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Abstract— Photonic wire bonding is demonstrated to enable 

highly efficient coupling between multi-core fibers and planar 

silicon photonic circuits. The technique relies on in-situ 

fabrication of three-dimensional interconnect waveguides 

between the fiber facet and tapered silicon-on-insulator 

waveguides. Photonic wire bonding can easily compensate 

inaccuracies of core placement in the fiber cross-section, does not 

require active alignment, and is well suited for automated 

fabrication. We report on the design, on fabrication, and on 

characterization of photonic wire bonds. In a proof-of-principle 

experiment, a four-core fiber is coupled to a silicon photonic chip, 

leading to measured coupling losses as small as 1.7 dB. 

Index Terms —1Integrated optics, nanotechnology, optical 

fibers, optical interconnections, waveguides, photonic wire 

bonding, two-photon lithography, silicon photonics, multi-core 

fibers 

INTRODUCTION  

Over the last years multi-core fibers (MCF) have proven to 
dramatically increase the transmission capacity of optical links 
by enabling space-division multiplexing (SDM) [1]. For 
exploiting the full potential of SDM in real-world transmission 
systems, MCF need to be connected to highly integrated 
photonic transmitter and receiver circuitry. The associated 
fiber-chip interfaces still represent a major challenge: Unlike 
the cores of the MCF, waveguides in photonic integrated 
circuits (PIC) are arranged in a common plane, and edge 
coupling is hence impossible. To overcome this problem, out-
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of-plane connection of a seven-core fiber to a silicon-on-
insulator PIC has been demonstrated using an array of grating 
couplers [2]. This technique requires elaborate active alignment 
for adjusting the relative position of the MCF and the PIC in 
six degrees of freedom and is therefore not well suited for 
industrial mass production. Moreover, because of random 
deviations of the core positions within the cross section of the 
MCF, it is impossible to optimize the coupling efficiencies of 
all core-chip interfaces simultaneously. For this reason, a rather 
high insertion loss of 9.8 dB was measured [2]. In addition, 
out-of-plane coupling impedes the construction of flat 
packages, where fiber axis and chip surface are aligned. 
Furthermore, transmission bandwidth of grating coupler 
connections is intrinsically limited, making the concept 
unsuited for massively parallel wavelength division 
multiplexing schemes that use a large number of channels.  

In this paper we show that photonic wire bonding [3]-[4] 
provides a viable method for MCF-chip interfaces that 
overcome the limitations of grating couplers. Photonic wire 
bonding allows fabricating free-standing polymer waveguides 
with diameters down to 1 µm in situ by direct-write three-
dimensional (3D) laser lithography based on two-photon 
polymerization. In previous experiments, we successfully 

 
Fig. 1: Schematic of a photonic wire bond (PWB) between fiber and 

silicon-on-insulator (SOI) chip. The PWB trajectory is selected such that 
it adapts to the positions and the optical axes of the structures to be 

connected. Obstacles like chip or fiber edges must be avoided, and a good 

compromise is to be found between long interconnects and sharp 
waveguide bends.  
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demonstrated single-mode interconnects of silicon PIC on 
different chips, showed transmission at terabit/s data rates, and 
reported ways to reduce the transmission loss of photonic wire 
bonds (PWB) interconnecting silicon-on-insulator (SOI) 
waveguides (WG) to 1.6 dB. Here we expand on these results 
and show coupling of a four-core fiber to a silicon photonic 
chip with insertion losses down to 1.7 dB. The technique 
renders active alignment obsolete, can easily compensate 
tolerances of the core placement, and lends itself to automated 
mass production. Moreover, the fiber can be positioned in the 
same plane as the chip surface, thereby enabling greatly 
simplified and fully planar packages. 

I. DESIGNING THE PHOTONIC WIRE BOND 

Besides being single-moded at a wavelength of 1550 nm, 
photonic wire bonds have to fulfill a number of other 
requirements: Most important are small losses over a large 
bandwidth, a physically feasible trajectory without intersecting 
obstacles, and a mechanically stable shape that withstands the 
capillary forces during the removal of the unexposed part of the 
resist, from which the PWB is made of. Fig. 1 shows a 
schematic illustration of a photonic wire bond interconnecting 
one core of a MCF and a SOI chip. In this example, the 
photonic wire bond has tapered sections on the fiber endface as 
well as towards the SOI chip for adapting the mode fields. 
Between the tapered structures, the PWB has a round cross-
section, and the PWB axis follows a 3D trajectory in space. 
The following section describes the optimization of the PWB 
trajectory, and the design of the tapers near the MCF as well as 
near the nanophotonic SOI waveguides.  

