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Abstract— We summarize our recent work [1], [2] on a
new theoretical connection between singular control of finite
variation and optimal switching problems. This correspon-
dence not only provides a novel method for analyzing multi-
dimensional singular control problems, but also builds links
among singular controls, Dynkin games, and sequential optimal
stopping problems.

I. INTRODUCTION

In our recent work ([1]), we established a generic the-
oretical connection between singular control and optimal
switching problems: we defined a consistency property for
collections of switching controls, and proved that there is
an exact correspondence between the set of finite variation
càglàd processes and the set of consistent collections of
switching controls.

This correspondence allows one to analyze multi-
dimensional control problem under a general setting for the
regularity properties and the smooth fit principle directly: one
can obtain an integral representation for the value function
of a general class of singular control problem in terms of the
values of corresponding optimal switching problems.

As a byproduct, we showed that the value of a Dynkin
game can be represented as the difference between the
values of two related switching problems, thereby linking
the general reversible investment problem, the Dynkin game,
and the optimal switching problem.

Continuing our analysis on singular control problems with
possible non-smooth payoff functions, we ([2]) analyzed a
class of singular control problems for which value func-
tions are not necessarily smooth. Necessary and sufficient
conditions for the well-known smooth fit principle, along
with the regularity of the value functions, are given. Explicit
solutions for the optimal policy and for the value functions
are provided. In particular, when payoff functions satisfy
the usual Inada conditions, the boundaries between action
and no-action regions are smooth and strictly monotonic as
postulated and exploited in the existing literature ([3], [4],
[5], [6], [7], [8], [9], [10]). Illustrative examples for both
smooth and non-smooth cases are discussed to highlight the
pitfall of solving singular control problems with a priori
smoothness assumptions.

a) Previous work: Singular control problems have been
studied extensively in both the mathematics and economics,
starting from the well-known monotone fuel follower prob-
lem, for which explicit solutions can be found in [11],
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[12], [13] and [14]. In mathematical economics, a typical
(ir)reversible investment problem can be formulated as a
singular control problem in which a company, by adjusting
its production capacity through expansion and contraction
according to market fluctuations, wishes to maximize its
overall expected net profit over an infinite horizon. This
problem has been investigated by numerous authors (See for
instance [4], [5], [6], [15], [7], [8], [16], [17], [18], [19], and
[9]). For a standard reference on irreversible investment, see
[3].

Our approach of connecting singular control problems and
related optimal stopping problems dates back to the seminal
paper of [11], and has since been developed and applied
to monotone singular control problems by [20], [21], [22],
[23], and [15]. Indeed, our integral representation theorem
for the reversible investment problem is in part inspired by
the elegant integration arguments of [15] for irreversible
investment. Another closely related body of work is [24],
[25], [26]. However, the connections between the singular
control problem, the entry-exit problem, and Dynkin’s game
in their works are established within the framework of for-
ward backward stochastic differential equations and require
a finite time horizon with the restrictive assumption that the
control has only an additive affect on the diffusion.

b) Our contribution: Compared to all previous works
and approaches, the correspondence between singular con-
trols and switching controls in our paper does not depend on
the specific form of the control problem. Thus, our method-
ology may be applied to cases for which the underlying
randomness is not necessarily captured by a diffusion and
the payoff function is not necessarily smooth.

II. CORRESPONDENCE BETWEEN SINGULAR CONTROLS
AND SWITCHING CONTROLS

The correspondence established in [1] is analogous to the
well-known correspondence between a non-decreasing, F-
adapted, càglàd singular control (ξt)t≥0 and a collection of
stopping times (τ ξ(z))z∈R, given by

τ ξ(z) = inf{t ≥ 0 : ξt > z}, ξt = sup{z ∈ R : τ ξ(z) < t}.
A. Definitions

Let (Ω,F , P ) be a complete probability space and F =
{Ft; 0 ≤ t < ∞} a filtration satisfying the usual hypotheses.
Let I ⊂ R be an open (possibly unbounded) interval, and Ī
be its closure.

Definition 2.1: Given y ∈ Ī, an admissible singular
control is a pair (ξ+

t , ξ−t )t≥0 of F-adapted, non-decreasing
càglàd processes such that ξ+(0) = ξ−(0) = 0, Yt :=
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y + ξ+
t − ξ−t ∈ Ī,∀t ∈ [0,∞), and dξ+, dξ− are supported

on disjoint subsets.
We denote here Ay to be the set of admissible strategies
corresponding to an initial capacity level of y.

