern hemisphere (q1 + p1 < 0) to the northern hemisphere

(q1 + p1 > 0) while the converse holds if q1 < 0, where the 4-sphere is n2. Since these

orbits return to the same region, we call them non-transit orbits. See the two orbits labelled

NT of figure 4.

McGehee representation. McGehee [33] proposed a representation which makes it easier

to visualize the region R, providing further geometrical insight into the dynamics. As noted

above, R is a five-dimensional manifold that is homeomorphic to S4 × I . It can be represented

by a spherical annulus bounded by two 4-spheres n1, n2, as shown in figure 5(b). Figure 5(a)

is a cross-section of R. Note that this cross-section is qualitatively the same as the illustration

in figure 4. The following classifications of orbits correspond to the previous four categories:

(i) There is an invariant 3-sphere S3
h of bounded orbits in the region R corresponding to the

black dot in the middle of figure 5(a). Note that this 3-sphere is the equator of the central

4-sphere given by p1 − q1 = 0.
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(ii) Again let n1, n2 be the bounding 4-spheres of region R, and let n denote either n1 or n2.

We can divide n into two hemispheres: n+, where the flow enters R, and n−, where the flow

leaves R. There are four cylinders of orbits asymptotic to the invariant 3-sphere S3
h. They

form the stable and unstable manifolds to the invariant 3-sphere S3
h. Topologically, both

invariant manifolds look like four-dimensional ‘tubes’ (S3 × R) inside a five-dimensional

energy manifold. The interior of the stable manifolds W s
±(S3

h) and unstable manifolds

W u
±(S3

h) can be given as follows:

int(W s
+(S3

h)) = {(q1, p1, q2, p2, q3, p3) ∈ R | p1 > q1 > 0},
int(W s

−(S3
h)) = {(q1, p1, q2, p2, q3, p3) ∈ R | p1 < q1 < 0},

int(W u
+ (S3

h)) = {(q1, p1, q2, p2, q3, p3) ∈ R | q1 > p1 > 0},
int(W u

−(S3
h)) = {(q1, p1, q2, p2, q3, p3) ∈ R | q1 < p1 < 0}.

(9)

The exterior of these invariant manifolds can be given similarly from studying figure 5(a).

(iii) Let a+ and a− (where q1 = 0 and p1 = 0, respectively) be the intersections of the stable

and unstable manifolds with the bounding sphere n. Then, a+ appears as a 3-sphere in n+,

and a− appears as a 3-sphere in n−. Consider the two spherical caps on each bounding

4-sphere given by

d+
1 = {(q1, p1, q2, p2, q3, p3) ∈ R | p1 − q1 = −c, p1 < q1 < 0},

d−
1 = {(q1, p1, q2, p2, q3, p3) ∈ R | p1 − q1 = −c, q1 > p1 > 0},

d+
2 = {(q1, p1, q2, p2, q3, p3) ∈ R | p1 − q1 = +c, p1 > q1 > 0},

d−
2 = {(q1, p1, q2, p2, q3, p3) ∈ R | p1 − q1 = +c, q1 < p1 < 0}.

Since d+
1 is the spherical cap in n+

1 bounded by a+
1 , the transit orbits entering R on d+

1

exit on d−
2 of the other bounding sphere. Similarly, since d−

1 is the spherical cap in n−
1

bounded by a−
1 , the transit orbits leaving on d−

1 have come from d+
2 on the other bounding

sphere. Note that all spherical caps where the transit orbits pass through are in the interior

of stable and unstable manifold tubes.

(iv) Let b be the intersection b of n+ and n− (where q1 + p1 = 0). Then, b is a 3-sphere of

tangency points. Orbits tangent at this 3-sphere ‘bounce off,’ i.e. do not enter R locally.

Moreover, if we let r+ be a spherical zone, which is bounded by a+ and b, then non-transit

orbits entering R on r+ exit on the same bounding 4-sphere through r− which is bounded

by a− and b. It is easy to show that all the spherical zones where non-transit orbits bounce

off are in the exterior of stable and unstable manifold tubes.

Invariant manifolds as separatrices. The key observation here is that the asymptotic orbits

form four-dimensional stable and unstable manifold ‘tubes’ (S3 × R) to the invariant 3-sphere

S3
h in a five-dimensional energy surface and they separate two distinct types of motion: transit

orbits and non-transit orbits. The transit orbits, passing from one region to another, are those

inside the four-dimensional manifold tube. The non-transit orbits, which bounce back to their

region of origin, are those outside the tube.

In fact, it can be shown that for a value of the Jacobi constant just below that of L1 (L2),

the nonlinear dynamics in the equilibrium region R1 (R2) is qualitatively the same as the

linearized picture that we have shown above (see [1, 34, 43]).

For example, the NHIM for the nonlinear system, which corresponds to the 3-sphere (6)

for the linearized system is given by

Sh =
{

(q, p) | ν

2
(q2

2 + p2
2 t) +

ω

2
(q2

3 + p2
3) + f (q2, p2, q3, p3) = h, q1 = p1 = 0

}

, (10)
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where f is at least of third order. Here, (q1, p1, q2, p2, q3, p3) are normal form coordinates

and are related to the linearized coordinates via a near-identity transformation.

In a small neighbourhood of the equilibrium point, since the higher order terms in f

are much smaller than the second-order terms, the 3-sphere for the linear problem becomes a

deformed sphere for the nonlinear problem. Moreover, since NHIMs persist under perturbation,

this deformed sphere Sh still has stable and unstable manifolds which are given by

W s
±(Sh) =

{

(q, p) | ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) + f (q2, p2, q3, p3) = h, q1 = 0

}

,

W u
±(Sh) =

{

(q, p) | ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) + f (q2, p2, q3, p3) = h, p1 = 0

}

.

Note the similarity between the formulae above and those for the linearized problem given by

equations (7) and (8).

See the appendix at the end of this paper as well as other references [15, 23, 19, 43] for

details. This geometric insight will be used below to guide our numerical explorations in

constructing orbits with prescribed itineraries.

4. Construction of orbits with prescribed itineraries in the planar case

In this section, we review previous work on the planar case [27, 30] which provides the

necessary background for the extension of these ideas to the spatial case. In [30], a numerical

demonstration is given of a heteroclinic connection between pairs of equal Jacobi constant

Lyapunov orbits, one around L1, the other around L2. This heteroclinic connection augments

the homoclinic orbits associated with the L1 and L2 Lyapunov orbits, which were previously

known [33]. Linking these heteroclinic connections and homoclinic orbits leads to dynamical

chains.

The dynamics in the neighbourhood of these chains give rise to interesting analytical

results. We proved the existence of a large class of interesting orbits near a chain, which a

spacecraft can follow in its rapid transition between the inside and outside of a Jovian moon’s

orbit via a moon encounter. The global collection of these orbits is called a dynamical channel.