A. Low-loss trajectory 

For minimum optical loss, the trajectory of a PWB axis has 
to obey a number of constraints. To begin with, the endfaces of 
the PWB must overlap with the connecting waveguides on both 
sides. Next, the starting and ending orientation of the PWB 
axes have to coincide with the connecting waveguide axes. 
Further, the trajectory of the PWB axis is to be chosen such 
that intersections with obstacles like fibers, chip edges or other 
PWB are avoided. Finally, increased losses by a strong 
curvature of the trajectory and a large length should be 
avoided, and a suitable compromise has to be found. 

To fulfill the requirements listed above, a complicated 
optimization process has to be employed. Because the target 
(objective, cost) function is the optical transmission loss which 
has to be minimized, an appropriate loss model is needed for 
the PWB. While the theory of waveguide bends lying in a 
plane is well developed [5]-[8], no theory is available for a 
waveguide with an axis which is bent in three dimensions. 
Work is in progress to find the parameters of a closed-form 
empirical function for the PWB losses. Meanwhile, with the 
help of full-wave finite-integration technique (FIT) calculations 
(CST Microwave Studio), we developed an expert system for 
designing the trajectories empirically, based on fifth-order 
polynomials.  

B. Fiber interface 

The fiber interface serves to convert the MCF mode field to 
the fundamental mode of the PWB. This interface is realized 
by a linear up-taper of the PWB waveguide; see Fig. 2. For 

designing the taper, we perform FIT simulations. We use a 
four-core fiber provided by Fibercore Inc. (SM-4C1500), 
featuring a step-index profile with a relative refractive index 

difference between core and cladding of MCF = 0.54 % [9], a 
core diameter of dMCF = 8 µm, and a (Gaussian) mode-field 
diameter of 8.4 µm (1/e-diameter of the modal amplitude) as 
specified by the manufacturer. The PWB consists of a 
commercially available polymer with a refractive index of 
nPWB,core = 1.53 at a wavelength of 1550 nm (IP-Dip™, [10]). 
The diameter of the circular PWB cross-section is 
dPWB = 2 µm. The PWB is embedded in a low-index material 
that acts as an optical cladding as well as a mechanical support. 
We prefer Cytop™ [11] as a cladding material, having a 
refractive index of nPWB,clad = 1.34. The relative refractive index 

difference    2

2 2 2
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Fig. 2: Structure of the linear up-taper used at the interface between the 

MCF and the PWB. The taper starts with the circular cross-section of the 

PWB (dPWB = dtaper,1 = 2 µm) and ends with a circular cross section of 

larger diameter dtaper,2 at the fiber endface. This taper ending diameter is 

optimized for minimum insertion loss and turns out to be larger than the 

fiber core diameter dMCF = 8 µm, because the relative refractive index 

difference between core and cladding is much larger for the PBW 

(nPWB,core = 1.53 nPWB,clad = 1.34, PWB = 13 % at 1550 nm) than for the 

fiber (MCF = 0.54 % at 1550 nm). 

 

Fig. 3: Calculated insertion loss for optimized interfaces between the 

MCF and the PWB. A linear polymer taper with circular cross-section is 

used between the endface of the MCF (core diameter dMCF = 8 µm, 

MCF = 0.54 % at 1550 nm) and the single-mode PWB section (core 

diameter dPWB = 2 µm, core index nPWB,core = 1.53, cladding index 

nPWB,clad = 1.34 at 1550 nm). The diameter of the taper at the MCF 
interface is optimized for mimimum insertion loss. The insertion loss is 

calculated between the fundamental eigenmode of the MCF and the 

fundamental eigenmode of the PWB waveguide section. 
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cladding is PWB = 13 %, indicating a strong guidance.  

Parameter sweeps of taper length and taper diameter at the 
fiber endface result in a loss-optimized taper diameter as a 
function of the taper length, see Fig. 3. The shaded area in Fig. 
4 shows the region where the minimum insertion loss (red line) 
increases by 0.1 dB. For a taper length of lup-taper = 60 µm, a 
taper diameter range between 10.9 µm and 13.0 µm leads to a 
loss increase of less than 0.1 dB. This shows that the taper 
design is stable with respect to production tolerances and 
therefore well suited for fabrication. The simulated insertion 
loss of optimized tapers as a function of length is depicted in 
Fig. 3. The calculated loss between PWB and MCF amounts to 
0.52 dB at a taper length of lup-taper = 60 µm and taper diameter 
of 12 µm.  