Since dξ+, dξ− are supported on disjoint subsets, ξ+ and
ξ− are the positive and negative variation of Y , respectively.
By the uniqueness of the variation decomposition, there is
a one-to-one correspondence between strategies (ξ+, ξ−) ∈
Ay and F-adapted càglàd finite variation processes Y with
Y0 = y and Yt ∈ Ī for all t.

Throughout the paper, (Yt)t≥0 is a finite variation control
process with Y0 = y.

Definition 2.2: A switching control α = (τn, κn)n≥0

consists of an increasing sequence of stopping times (τn)n≥0

and a sequence of new regime values (κn)n≥0 that are
assumed immediately after each stopping time.

When there are only two distinct regimes, an optimal
switching problem is often referred to as the starting and
stopping problem ([27], [28], etc.) or the entry and exit
problem ([25], [29], etc.). Following convention, we label
the two regimes 0 and 1.

Definition 2.3: A switching control α = (τn, κn)n≥0 is
admissible if the following hold almost surely: τ0 = 0,
τn+1 > τn for n ≥ 1, τn → ∞, and for all n ≥ 0,
κn ∈ {0, 1} is Fτn measurable, with κn = κ0 for even
n and κn = 1− κ0 for odd n.

Alternatively, an admissible switching control has a more
mathematically convenient representation given by its regime
indicator function.

Proposition 2.4: There is a one-to-one correspondence
between admissible switching controls and the regime indi-
cator function It(ω), which is an F-adapted càglàd process
of finite variation, so that It(ω) : Ω× [0,∞) → {0, 1}, with

It :=
∞∑

n=0

κn1{τn<t≤τn+1}, I0 = κ0. (1)

Definition 2.5: Let y ∈ Ī be given, and for each z ∈ I,
let α(z) = (τn(z), κn(z))n≥0 be a switching control. The
collection (α(z))z∈I is consistent if

α(z) is admissible for Lebesgue-almost every z ∈ I, (2)
I0(z) := κ0(z) = 1{z≤y}, for Lebesgue-almost every z ∈ I ,

(3)

and for all t < ∞,∫

I
(I+

t (z) + I−t (z))dz < ∞, almost surely, and (4)

It(z) is decreasing in z for P⊗ dz-almost every (ω, z).
(5)

Here It(z), I+
t (z) and I−t (z) are It = κ0 + I+

t − I−t ,
and I+

t (I−t ) is the positive (negative) variation of the
corresponding regime indicator function such that I+

t :=∑∞
n>0,κn=1 1{τn<t}, I+

0 = 0, I−t :=
∑∞

n>0,κn=0 1{τn<t},
and I−0 = 0.

For It(z) to be decreasing in z for P ⊗ dz-almost every
(ω, z), it means there exists a set E ⊂ Ω × Ī such that

P ⊗ dz(E) = 0 and if (ω, z0), (ω, z1) ∈ (Ω × Ī)\E with
z0 ≤ z1, then It(ω, z0) ≥ It(ω, z1).

B. Bijection

The bijection between the singular control and the switch-
ing control was established based on a relatively old result
in analysis [30, Theorem 5.5.1].

Proposition 2.6 (From Singular to Switching Controls):
Given (ξ+, ξ−) ∈ Ay , define a switching control
α(z) = (τn(z), κn(z))n≥0 for each z ∈ I through
the regime indicator function It(z) := lims↑t 1{Ys>z}. Then,
the resulting collection (α(z))z∈I of switching controls is
consistent.

Proposition 2.7 (From Switching to Singular Controls):
Given y ∈ Ī and a consistent collection of switching
controls (α(z))z∈I , define two processes ξ+ and
ξ− by setting ξ+

0 = 0, ξ−0 = 0, and for t > 0:
ξ+
t :=

∫
I I+

t (z)dz, ξ−t :=
∫
I I−t (z)dz. Then

(1) The pair (ξ+, ξ−) ∈ Ay is an admissible singular
control,

(2) Up to indistinguishability, Yt = y +∫∞
y

It(z)1{z∈I}dz +
∫ y

−∞(It(z)− 1)1{z∈I}dz, and
(3) For all t, we almost surely have

Yt = ess sup{z ∈ I : It(z) = 1} = ess inf{z ∈ I : It(z) = 0},
where ess sup ∅ := inf I and ess inf ∅ := sup I.