We proved a theorem which gives the global orbit structure in the neighbourhood of a chain.

In simplified form, the theorem essentially says:

For any admissible bi-infinite sequence (. . . , u−1; u0, u1, u2, . . .) of symbols

{I, M, X} where I , M and X stand for the interior, moon and exterior regions,

respectively, there corresponds an orbit near the chain whose past and future

whereabouts with respect to these three regions match those of the given sequence.

For example, consider the Jupiter–Ganymede–spacecraft three-body system. Given the

bi-infinite sequence (. . . , I ; M, X, M, . . .), there exists an orbit starting in the Ganymede

region, which came from the interior region and is going to the exterior region and returning

to the Ganymede region.

Moreover, we not only proved the existence of orbits with prescribed itineraries, but

developed a systematic procedure for their numerical construction. We will illustrate below

the numerical construction of orbits with prescribed finite (but large enough) itineraries in

the three-body planet–moon–spacecraft problem. As our example, chosen for simplicity of

exposition, we construct a spacecraft orbit with the central block (M, X; M, I, M).

Example itinerary: (M, X; M, I, M). For the present numerical construction, we adopt the

following convention. The U1 and U4 Poincaré sections will be (y = 0, x < 0, ẏ < 0) in the
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Figure 6. Location of libration point orbit invariant manifold tubes in position space. Stable

manifolds are lightly shaded, unstable manifolds are dark. The location of the Poincaré sections

(U1, U2, U3, and U4) are also shown.

interior region, and (y = 0, x < −1, ẏ > 0) in the exterior region, respectively. The U2 and

U3 sections will be (x = 1 − µ, y < 0, ẋ > 0) and (x = 1 − µ, y > 0, ẋ < 0) in the moon

region, respectively. See figure 6 for the location of the Poincaré sections relative to the tubes.

Figures 7(a) and (b) provide a numerical example of how the invariant manifold tubes

separate two types of motion. Consider the L1 side. The set of right-to-left transit orbits has

the structure D2 × R (where D2 is a two-dimensional disc), with boundary S1 × R. The

boundary is made up of W s
+(S1

h) and W u
+ (S1

h), where the + means right-to-left, S
1
h is the NHIM

around L1 (a periodic orbit in this case) with energy h and the superscript i denotes Li . We

pick the initial conditions to approximate W s
+(S1

h) as outlined in [27] and then integrate those

initial conditions forward in time until they intersect the Poincaré section U3. This is how

the upper curve in figure 7(b) is generated, which we refer to as the Poincaré cut of W s
+(S1

h).

A point inside that curve is an orbit that goes from the moon region to the interior region, so

this region can be described by the label (; M, I).

Similarly, a point inside the lower curve of figure 7(b), the Poincaré cut of W u
+ (S2

h) for

the same h, came from the exterior region into the moon region, and so has the label (X; M).

A point inside the intersection �M of both curves is an (X; M, I) orbit, so it makes a transition

from the exterior region to the interior region, passing through the moon region. Similarly, by

choosing Poincaré sections in the interior and the exterior region, i.e. in the U1 and U4 plane,

we find the intersection region �I consisting of (M; I, M) orbits, and �X , which consists of

(M; X, M) orbits.

Flowing the intersection �X forward to the moon region, it stretches into the strips in

figure 7(c). These strips are the image of �X (i.e. P(�X )) under the Poincaré map P , and

thus get the label (M, X; M). Similarly, flowing the intersection �I backwards to the moon

region, it stretches into the strips P −1(�I) in figure 7(c), and thus has the label (; M, I, M).

The intersection of these two types of strips (i.e. �M ∩ P(�X ) ∩ P −1(�I)) consists of the

desired (M, X; M, I, M) orbits. If we take any point inside these intersections and integrate

it forwards and backwards, we find the desired orbits (see figure 7(d)).

5. Extension of results in the planar model to the spatial model

Since the key step in the planar case is to find the intersection region inside the two Poincaré

cuts, a key difficulty is to determine how to extend this technique to the spatial case. Take
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Figure 7. (a) The projection of invariant manifolds W s
+(S1

h) and W u
+ (S2

h) in the region M of the

position space. (b) A close-up of the intersection region between the Poincaré cuts of the invariant

manifolds on the U3 section (x = 1 − µ, y > 0). (c) Intersection between image of �X and

pre-image of �I labelled (M, X; M, I, M). (d) Example orbit passing through (M, X; M, I, M)

region of (c). (Adapted from [27].)

as an example the construction of a transit orbit with the itinerary (X; M, I) that goes from

the exterior region to the interior region of the Jupiter–moon system. Recall that in the spatial

case, the unstable manifold ‘tube’ of the NHIM around L2, which separates the transit and

non-transit orbits, is topologically S3 × R. For a transversal cut at x = 1 − µ (a hyperplane

through the moon), the Poincaré cut is a topological 3-sphere S3 (in R
4). It is not obvious how

to find the intersection region inside these two Poincaré cuts (S3) since both its projections on

the (y, ẏ)-plane and the (z, ż)-plane are (two-dimensional) discs D2.

However, in constructing an orbit which transits from outside to inside a moon’s orbit,

suppose that we might also want it to have other characteristics above and beyond this gross

behaviour. We may want to have an orbit which has a particular z-amplitude when it is near

the moon. If we set z = c, ż = 0, where c is the desired z-amplitude, the problem of finding

the intersection region inside two Poincaré cuts suddenly becomes tractable. The set of orbits

in the Poincaré cut of the unstable manifold with (z, ż) = (c, 0), a point on the (z, ż)-plane,

projects to a closed curve on the (y, ẏ)-plane. Any point (z, ż) = (c, 0) which is inside this

curve on the (y, ẏ)-plane is a (X; M) orbit which has transited from the exterior region to the

moon region passing through the L2 equilibrium region.

Similarly, we can apply the same techniques to the Poincaré cut of the stable manifold tube

to the NHIM around L1 and find all (M, I) orbits with (z, ż) = (c, 0) inside a closed curve in
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the (y, ẏ)-plane. Hence, by using z and ż as the additional parameters, we can apply similar

techniques that we have developed for the planar case in constructing spatial trajectories with

the desired itineraries. What follows is a more detailed description.

Finding the Poincaré cuts. We begin with the 15th order normal form expansion near L1

and L2. See the appendix of this paper and other references [12, 15, 23] for details. The

behaviour of orbits in the coordinate system of that normal form, (q1, p1, q2, p2, q3, p3), is

qualitatively similar to the behaviour of orbits in the linear approximation. This makes the

procedure for choosing initial conditions in the L1 and L2 equilibrium regions rather simple.