C. SOI chip interface 

Next, we need to connect the PWB to a silicon-on-insulator 
strip waveguide that consists of a nanophotonic waveguide 
core on top of a thick buried oxide layer. An illustration of the 
interconnect is depicted in Fig. 5. For a low-loss transition 
between PWB and SOI WG we have to increase the mode field 
diameter of the SOI WG. This is done by laterally down-
tapering the SOI WG towards the PWB (“inverse taper”) [12], 
and by embedding the SOI WG into a rectangular polymer 
waveguide that is down-tapered towards the SOI WG. We refer 
to this structure as a 3D double-taper in the following. The 3D 
double-taper is covered by a cladding material. Fig. 5 shows 
the double-taper structure. The SOI WG tip has a width of 
wtip = 80 nm. Measured from this tip, the investigated SOI WG 
taper lengths lie between lSi  = 40 µm and lSi = 100 µm. The 
SOI WG taper connects to a straight SOI WG with a cross-
section of wSi = 500 nm (width) by hSi = 220 nm (height). The 
PWB taper has a cross-section of wPWB,taper,1 = 0.76 µm by 
hPWB,taper,1 = 0.45 µm and ends with a cross-section of 
wPWB,taper,2 = 2 µm by hPWB,taper,2 = 2 µm at the PWB waveguide 
side. The length of the polymer taper is fixed to 
LPWB,taper = 80 µm.  

The rectangular PWB gradually changes its shape to a 
cylindrical PWB over a length of 20 µm. Polymer taper and 
PWB consist of the same material and are fabricated 
simultaneously.  

The loss of the 3D double-taper is calculated between the 
fundamental eigenmode of the clad rectangular polymer taper 
WG and the fundamental eigenmode of the straight SOI WG. 
Again we employ a FIT solver, and we use the following 
additional data, all valid at a wavelength of 1550 nm: 
Refractive indices of silicon (nSi = 3.48), silicon dioxide 
(nSiO2 = 1.44), PWB taper (nPWB,core = 1.53), and cladding 
(nPWB,clad = 1.34). The silicon taper length varies between 
lSi = 40 µm and lSi = 100 µm. Except for the lSi = 40 µm and 
lSi = 100µm long SOI WG taper, the calculated losses lie 
between 0.75 dB and 0.9 dB in the C-Band (1530 nm -
 1565 nm), see Fig. 6. Obviously, the 40 µm taper is too short 
for a low-loss transition. We attribute the ripple in the loss 
curves to multiple internal reflections inside the 3D double-
taper. 

 
Fig. 5: 3D double-taper structure for modal field match between PWB 

and SOI waveguide. (a) The SOI WG ends in a laterally down-
tapered section (“inverse taper”), whereas the PWB features a section 

that is laterally and vertically down-tapered to adiabatically transform 

the SOI waveguide mode to that of the PWB. The PWB waveguide 
section gradually changes its cross-section from rectangular to 

circular. (b) The SOI WG tip has a width of wtip = 80 nm. The SOI 

WG taper connects to a straight SOI WG with a cross-section of 
wSi = 500 nm by hSi = 220 nm. Measured from this tip, the 

investigated SOI WG taper lengths lie between lSi = 40 µm and 

lSi = 100 µm. The PWB taper has a rectangular cross-section of 
wPWB,taper,1 = 0.76 µm by hPWB,taper,1 = 0.45 µm and ends with a 

rectangular cross-section of wPWB,taper,2 = 2 µm by hPWB,taper,2 = 2 µm at 

the PWB waveguide section. The length of the PWB taper is fixed to 
LPWB,taper = 80 µm. The lower-index cladding material is not displayed 

here for the sake of clarity. 

 

Fig. 4: Taper diameter dtaper,2 at the MCF interface vs. taper length lup-taper 

for a loss-optimized structure (red line). The linear polymer taper 
connects the single-mode PWB section (diameter dPWB = 2 µm) with the 

endface of the MCF (SM-4C1500 core diameter dMCF = 8 µm). At a taper 

length of 60 µm, the optimum taper diameter at the MCF interface 
amounts to dtaper,2 = 12 µm, and the minimum achievable transmission 

loss is 0.52 dB. In this case, the taper diameter dtaper,2 may vary between 

10.9 µm and 13.0 µm for an increase of the insertion loss by at most 
0.1 dB.  
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II. FABRICATION 

For the realization of the photonic wire bond several 
fabrication steps are required. First, the objects to be 
interconnected (MCF and SOI WG in our example) are 
mounted on a common carrier using standard pick-and-place 
machinery with moderate precision. In this experiment we used 
a glass carrier with two different height levels for rough 
adjustment of the component heights, and we fixed the 
components with glue. 