Proposition 2.8 (One-to-One Mapping): The mapping
from consistent collections of switching controls to singular
controls defined by Proposition 2.7 is one-to-one.

Theorem 2.9 (Bijection): The mappings in Propositions
2.6 and 2.7 define a bijection between admissible singular
controls (ξ+, ξ−) ∈ Ay and consistent collections of switch-
ing controls (up to equivalence).

C. Change of Variable Formula

With the bijection established in Theorem 2.9, we es-
tablished a change of variable formula for integration with
respect to the variation of a singular control.

Proposition 2.10: Let (ξ+, ξ−) ∈ Ay be an admissible
singular control and (α(z))z∈I be the corresponding col-
lection of switching controls. For every càdlàg process g :
Ω× [0,∞] → [0,∞) with g(∞) ≡ 0,

∫

[0,∞)

g(t)dξ+
t =

∫

I

∑
n>0

κn=1

g(τn(z))dz, a.s., and

∫

[0,∞)

g(t)dξ−t =
∫

I

∑
n>0

κn=0

g(τn(z))dz, a.s.

In particular, when Y is non-decreasing (i.e. ξ− ≡ 0),
Ī = [0,∞) and y ≥ 0, we have τn(z) ≡ 0 for all n > 1,
and for n = 1 when z ≤ y. In this case, our change of
variable formula reduces to the one for monotone controls
in [15], after adjusting for notational differences,

∫

[0,∞)

g(t)dξ+
t =

∫ ∞

y

g(τ1(z))dz.
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III. APPLICATION: ANALYSIS OF A CLASS OF SINGULAR
CONTROL PROBLEMS

Having established the correspondence between singular
controls and consistent collections of switching controls, we
showed how this theory can be applied to analyzing singular
control problems.

A. The Singular Control Problem

Consider the following class of singular control problems
from economics named reversible investment problem: a
company adjusts its reversible production capacity (or invest-
ment) level by proper controls of expansion and contraction
in the presence of a stochastic economic environment. The
net profit of such an investment depends on the running
production function of the actual capacity, the economic
uncertainty such as price or demand for the product, the
benefits of contraction (e.g. via spinning off part of the
business), and the cost of expanding and reducing the capital.
The company’s objective is to maximize the expected profit
over an infinite time horizon by controlling expansion and
contraction.

Let the unit cost of increasing the capacity at time t be
γ+(ω, t) : Ω × [0,∞) → R, the unit cost of decreasing
capacity be γ−(ω, t) : Ω × [0,∞) → R, with both γ+ and
γ− adapted to F. Let ξ+

t and ξ−t represent the cumulative
expansion and reduction of capital until time t respectively,
both F-adapted, non-decreasing càglàd processes. Let Yt =
y + ξ+

t − ξ−t ∈ Ī with ξ+(0) = ξ−(0) = 0. The objective is
to solve the following optimization problem defined as:

V (y) := sup
(ξ+,ξ−)∈A′y

J(y, ξ+, ξ−), (6)

Here

J(y, ξ+, ξ−) := E

[∫ ∞

0

Π(t, Yt)dt−
∫

[0,∞)

γ+(t)dξ+
t

−
∫

[0,∞)

γ−(t)dξ−t

]
, (7)

with Π(ω, t, z) : Ω×[0,∞)×Ī → R being the instantaneous
operating profit and the maximization is over the set of
integrable strategies A′y ⊂ Ay . Note that for any y ∈ Ī,
A′y is not empty, as the expected profit of not investing at
all (i.e. ξ+ ≡ 0 ≡ ξ−) is finite and is given by

R(y) := J(y, 0, 0) = E
[∫ ∞

0

Π(t, y)dt

]
. (8)

c) Standing assumptions:

A1) Π is concave in y and continuous at the boundary of
I, so that for y1 < y2 ∈ Ī,

Π(t, y2)−Π(t, y1) :=
∫ y2

y1

π(t, z)dz, (9)

where π is decreasing in z a.s. and adapted to F.
Furthermore,

E
[∫ ∞

0

|Π(t, z)|dt

]
< ∞, ∀z ∈ Ī, (10)

E
[∫ ∞

0

|π(t, z)|dt

]
< ∞, ∀z ∈ I. (11)

A2) γ+ and γ− are adapted to F, γ±(∞) := 0 and

γ+(t) + γ−(t) > 0, for all t, a.s. (12)

A3) If I is not bounded above, then γ+(t) ≥ 0 for all t
almost surely. And, if I is not bounded below, γ−(t) ≥
0 for all t almost surely.