In particular, based on our knowledge of the structure for the linear system, we can pick initial

conditions which produce a close ‘shadow’ of the stable and unstable manifold ‘tubes’ (S3×R)

associated with the NHIM, also called the central or neutrally stable manifold, in both the L1

and L2 equilibrium regions. As we restrict to an energy surface with energy h, there is only

one NHIM per energy surface, denoted by Sh(≃S3).

The initial conditions in (q1, p1, q2, p2, q3, p3) are picked with the qualitative picture of

the linear system in mind. The coordinates (q1, p1) correspond to the saddle projection, (q2, p2)

correspond to oscillations within the (x, y) plane, and (q3, p3) correspond to oscillations within

the z-direction. Also, note that q3 = p3 = 0 (z = ż = 0) corresponds to an invariant manifold

of the system, i.e. the planar system is an invariant manifold of the three degrees of freedom

system.

The initial conditions to approximate the stable and unstable manifolds (W s
±(Sh), W

u
±(Sh))

are picked via the following procedure. Note that we can be assured that we are obtaining a

roughly complete approximation of points along a slice of W s
±(Sh) and W u

±(Sh) since such

a slice is compact, having the structure S3. Also, we know the picture roughly from the

linear case.

(i) We fix q1 = p1 = ±ǫ, where ǫ is small. This ensures that almost all of the initial conditions

will be for orbits which are transit orbits from one side of the equilibrium region to the

other. Specifically ‘+’ corresponds to right-to-left transit orbits and ‘−’ corresponds to

left-to-right transit orbits. We choose ǫ small so that the initial conditions are near the

NHIM Sh (at q1 = p1 = 0) and will, therefore, integrate forwards and backwards to be

near the unstable and stable manifolds of Sh, respectively. We choose ǫ to not be too

small, or the integrated orbits will take too long to leave the vicinity of Sh.

(ii) Beginning with rv = 0, and increasing incrementally to some maximum rv = rmax
v , we

look for initial conditions with q2
3 +p2

3 = r2
v , i.e. along circles in the z oscillation canonical

plane. It is reasonable to look along circles centred on the origin (q3, p3) = (0, 0) on

this canonical plane since the motion is simple harmonic in the linear case and the origin

corresponds to an invariant manifold.

(iii) For each point along the circle, we look for the point on the energy surface in the (q2, p2)

plane, i.e. the (x, y) oscillation canonical plane. Note, our procedure can tell us if such a

point exists, and clearly if no point exists, it will not be used as an initial condition.

After picking the initial conditions in (q1, p1, q2, p2, q3, p3) coordinates, we transform to

the conventional CR3BP coordinates (x, y, z, ẋ, ẏ, ż) and integrate under the full equations of

motion. The integration proceeds until some Poincaré section stopping condition is reached,

for example x = 1 − µ. We can then use further analysis on the Poincaré section, described

later.

Example itinerary: (X; M, I). As an example, suppose we want a transition orbit going from

outside to inside the moon’s orbit in the Jupiter–moon system. We, therefore, want right-to-left
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Figure 8. Shown in black are the projections of the three-dimensional object C
+u2
1 on the (y, ẏ)-

plane (left) and the (z, ż)-plane (right), the intersection of W u
+ (S2

h) with the Poincaré section

x = 1 − µ. The set of points in the (y, ẏ) projection which approximate a curve, γz′ ż′ , all have

(z, ż) values within the small box shown in the (z, ż) projection (which appears as a thin strip),

centred on (z′, ż′). This example is computed in the Jupiter–Europa system for C = 3.0028.

transit orbits in both the L1 and L2 equilibrium regions. Consider the L2 side. The set of right-

to-left transit orbits has the structure D4 × R (where D4 is a four-dimensional disc), with

boundary S3 × R. The boundary is made up of W s
+(S2

h) in the X region and W u
+ (S2

h) in the

M region, where the + means right-to-left, S
2
h is the NHIM around L2 with energy h, and the

superscript i denotes Li . In practice, we pick the initial conditions to approximate W u
+ (S2

h) as

outlined above and then integrate those initial conditions forward in time until they intersect

the Poincaré section at x = 1 − µ, a hyperplane passing through the centre of the moon.

Since the Hamiltonian energy h (Jacobi constant) is fixed, the set of all values C =
{(y, ẏ, z, ż)} obtained at the Poincaré section, characterize the branch of the manifold of all

libration point orbits around the selected equilibrium point for the particular section. Let us

denote the set as C
+mj

i , where + denotes the right-to-left branch of the stable (m = s) or

unstable (m = u) manifold of the Lj , j = 1, 2 libration point orbits at the ith intersection with

x = 1 − µ. We will look at the first intersection, so we have C
+u2
1 .

The object C
+u2
1 is three-dimensional (≃S3) in the four-dimensional space of variables

(y, ẏ, z, ż). For the Jupiter–Europa system, we show C
+u2
1 for the Jacobi constant C = 3.0028

in figure 8.

Thus, we suspect that if we pick almost any point (z′, ż′) in the zż projection, it corresponds

to a closed loop γz′ ż′ (≃S1) in the yẏ projection (see figure 8). Any initial condition

(y ′, ẏ ′, z′, ż′), where (y ′, ẏ ′) ∈ γz′ ż′ , will be on W u
+ (S2

h), and will wind onto a libration point

orbit when integrated backwards in time. Thus, γz′ ż′ defines the boundary of right-to-left transit

orbits with (z, ż) = (z′, ż′). If we choose (y ′, ẏ ′) ∈ int(γz′ ż′), where int(γz′ ż′) is the region in

the yẏ projection enclosed by γz′ ż′ , then the initial condition (y ′, ẏ ′, z′, ż′) will correspond to

a right-to-left transit orbit, which will pass through the L2 equilibrium region, from the moon

region to outside the moon’s orbit, when integrated backwards in time.

Similarly, on the L1 side, we pick the initial conditions to approximate W s
+(S1

h) as outlined

above and then integrate those initial conditions backwards in time until they intersect the

Poincaré section at x = 1 − µ, obtaining C
+s1
1 . We can do a similar construction regarding

transit orbits, etc. To distinguish closed loops γz′ ż′ from L1 or L2, let us call a loop γ
j

z′ ż′ if it is

from Lj , j = 1, 2.

To find initial conditions for transition orbits which go from outside the moon’s orbit to

inside the moon’s orbit with respect to Jupiter, i.e. orbits which are right-to-left transit orbits

in both the L1 and L2 equilibrium regions, we need to look at the intersections of the interiors

of C
+u2
1 and C

+s1
1 . Figure 9 shows the (y, ẏ)-plane and (z, ż)-plane projections of these objects.
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Figure 9. The (y, ẏ) (left) and (z, ż) (right) projections of the three-dimensional objects C
+u2
1 and

C
+s1
1 . This example is computed in the Jupiter–Europa system for C = 3.0028.