Second, the interconnect regions (MCF endface and SOI 
WG end) are embedded into a negative-tone photoresist, and 
the actual positions of the optical connection points (fiber core 
endfaces and taper tips of SOI WG) are detected by microscope 
image processing. With these data, the PWB shape (trajectory 
and waveguide cross-section along the trajectory) is calculated 
according to the criteria described previously.  

Third, the calculated waveguide structures are defined by a 

direct-write 3D lithography technique. In our experiment, we 
use a commercial lithography system (Photonic Professional 
from Nanoscribe GmbH) [10], which uses a frequency-doubled 
fiber laser emitting pulses at 780 nm wavelength with 
approximately 80 MHz repetition frequency and <100 fs pulse 
width. This laser light is focused into the resist through an 
immersion objective (100× magnification) with a large 
numerical aperture (NA = 1.3). The power at the input pupil of 
the objective amounts to approximately 4 mW. We use a high-
resolution photo-resist (IP-Dip™), which is transparent at the 
laser wavelength, but enables two-photon polymerization in the 
high-intensity focal spot of the lithography system. Depending 
on the NA of the objective, on the laser power and on the 
sensitivity of the photo-resist, such a volume element (voxel) 
has a diameter (height) down to 100 nm (200 nm) [13]. In the 
lithography step, a refined two-stage writing strategy is used to 
define the PWB structures by moving the focal spot of the 
writing beam through the volume of the resist, see Fig. 7. The 
inner volume is exposed first by writing spiral lines, and an 
outer shell of contour lines is then added to smoothen the 
surface.  

As a last fabrication step, the unexposed resist material is 
removed in a developer bath, and the resulting PWB is finally 
embedded in a low-index cladding material. In our experiments 
we immerse the photonic wire bond into an index-matching 
liquid with a refractive index of 1.34, but a low-index cladding 
material like Cytop™ would be preferred for stabilization. 

For practical application of photonic wire bonding in 
manufacturing, writing speed is a crucial parameter. We are 
currently using a system, in which the lateral movement of the 
lithography beam is steered with galvanometer-driven scanning 
mirrors. For this system, achievable writing times amount to 
less than 5 min for a fiber-chip PWB. This is much faster than 
our conventional system, in which the focus of the laser beam 
was held in a fixed position and the high-inertia sample holder 
had to be moved by a piezo-driven translation stage, leading to 
writing speeds of approximately 75 µm/s and writing times of 
more than 1h per fiber-chip PWB. The structures presented 
below have still been written using the piezo system. For 
scanner-based lithography systems, we expect that further 

 

Fig. 6: Simulated transmission over wavelength for a 3D double-taper 

interface as shown in Fig. 5. The following values apply for the SOI 

waveguide: wSi = 500 nm, hSi = 220 nm, taper tip width wtip = 80 nm, 
refractive index nSi = 3.48 at 1550 nm. For the PWB taper: initial height 

hPWB,taper,1 = 450 nm, initial width wPWB,taper,1 = 760 nm, PWB waveguide 

section wPWB,taper,2 = 2 µm × hPWB,taper,2 = 2 µm, nPWB,core = 1.53 and 
nPWB,clad = 1.34 both at 1550 nm. The silicon taper length lSi is varied in 

the simulation between lSi = 40 µm and lSi = 100 µm. Except of the 

lSi = 40 µm and lSi = 100 µm long SOI taper the simulation losses range 
between 0.75 dB and 0.9 dB. 

 

Fig. 7: Two-step writing strategy for PWB fabrication. The inner volume 

is exposed first by writing spiral lines. In a second step, an outer shell is 

added by writing lines parallel to the contour of the PWB for 
smoothening the surface. 

 

Fig. 8: Fabricated sample. Photonic wire bonds (PWB) connect the 

individual cores of a four-core fiber to different on-chip SOI 

waveguides. The PWB are up-tapered both on the MCF and on the 
SOI WG side to match the mode diameter to that of the fiber core 

and of the SOI WG, respectively. The PWB consist of a negative-

tone photo-resist. At PWB 4, shape imperfections can be seen. 
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optimization will allow writing times of a few seconds per 
fiber-chip PWB in the future, making the technique suited for 
high-volume mass production.  

III. MULTI-CORE FIBER-CHIP CONNECTION  

Fig. 8 shows the resulting PWB interconnection between a 
four-core fiber and a silicon photonic chip. The interface 
consists of four PWB that connect the individual cores of the 
MCF to different on-chip waveguides.  