B. Optimal Control from its Corresponding Optimal Switch-
ing Problem

The key to using the connection between singular controls
and switching controls to solve problem (6) in Section III-A
is to write the payoff of this problem in terms of the payoffs
of its corresponding optimal switching problems.

1) Switching Controls from Singular Controls: First,
given the running profit and cost functions from the singular
control problem (6), define a collection of optimal switching
problems, indexed by z ∈ I .

Definition 3.1: The switching cost process γ : Ω ×
[0,∞) × {0, 1} → R is given by γ(t, κ) := γ+(t)1{κ=1} +
γ−(t)1{κ=0}. Here γ(t, κ) represents the cost of switching
to regime κ at time t.

Proposition 3.2: Assume (ξ+, ξ−) ∈ A′y . Let (α(z))z∈I
be the corresponding consistent collection of switch-
ing controls with regime indicator functions I(z), then
J(y, ξ+, ξ−) − R(y) =

∫∞
y

m+(z, α(z))1{z∈I}dz +∫ y

−∞m−(z, α(z))1{z∈I}dz, where

m+(z, α) := E

[∫ ∞

0

π(t, z)Itdt−
∞∑

n=1

γ(τn, κn)

]
, (13)

m−(z, α) := E

[∫ ∞

0

−π(t, z)(1− It)dt−
∞∑

n=1

γ(τn, κn)

]
.

(14)

Here m+(z, α),m−(z, α) are two expected payoffs for the
switching controls for each z ∈ I and α ∈ B, with κ0 =
k ∈ {0, 1}.

2) Representation Theorem: Now, for each z ∈ I, the
optimal switching control problem is to maximize the ex-
pected payoff over possible switching controls α ∈ B such
that κ0 = k ∈ {0, 1}. This leads to value functions given by

m∗
+(z, k) := sup

α∈B
κ0=k

m+(z, α), (15)

m∗
−(z, k) := sup

α∈B
κ0=k

m−(z, α), (16)

where m+(z, α) and m−(z, α) are given by (13) and (14).
Theorem 3.3 (Representation): Fix y ∈ Ī, let V (y) and

R(y) be given from (6), m∗
+(z, k) and m∗

−(z, k) be given
by (15) and (16), and (ξ̂j+, ξ̂j−) ∈ Ay be the corresponding
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singular control as per Proposition 2.7. Assume there is
a sequence of consistent collections of switching controls
(αj(z))z∈R so that as j →∞,
∫ ∞

y

m+(z, αj(z))1{z∈I}dz +
∫ y

−∞
m−(z, αj(z))1{z∈I}dz

→
∫ ∞

y

m∗
+(z, 0)1{z∈I}dz +

∫ y

−∞
m∗
−(z, 1)1{z∈I}dz.

Assume also (ξ̂j+, ξ̂j−) ∈ A′y for all j. Then, V (y)−R(y) =∫∞
y

m∗
+(z, 0)1{z∈I}dz +

∫ y

−∞m∗
−(z, 1)1{z∈I}dz.

With stronger assumptions, one can further establish the
existence of an optimal control strategy.

Assumption 3.4:
1) [Existence of consistent controls] Fix y ∈ Ī and let

m∗
+(z, k) and m∗

−(z, k) be given by (15) and (16). For
almost all z ∈ I, there exists an optimal admissible
switching control α(z) ∈ B such that

m∗
+(z, 0) = m+(z, α(z)), for z > y,

and, m∗
+(z, 1) = m+(z, α(z)), for z ≤ y.

Furthermore, the collection (α(z))z∈R is consistent.
2) [Integrability of singular control] Let (ξ̂+, ξ̂−) ∈ Ay

be the corresponding singular control as per Proposi-
tion 2.7, then (ξ̂+, ξ̂−) ∈ A′y .