Figure 10. On the (y, ẏ)-plane are shown the points that approximate γ 2
z′ ż′ and γ 1

z′ ż′ , the boundaries

of int(γ 2
z′ ż′ ) and int(γ 1

z′ ż′ ), respectively, where (z′, ż′) = (0.0035, 0). Note the lemon shaped

region of intersection, int(γ 1
z′ ż′ ) ∩ int(γ 2

z′ ż′ ), in which all orbits have the itinerary (X; M, I ). The

appearance is similar to figure 7(b). The point shown within int(γ 1
z′ ż′ ) ∩ int(γ 2

z′ ż′ ) is the initial

condition for the orbit shown in figure 11.

To find such initial conditions we first look for intersections in the zż projection.

Consider the projection πzż : R
4 → R

2 given by (y, ẏ, z, ż) �→ (z, ż). Consider a point

(y ′, ẏ ′, z′, ż′) ∈ πzż(C
+u2
1 ) ∩ πzż(C

+s1
1 ) �= ∅, i.e. a point (y ′, ẏ ′, z′, ż′) where (z′, ż′) is in the

intersection of the zż projections of C
+u2
1 and C

+s1
1 . Transit orbits from outside to inside the

moon’s orbit are such that (y ′, ẏ ′, z′, ż′) ∈ int(γ 1
z′ ż′) ∩ int(γ 2

z′ ż′). If int(γ 1
z′ ż′) ∩ int(γ 2

z′ ż′) = ∅,

then no transition exists for that value of (z′, ż′). But, numerically, we find that there are values

of (z′, ż′) such that int(γ 1
z′ ż′) ∩ int(γ 2

z′ ż′) �= ∅ (see figures 9 and 10). The initial condition

labelled in figure 10 is integrated forwards and backwards to construct the (X, M, I ) transit

orbit shown in figure 11.

In essence we are doing a search for transit orbits by looking at a two parameter set of

intersections of the interiors of closed curves, γ 1
zż and γ 2

zż in the yẏ projection, where our two

parameters are given by (z, ż). Furthermore, we can reduce this to a one parameter family of

intersections by restricting to ż = 0. This is a convenient choice since it implies that the orbit

is at a critical point (often a maximum or minimum in z when it reaches the surface x = 1−µ.)

We are approximating the three-dimensional surface C by a scattering of points (about

a million for the computations in this paper), we must look not at points (z, ż), but at small
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Figure 11. The (X, M, I ) transit orbit corresponding to the initial condition in figure 10. The orbit

is shown in a three-dimensional view and in the three orthographic projections. Europa is shown

to scale. The upper right plot includes the z = 0 section of the zero velocity surface (compare with

figure 3(b)).

boxes (z ± δz, ż ± δż) where δz and δż are small. Since our box in the zż projection has

a finite size, the points in the yẏ projection corresponding to the points in the box will not

all fall on a closed curve, but along a slightly broadened curve, a strip, as seen in figure 10.

A continuation method could be implemented to find the curves γ
j
zż belonging to points (z, ż)

in the zż projection, but the much easier method of scattering points in the small boxes has

been enough for our purposes. We will still refer to the collection of such points as γ
j
zż.

6. From Ganymede to a high inclination Europa orbit

Petit Grand Tour. We now apply the techniques we have developed to the construction of a

fully three-dimensional Petit Grand Tour of the Jovian moons, extending an earlier planar result

[27]. We outline here how one systematically constructs a spacecraft tour which begins beyond

Ganymede in orbit around Jupiter, makes a close flyby of Ganymede, and finally reaches a high

inclination orbit around Europa, consuming less fuel than is possible from standard two-body

methods.

Our approach involves the following three key ideas:

(i) Treat the solution of the spacecraft’s motion in the Jupiter–Ganymede–Europa–spacecraft

four-body problem as two patched circular restricted three-body solutions, the Jupiter–

Ganymede–spacecraft and Jupiter–Europa–spacecraft systems.
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Figure 12. The curves Ganγ 1
zż and Eurγ 2

zż are shown, the intersections of GanW u
+ (S1) and EurW s

+(S2)

with the Poincaré section U1 in the Jupiter–Europa rotating frame, respectively. Note the small

region of intersection, int(Ganγ 1
zż) ∩ int(Eurγ 2

zż), where the patch point is labelled.

(ii) Use the stable and unstable manifolds of the NHIMs about the Jupiter–Ganymede L1

and L2 to find an uncontrolled trajectory from a Jovicentric orbit beyond Ganymede to

a temporary capture around Ganymede, which subsequently leaves Ganymede’s vicinity

onto a Jovicentric orbit interior to Ganymede’s orbit.

(iii) Use the stable manifold of the NHIM around the Jupiter–Europa L2 to find an uncontrolled

trajectory from a Jovicentric orbit between Ganymede and Europa to a temporary capture

around Europa. Once the spacecraft is temporarily captured around Europa, a propulsion

manoeuvre can be performed when its trajectory is close to Europa (100 km altitude),

taking it into a high inclination orbit about the moon. Furthermore, a propulsion

manoeuvre will be needed when transferring from the Jupiter–Ganymede portion of

the trajectory to the Jupiter–Europa portion, since the respective transport tubes exist

at different energies.

Ganymede to Europa transfer mechanism. The construction begins with the patch point,

where we connect the Jupiter–Ganymede and Jupiter–Europa portions, and works forwards

and backwards in time towards each moon’s vicinity. The construction is done mainly in the

Jupiter–Europa rotating frame using a Poincaré section. After selecting appropriate energies

in each three-body system, respectively, the stable and unstable manifolds of each system’s

NHIMs are computed. Let GanW u
+ (S1) denote the unstable manifold of Ganymede’s L1

NHIM and EurW s
+(S2) denote the stable manifold of Europa’s L2 NHIM. We look at the

intersection of GanW u
+ (S1) and EurW s

+(S2) with a common Poincaré section, the surface U1 in

the Jupiter–Europa rotating frame, defined earlier (see figure 12).

Note that we have the freedom to choose where the Poincaré section is with respect to

Ganymede, which determines the relative phases of Europa and Ganymede at the patch point.

For simplicity, we select the U1 surface in the Jupiter–Ganymede rotating frame to coincide

with the U1 surface in the Jupiter–Europa rotating frame at the patch point. Figure 12 shows

the curves Ganγ 1
zż and Eurγ 2

zż on the (x, ẋ)-plane in the Jupiter–Europa rotating frame for all

orbits in the Poincaré section with points (z, ż) within (0.0160 ± 0.0008, ±0.0008). The size

of this range is about 1000 km in z position and 20 m s−1 in z velocity.