At the interface towards the SOI WG, polymer tapers of 
length LPWB,taper = 80 µm are used. Their initial cross-sections 
are rectangular with wPWB,taper,1 = 0.76 µm (width) and 
hPWB,taper,1 = 0.45 (height), and they end with a quadratic cross-
section of equal width and height, wPWB,taper,2 = 
hPWB,taper,2 = 2 µm at the PWB waveguide section. The 
embedded Si tapers have a length of lSi = 60 µm and a taper tip 
width of wtip = 80 nm as described in Section I C. The PWB 
tapers towards the fiber endface have a starting diameter of 
dtaper,2 = 12 µm and a taper length of lup-taper =60 µm The 
circular PWB waveguide sections have diameters of 
dPWB =2 µm as described in Section I B.  

For measuring the insertion losses of the MCF-chip 
interconnects, we use the setup depicted in Fig. 9. Light is 
coupled to the individual SOI waveguides via grating couplers, 
and then passed on to the MCF cores via the PWB interface. 
The cleaved output facet at the far end of the MCF is scanned 
by a lensed fiber to measure the power distribution in the cross-
section as depicted in Fig. 10. The best performance is found if 
light is launched into waveguide number 2. In this case we 
measure a total loss of 9.7 dB for an optimum alignment of the 
lensed SMF. Taking into account insertion losses of 4.8 dB at 
the grating-coupler interface and another 3.2 dB of coupling 
loss between the MCF core and the lensed fiber, we find a net 
insertion loss of 1.7 dB for the PWB interface. The losses of 
the grating-coupler interface were determined from a reference 
measurement, revealing a loss of 9.6 dB when coupling light 
through a simple SOI WG with two grating couplers. Similarly, 
the insertion loss between the MCF core and the lensed fiber 
has been obtained from a reference transmission experiment 
comprising a pair of lensed fibers and a piece of MCF. 
Applying the same technique to the remaining bonds 1, 3, 

and 4, we find insertion losses of 3.5 dB, 2.5 dB, and 6.8 dB, 
respectively.  

All measurements were performed under usual laboratory 
conditions without special temperature control. The 
performance of photonic wire bonds under more challenging 
environmental conditions such as high temperatures and higher 
humidity is subject to ongoing research. In first tests we found 
that PWB maintain performance after being baked at 85°C at 
normal atmosphere for one hour, and multiple rinses in water 
also did not worsen the transmission of PWB. We therefore 
expect the structures to exhibit stability properties that are well 
suited for a wide range of practical applications. 

Simulated losses of the fabricated structure amount to 
1.3 dB, where 0.78 dB are due to the transition between the 
PWB and the SOI WG, and the remaining 0.52 dB are caused 
by the interface to the MCF. This compares well to the smallest 
measured insertion loss of 1.7 dB – the additional losses are 
attributed to scattering losses in the PWB waveguide section 
itself, caused by fabrication imperfections which cannot be 
included in the simulations, see Fig. 8. Moreover, shrinkage of 
the resist after exposure led to tension within the PWB, see Fig. 
8. We believe that transmission and uniformity of the MCF-
chip interfaces can be significantly improved in the future by 
optimizing taper structures and fabrication processes, leading 
to insertion losses of less than 1 dB for a fiber-chip interface.  

 

IV. SUMMARY 

We show that photonic wire bonding enables low-loss 
interfaces between multi-core fibers and single-mode SOI 

 

Fig. 10: Spatially resolved normalized power transmission at the cleaved 

output facet of the multi-core fiber. The transmission is normalized to the 
maximum power level in each core, measured when launching light to the 

individual on-chip waveguides 1…4. These data correspond to insertion 

losses of 3.5 dB (PWB 1), 1.7 dPWB 2), 2.5 dB (PWB 3) and 6.8 dB 
(PWB 4). The rather high insertion loss of PWB 4 is attributed to 

fabrication imperfections, see Fig. 8 The net insertion loss of the MCF-

chip interface is obtained by taking into account the losses of the grating-
coupler interface (4.8 dB) and the coupling losses between the MCF-core 

and lensed fiber (3.2 dB). 

 

Fig. 9: Measurement setup. Laser light is coupled to the individual SOI 

waveguides by grating couplers, and then passed on to the MCF via the 
PWB connection. The cleaved output facet of the MCF is scanned by a 

lensed fiber to measure the power distributions.  
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waveguides. The technique does not require active alignment 
and allows connecting a wide range of fiber types and core 
configurations. Insertion losses as down to 1.7 dB were 
measured, with much potential for further improvement. 
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