From figure 12, an intersection region on the xẋ-projection is seen. We pick a point

within this intersection region, but with two differing y velocities; one corresponding to
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GanW u
+ (S1), the tube of transit orbits coming from Ganymede, and the other corresponding

to EurW s
+(S2), the orbits heading towards Europa. The discrepancy between these two y

velocities is the �V necessary for a propulsive manoeuvre to transfer between the two tubes

of transit orbits, which exist at different energies.

Four-body system approximated by patched PCR3BP. In order to determine the transfer

�V , we compute the transfer trajectory in the full four-body system, taking into account the

gravitational attraction of all three massive bodies on the spacecraft. We use the dynamical

channel intersection region in the patched three-body model as an initial guess which we adjust

finely to obtain a true four-body bi-circular model trajectory (see [30] for more details).

Figure 2 is the final end-to-end trajectory. A �V of 1214 m s−1 is required at the location

marked. We note that a traditional Hohmann (patched two-body) transfer from Ganymede to

Europa requires a �V of 2822 m s−1. Our value is only 43% of the Hohmann value, which

is a substantial savings of on-board fuel. The transfer flight time is about 25 days, well

within conceivable mission constraints. This trajectory begins on a Jovicentric orbit beyond

Ganymede, performs one loop around Ganymede, achieving a close approach of 100 km above

the moon’s surface. After the transfer between the two moons, a final additional manoeuvre

of 446 m s−1 is necessary to enter a high inclination (48.6˚) circular orbit around Europa at

an altitude of 100 km. Thus, the total �V for the trajectory is 1660 m s−1, still substantially

lower than the Hohmann transfer value.

7. Libration orbits around collinear points in the Sun–Earth system

Besides stable and unstable manifold tubes, centre manifolds of the collinear libration points

have played a very important role in space mission design for a long time. Since 1978, when

NASA launched the ISEE-3 spacecraft [7, 36], Lissajous and halo type trajectories around

the collinear libration points of the Sun–Earth system have been considered in the trajectory

design of many space missions.

It is well known that halo orbits bifurcate from the planar Lyapunov orbits when the

energy reaches a certain level beyond the energy at the corresponding libration point (L1 or

L2). Hence, there is a need to study the dynamics around an extended neighbourhood of

these points in order that more complex missions can be envisaged. In what follows, all

computations are done using the CR3BP mass parameter of the Sun–Earth system, where

µ = 3.040 423 398 444 176 × 10−6.

As has been shown in equation (10) of the previous section, and will be further elaborated

in the appendix, the orbits in the centre manifold can be obtained by setting q1 = p1 = 0 in the

initial conditions of the normal form coordinates (q1, p1, q2, p2, q3, p3). If we consider only

orbits of the same Hamiltonian energy, three free variables remain. Moreover, by looking at

the orbits when they cross a surface of section, all the libration orbits with a selected energy

value can be obtained from only two variables in the initial conditions. For instance, the initial

conditions can be chosen by selecting arbitrary values for q2 and p2, with q3 = 0 as the surface

of section, and finally computing p3 in order to be in the selected level of Hamiltonian energy.

The propagation of this initial condition, looking when and where it crosses and recrosses

the surface of section, gives what are called the images of the Poincaré map in the variables

(q2, p2) on q3 = 0.

However, we want to see the orbits in CR3BP coordinates. For this purpose, we can

pick the initial conditions as before, transfer to the conventional CR3BP coordinates, integrate

under the full equations of motion, and look at the Poincaré map of the orbit when it crosses the
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Figure 13. Poincaré maps of the orbits in the central manifold of L1 for the following decreasing

values of the Jacobi constant C: (a) 3.000 85, (b) 3.000 826 459 043 28, (c) 3.000 802 915 133 64,

and (d) 3.000 785 158 376 34. The Poincaré section is defined by the plane z = 0 and is plotted in

the position coordinates (x, y).

plane z = 0 in CR3BP coordinates. The structure of orbits can be clearly seen by plotting their

(x, y) coordinates on the section. We note that due to the linear part of the CR3BP equations

of motion around the collinear equilibrium points, z = 0 is a surface of section for all the

libration orbits in a neighbourhood of the equilibrium point, except for the planar ones (the

ones having z = ż = 0) which are contained in the z = 0 plane.

This is the procedure that we have used to obtain figures 13 and 14, where the libration

orbits around L1 and L2 are displayed for certain values of the Jacobi constant, which give

qualitatively different pictures.

We note that for each value of the Jacobi constant C, we have a bounded region in the

Poincaré section. The boundary of the plot is a planar Lyapunov orbit of the selected energy

contained in the surface of section. It is the only orbit contained in the (x, y) plane and it is

essentially related to the frequency ν of H2. The fixed point, in the central part of the figures,

corresponds to an almost vertical periodic orbit, essentially related to the frequency ω of H2.

Surrounding the central fixed point, we have invariant curves corresponding to Lissajous orbits.

The motion in this region is essentially quasi-periodic (except for very small chaotic zones that

cannot be seen in the pictures).

Depending on the value of the Jacobi constant, there appear two fixed points closer to the

boundaries of the plot. These fixed points correspond to the well-known periodic ‘halo’ orbits

of class I and class II [7]. Surrounding the halo orbit fixed points, we have invariant curves

related to quasi-periodic motions. They are Lissajous orbits that we call quasi-halo orbits.

See [18] for a study of these orbits.

Finally, in the transition zone from central Lissajous to quasi-halo orbits we find

homoclinic points to the planar Lyapunov orbit. We note that at this level of energy the planar

Lyapunov orbit is unstable even in the centre manifold. This fact can also be seen compactifying

the plot of the Poincaré section in a sphere by means of identifying the Lyapunov orbit at a point.
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Figure 14. Poincaré maps of the orbits in the central manifold of L2 for the following decreasing

values of the Jacobi constant C: (a) 3.000 85, (b) 3.000 826 459 043 28, (c) 3.000 802 915 133 64,

and (d) 3.000 785 158 376 34. The Poincaré section is defined by the plane z = 0 and is plotted in

the position coordinates (x, y).

The point is a saddle. Inside the centre manifold the planar Lyapunov orbit has an unstable and

a stable manifold which are non-planar. Generically, we expect that they do not coincide but

intersect transversally, although with a very small angle, giving homoclinic iterates as well as

very narrow stochastic zones associated that cannot be seen in the plot. This paper deals with

situations that are far from perturbative situations in which (hetero)-homoclinic connections are

known, and so analytical techniques of perturbative separatrix splitting are probably difficult

to apply and we have not attempted to proceed in that way. For more information on related

phenomena, see [4, 5].

The planar and vertical Lyapunov, Lissajous, halo, and quasi-halo family of orbits can be

computed using ad hoc algebraic manipulators, based on Lindstedt–Poincaré procedures. In

this way one obtains their expansions in CR3BP coordinates. See [10, 17, 18, 23] for more

details and pictures of the orbits.

8. Zero cost transfer orbits between libration orbits in the Sun–Earth system

Besides providing a full description of different kinds of libration motions in a large vicinity

of these points, we have also shown the existence of heteroclinic connections between pairs

of such libration orbits, one around the libration point L1 and the other around L2. Since

these connections are asymptotic orbits, no manoeuvre is needed to perform the transfer from

one libration orbit to the other. Knowledge of these orbits can be very useful in the design of

missions such as Genesis [21], and may provide the backbone for other interesting orbits in

the future.

In order to find some heteroclinic trajectories connecting libration orbits around L1 with

those around L2, we have to match an orbit of the unstable manifold of a libration orbit around
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(a)

(b)

(c)

Figure 15. Projections of (a) C
−u1
1 , (b) C

−s2
1 , and (c) their superposition for Jacobi constant

C = 3.000 826 459 043 28. See the text for explanation. (a1)–(a2)–(a3): (y, z), (y, ẏ), and (z, ż)

projections associated with the L1 point. (b1)–(b2)–(b3): (y, z), (y, ẏ) and (z, ż) projections

associated with the L2 point. (c1)–(c2)–(c3): superposition of the above figures. The set

I1− = C
−u1
1 ∩ C

−s2
1 is empty.

one point, with another orbit in the stable manifold of a libration orbit around the other point.

That is, both orbits have to be the same. Since these orbits, when considered in the conventional

CR3BP coordinate system, have to go from one side of the Earth to the other, the place where

we look for the connection is the Poincaré section defined by x = 1 − µ, ẋ > 0, which is

orthogonal to the x-axis and passes through the centre of the Earth.

Although the technical details are more complex, the main idea is similar to the

computations introduced in [14] for L4,5 connections. Once a Jacobi constant is fixed, we

take initial conditions in the linear approximation of the unstable manifold of all the libration

orbits inside this level of energy. Since the energy is fixed, we have three free variables (usually

q2, p2 and q3). A scanning procedure in these variables is done. Since the selected orbits will

leave the neighbourhood of the libration point, each initial condition in the variables (q, p)

is translated into CR3BP coordinates and then propagated forward in time until it crosses the

plane x = 1 −µ with ẋ > 0. To obtain orbits in the stable manifold around the other libration

point in the same level of energy (CR3BP Jacobi constant), we do the same process except

that the propagation is done backwards in time.
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(a)

(b)

(c)

Figure 16. Projections of (a) C
−u1
2 , (b) C

−s2
2 , and (c) their superposition for Jacobi constant

C = 3.000 826 459 043 28. See the text for explanation. (a1)–(a2)–(a3): (y, z), (y, ẏ), and (z, ż)

projections associated with the L1 point, respectively. (b1)–(b2)–(b3): (y, z), (y, ẏ), and (z, ż)

projections associated with the L2 point, respectively. (c1)–(c2)–(c3): Superposition of the above

figures. The set I2− = C
−u1
2 ∩ C

−s2
2 is not empty.

We have to remark that, as usual, the unstable and stable manifolds have two branches. In

the process we select only the Earth realm branches, i.e. those which approach x = 1−µ during

the initial steps of the propagation. Adopting the same labelling convention as in section 5,

we compute the branches bounding left-to-right transit orbits, i.e.—branches for L1 and L2.

In figures 15 and 16 we show an example of the intersections of the stable manifolds of the L1

libration orbits with the unstable manifolds of the L2 libration orbits.

Theoretically, the simplest heteroclinic orbits will be obtained from I1− = C
−u1
1 ∩ C

−s2
1

and I1+ = C
+s1
1 ∩ C

+u2
1 . Both sets give transfer orbits that cross the plane x = 1 − µ, ẋ > 0

exactly once. We will denote by Ik− (respectively Ik+ ) the set of heteroclinic trajectories from

L1 to L2 (respectively from L2 to L1) that cross the plane x = µ − 1, ẋ > 0 exactly k times,

following the above-mentioned branches of the manifold. Due to the symmetries of the CR3BP

equations, for any heteroclinic orbit from L1 to L2 we have a symmetrical one from L2 to L1.

Therefore, we need only explore the L1 to L2 connecting orbits, i.e. the set Ik− .
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Figure 17. An L1–L2 heteroclinic connection between Lissajous orbits. In the lower pictures the

intersections of the orbits with the surface of section (z = 0) for L1 (left) and for L2 (right) are

displayed with crosses.

Unfortunately, as can be seen in figure 15, the set I1− is empty and so we must look for

connections crossing the plane x = 1 − µ, ẋ > 0 twice, i.e. I2− . As it turns out, I2− �= ∅;

many possibilities of connections appear, as can be seen in figure 16. The Jacobi constant

selected corresponds to a halo orbit of normalized z amplitude 0.2 according to the notation

used in [18] and it corresponds to the energy of the lower left pictures in figures 13 and 14

(C = 3.000 802 915 133 64).

Some examples of connections. In figures 17–19, two connections between Lissajous orbits

around L1 and L2 are displayed. Both the coordinate projections and the three-dimensional

representation of the heteroclinic orbits are shown. Also, the corresponding intersections with

the surface of section z = 0, around both equilibrium points, are displayed.

We have also computed a trajectory very close to a homoclinic point of the planar Lyapunov

orbit inside the centre manifold. As we previously remarked, these points are between the zones
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Figure 18. An L1–L2 heteroclinic connection between Lissajous orbits. In the lower pictures the

intersections of the orbits with the surface of section (z = 0) for L1 (left) and for L2 (right) are

displayed with crosses.

of central Lissajous and quasi-halo ones. These kinds of solutions are interesting because they

perform a transition from a planar motion (close to a Lyapunov orbit) to an inclined orbit

(close to the quasi-halo orbits) without any �V . Figure 20 shows one of these orbits in central

manifold (q, p) variables. In figure 21 we see the variation of its z-amplitude. When the

z-amplitude is close to zero the trajectory moves close to the planar Lyapunov orbit. Then,

it gets close to the unstable manifold of the Lyapunov and escapes from it reaching a large

z-amplitude during the transition. Finally, the orbit comes back close to the planar Lyapunov

orbit getting close to its stable manifold. The numerical integration is performed for a long

time interval and this pattern repeats several times. Unfortunately, the transition from zero

z-amplitude to large z-amplitude is very slow for practical purposes. But probably, with very

small �V , it could be possible to accelerate it and have useful and cheap transitions from

planar to inclined motions.
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Figure 19. An L1–L2 heteroclinic connection between a Lissajous orbit around L2 and a quasi-

halo orbit around L1. In the lower pictures the intersections of the orbits with the surface of section

(z = 0) for L1 (left) and for L2 (right) are shown by crosses.

9. Conclusion and future work

We have shown that the invariant manifold structures of the collinear libration points of the

spatial three-body problem act as the separatrices between two types of motion, those inside

the invariant manifold tubes are transit orbits and those outside the tubes are non-transit orbits.

We have also designed a numerical algorithm for constructing orbits with any prescribed finite

itinerary in the spatial three-body planet–moon–spacecraft problem. As our example, we have

shown how to construct a spacecraft orbit with the basic itinerary (X; M, I).

Furthermore, we have applied the techniques developed in this paper towards the

construction of a three-dimensional Petit Grand Tour of the Jovian moon system. Fortunately,

the delicate dynamics of the Jupiter–Europa–Ganymede–spacecraft four-body problem are well

approximated by considering it as two three-body subproblems. One can seek intersections
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Figure 20. Homoclinic connection between Lyapunov orbits inside the central manifold (in centre

manifold coordinates).

Figure 21. CR3BP time versus centre manifold z-amplitude for the orbit of figure 20. See

explanation in the text.

between the channels of transit orbits enclosed by the stable and unstable manifold tubes of

the NHIM of different moons using the method of Poincaré sections. With manoeuvre sizes

(i.e. �V ) much smaller than those necessary for Hohmann transfers, transfers between moons

are possible. In addition, the three-dimensional details of the encounter of each moon can

be controlled. In our example, we designed a trajectory that ends in a high inclination orbit
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around Europa. In the future, we would like to explore the possibility of injecting into orbits

of all inclinations.

We also present a new methodology to compute the homoclinic and heteroclinic orbits,

joining libration point orbits around the collinear equilibrium points L1 and L2 for the

Sun–Earth system. The explorations reveal that the connections are a large set, and some

examples are presented. For future work we expect to combine the procedure with continuation

techniques in order to have a global description of the homoclinic and heteroclinic orbits for

a larger range of energy values and mass ratios.

Acknowledgments

This work was carried out in part at the Jet Propulsion Laboratory and the California Institute

of Technology under a contract with the National Aeronautics and Space Administration.

In addition, the work was partially supported by the Caltech President’s Fund, the

NSF/ITR Grant ACI-0204932, the Spanish Grant BFM2000–09054 and the Catalan grant

CIRIT 2001–70.

Appendix: Computation of NHIM and its stable and unstable manifolds

We have included in this appendix a brief description of the theoretical basis and the practical

steps for developing the software used in the numerical explorations for this paper (for more

details, see [23]).

The Hamiltonian. From the work of earlier sections, the Hamiltonian has the form

H = 1

2
(p2

x + p2
y + p2

z ) + ypx − xpy −
(

1 − µ

r1

+
µ

r2

)

.

After a translation to libration point centred coordinates, with the distances scaled to the

secondary and libration point distance, we wish to compute a high order expansion of the

resulting Hamiltonian, which for simplicity of notation, we shall also refer to as H . It has

the form

H = 1

2
(p2

x + p2
y + p2

z ) + ypx − xpy −
∑

n�2

cn(µ)ρnPn

(

x

ρ

)

,

where ρ2 = x2 + y2 + z2 and Pn is the Legendre polynomial of degree n. The coefficients cn

are given by

cn = 1

γ 3
j

(

(±1)nµ + (−1)n
(1 − µ)γ n+1

j

(1 ∓ γj )n+1

)

, for Lj , j = 1, 2,

where γj is the distance between Lj and the second primary. As usual, the upper sign

is for L1 and the lower one for L2. A good way of implementing this expansion on a

computer is to take advantage of the recurrence of the Legendre polynomials (see, for instance,

[10, 24]).

Linear behaviour and nonlinear expansion. The linearization of the Hamiltonian around

L1,2 given in section 3 shows that the local behaviour near these points is of the type
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saddle×centre×centre. So, using a real linear and symplectic change of coordinates, it is

easy to cast the second-order part of the Hamiltonian

H2 = 1

2
(p2

x + p2
y) + ypx − xpy − c2x

2 +
c2

2
y2 +

1

2
p2

z +
c2

2
z2,

into its real normal form,

H2 = λxpx +
ν

2
(y2 + p2

y) +
ω

2
(z2 + p2

z ). (A1)

Here, λ, ν, and ω are positive real numbers given by

λ2 =
c2 − 2 +

√

9c2
2 − 8c2

2
, ν2 =

2 − c2 +

√

9c2
2 − 8c2

2
, ω2 = c2.

Note that, for simplicity, we have kept in equation (A1) the same notation for the variables

even after a coordinate change.

For the following normal form computations it is convenient to ‘diagonalize’ the

second-order terms. This is done by introducing the complex change of coordinates:
(

y

py

)

= 1√
2

(

1
√

−1√
−1 1

) (

q2

p2

)

,

(

z

pz

)

= 1√
2

(

1
√

−1√
−1 1

) (

q3

p3

)

(A2)

and re-naming x = q1 and px = p1, the second-order part of the Hamiltonian becomes

H2 = λq1p1 +
√

−1νq2p2 +
√

−1ωq3p3 (A3)

From now on we will use the following notation. If x = (x1, . . . , xn) is a vector of complex

numbers and k = (k1, . . . , kn) is an integer vector, we denote by xk the term x
k1

1 · · · xkn
n (in this

context we define 00 as 1). Moreover, we define |k| as
∑

j |kj |.
In order to have all possible orbits in the centre manifold, let us expand the initial

Hamiltonian H using the coordinates that give us H2 as in (A3). Then, the expanded

Hamiltonian takes the form

H(q, p) = H2(q, p) +
∑

n�3

Hn(q, p) (A4)

where H2 is given in (A3) and Hn denotes a homogeneous polynomial of degree n of the form
∑

i,j hijq
i1

1 p
j1

1 q
i2

2 p
j2

2 q
i3

3 p
j3

3 , where hij denotes hi1,i2,i3,j1,j2,j3
.

Review of normal form computation. The process of reduction to the centre manifold is

similar to a normal form computation. The objective is to remove some monomials in the

expansion of the Hamiltonian, in order to have an invariant manifold tangent to the centre

directions of H2. For this purpose, let us recall that, if F(q, p) and G(q, p) are two functions

of positions, q, and momenta, p, their Poisson bracket is defined as

{F, G} =
3

∑

i=1

(

∂F

∂qi

∂G

∂pi

− ∂F

∂pi

∂G

∂qi

)

.

The changes of variables are implemented by means of the Lie series method with some

similarity to [6]. If G(q, p) is a Hamiltonian system, then the function Ĥ defined by

Ĥ ≡ H + {H, G} + 1
2!

{{H, G}, G} + 1
3!

{{{H, G}, G}, G} + · · · , (A5)
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is the result of applying a canonical change to H . This change is the time one flow

corresponding to the Hamiltonian G. G is usually called the generating function of the

transformation (A5). See [8] and references therein for more theoretical details. Here, we

will explain only the basics of the procedure.

Note that if P and Q are two homogeneous polynomials of degree r and s, respectively,

then {P, Q} is a homogeneous polynomial of degree r + s − 2. This means that if G3 is a

homogeneous polynomial of degree 3 used as a generating function, then the homogeneous

polynomials of degree n, Ĥn, such that Ĥ =
∑

n�2 Ĥn, are given by,

Ĥ2 = H2,

Ĥ3 = H3 + {H2, G3},
Ĥ4 = H4 + {H3, G3} + 1

2!
{{H2, G3}, G3}.

. . . . . . . . .

If we are interested in removing all the terms of order three in the new Hamiltonian, i.e. to have

Ĥ3 = 0, we must choose G3 such that it solves the homological equation {H2, G3} = −H3.

This procedure can be used recurrently trying to find a homogeneous polynomial of

degree four, G4, to remove all the terms of order four of the new Hamiltonian, Ĥ , and so

on. Nevertheless, we must point out that this is not always possible and some resonant terms,

even of order four, cannot be cancelled. Anyway, this process is used to compute what is known

as the Birkhoff normal form of the Hamiltonian, having the minimum number of monomials

up to some degree.

We note that a Lie transformation method is used for a similar Hamiltonian system

describing an atomic system in [40] to obtain a normal form up to order 6. However, there

are notable differences in the implementation: they use the Lie triangle, which we do not.

Moreover, the type of normal form we seek is different. The reduction to the centre manifold

which we use is just a certain type of normal form, characterized for ‘killing’ certain monomials,

which we find convenient for our purposes.

Reduction to the centre manifold. Although the reduction to the centre manifold is based on

this scheme, we only need to remove the instability associated with the hyperbolic character

of the Hamiltonian H . We note that the second-order part of the Hamiltonian H2 gives us

the linear part of the Hamiltonian equations, and so, the instability is associated with the term

λq1p1. For this linear approximation of the Hamiltonian equations, the centre part can be

obtained by setting q1 = p1 = 0. If we want the trajectory to remain tangent to this space

(i.e. to have q1(t) = p1(t) = 0 for all t > 0), then we need to have q̇1(0) = ṗ1(0) = 0 when

adding the nonlinear terms. Due to the autonomous character of the Hamiltonian system, we

will obtain q1(t) = p1(t) = 0 for all t � 0.

Recalling that the Hamiltonian equations associated with a Hamiltonian H(q, p) are

q̇i = ∂H

∂pi

, ṗi = −∂H

∂qi

,

in particular,

q̇1 = ∂H

∂p1

= λq1 +
∑

n�3

hijq
i1

1 p
j1−1
1 q

i2

2 p
j2

2 q
i3

3 p
j3

3 ,

ṗ1 = − ∂H

∂q1

= −λp1 −
∑

n�3

hijq
i1−1
1 p

j1

1 q
i2

2 p
j2

2 q
i3

3 p
j3

3 ,
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one can get the required condition, q̇1(0) = ṗ1(0) = 0 when q1(0) = p1(0) = 0, if in the

series expansion of the Hamiltonian H , all the monomials, hijq
ipj , with i1 + j1 = 1, have

hij = 0. This happens if there are no monomials with i1 + j1 = 1. Since this minimalist

expansion needs to cancel fewer monomials in (A4), in principle, it may be better behaved

both in terms of convergence and from a numerical point of view. Of course other expansions

could give us the same required tangency, such as the one which kills all the monomials with

i1 �= j1. This alternative expansion gives an approximated first integral and can be useful for

theoretical purposes.

All the computations discussed above have been implemented by writing specific symbolic

manipulators in Fortran that can carry out all the procedures up to an arbitrary order. For

practical purposes, and in order to have an acceptable equilibrium between precision and time

computing requirements, the normal form scheme has been implemented up to order N = 15.

After all these changes of variables, the initial complexified Hamiltonian around the

collinear libration points has been expanded in the following form

H(q, p) = H̄N (q, p) + RN (q, p),

where H̄N (q, p) is a polynomial of degree N without terms of i1 + j1 = 1 in the minimalist

case, or without terms of i1 �= j1 in the first integral case. RN (q, p) is a remainder of order

N + 1, which is very small near L1,2 and will be skipped in further computations.

Finally, using the inverse change of variables of (A2), the truncated Hamiltonian H̄N can

be expanded in real form and we obtain

H̄N (q, p) = H2(q, p) +

N
∑

n=3

Hn(q, p),

where, explicitly,

H2(q, p) = H2(q1, p1, q2, p2, q3, p3) = λq1p2 +
ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3).

For convenience, the variables are called q, p again.

NHIM and its stable and unstable manifolds. As discussed previously, in the case when all

the monomials in Hn with i1 �= j1 have been eliminated, the truncated Hamiltonian H̄N has a

first integral, I = q1p1. This is because H̄N is given by

H̄N = H2(I, q2, p2, q3, p3) +

N
∑

n=3

Hn(I, q2, p2, q3, p3).

Let f be a function of the centre manifold variables (q2, p2, q3, p3) defined as

f (q2, p2, q3, p3) =
N

∑

n=3

Hn(0, q2, p2, q3, p3).

Then, f is at least of third order. Note that the invariant manifold Sh defined by

Sh =
{

(q, p) | ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) + f (q2, p2, q3, p3) = h, q1 = p1 = 0

}

is the NHIM for the nonlinear system which corresponds to the 3-sphere (6) for the linearized

system. In a small neighbourhood of the equilibrium point, since the higher order terms in f

are much smaller than the second-order terms, the 3-sphere for the linear problem becomes a
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deformed sphere for the nonlinear problem. Moreover, since NHIMs persist under perturbation,

this deformed sphere Sh still has stable and unstable manifolds which are given by

W s
±(Sh) =

{

(q, p) | ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) + f (q2, p2, q3, p3) = h, q1 = 0

}

,

W u
±(Sh) =

{

(q, p) | ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) + f (q2, p2, q3, p3) = h, p1 = 0

}

.

Note the similarity between the formulae above and those for the linearized problem given in

equations (7) and (8), especially given the fact that these two coordinate systems are linked by

a near-identity transformation.
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