Theorem 3.5 (Representation and Existence): Under As-
sumption 3.4, the Representation Theorem 3.3 holds. More-
over, the strategy (ξ̂+, ξ̂−) is optimal.

Theorem 3.6 (Sufficient Condition for Integrability):
Let I be bounded, assume 3.4.1 and let (ξ̂+, ξ̂−) be the
corresponding singular control as per Proposition 2.7.
Furthermore, suppose

(1) sup0≤t≤T supz∈I |Π(ω, t, z)| < ∞, almost surely, for
all T > 0,

(2) lim supT→∞ E [|γ+(T )|+ |γ−(T )|] < ∞, and
(3) For every strategy (ξ+, ξ−) ∈ Ay , either (ξ+, ξ−) ∈

A′y; Or, there exists an F-adapted process Z such that
U· ≤ Z· almost surely, E[|ZT |] < ∞ for all T ≥ 0, and
lim supT→∞ E[ZT ] = −∞, where UT (y, ξ+, ξ−) :=∫ T

0
Π(t, Yt)dt− ∫

[0,T )
γ+(t)dξ+

t −
∫
[0,T )

γ−(t)dξ−t .

Then (ξ̂+, ξ̂−) ∈ A′y. Hence Assumption 3.4 holds,
yielding Theorem 3.5.

C. Regularity of the Value Function and Dynkin’s Game
Based on the representation theorem, we provided con-

ditions under which the value function of the switching
controls is not only continuous, but also continuously dif-
ferentiable.

Theorem 3.7 (Regularity): Suppose that for some open
interval J ⊂ I and any y ∈ J ,

lim
z→y

E
[∫ ∞

0

|π(t, z)− π(t, y)|dt

]
= 0. (17)

Suppose also that on J , the value function has the
representation V (y) − R(y) =

∫∞
y

m∗
+(z, 0)1{z∈I}dz +∫ y

−∞m∗
−(z, 1)1{z∈I}dz. Then V is C1 on J . And for any

y ∈ J , V ′(y) = E
[∫∞

0
π(t, y)dt

]
+m∗

−(y, 1)−m∗
+(y, 0) =

m∗
+(y, 1)−m∗

+(y, 0).

1) Dynkin Games: A Dynkin game is a game of timing
between two players, whom we call MAX and MIN, fol-
lowing [26]. We fix some level z ∈ I. While the game is
in progress, MIN pays MAX at rate π(t, z) and the game
ends when one player chooses to stop. Thus, MAX and
MIN each chooses strategies on when to exit the game (the
stopping times σ− and σ+ respectively). The player to exit
first receives an amount from her opponent equal to γ−(σ−)
if MAX exits first, and γ+(σ+) if MIN exits first. If both
players exit at the same time, we treat it as though MIN
exited first. Furthermore, each player may choose never to
exit, i.e. σ = ∞. MAX chooses her strategy σ− to maximize
her payoff, and MIN chooses σ+ in order to minimize
MAX’s payoff.

This game is formally described below. To ensure that
the payoff of the game is well defined, we assume in this
section that for every stopping time σ, E[|γ−(σ)|] < ∞ and
E[|γ+(σ)|] < ∞.

Definition 3.8: Given z ∈ I and F-stopping times σ−
and σ+, the payoff of the Dynkin game is D(σ−, σ+; z) =∫ σ−∧σ+

0
π(t, z)dt + γ+(σ+)1{σ+≤σ−} − γ−(σ−)1{σ−<σ+}.

The game has a value if supσ− infσ+ E [D(σ−, σ+; z)] =
infσ+ supσ− E [D(σ−, σ+; z)] .

We have,
Theorem 3.9: Given any z ∈ I such that

conditions (11) and (12) hold, the value of the
Dynkin game exists, and is equal to m∗

+(z, 1) −
m∗

+(z, 0) = supσ+
infσ− E [D(σ−, σ+; z)] =

infσ− supσ+
E [D(σ−, σ+; z)] .

IV. EXPLICIT SOLUTIONS AND SMOOTH FIT PRINCIPLE

To further analyze regularity properties and establish nec-
essary and sufficient conditions for the smooth fit principle,
we ([2]) studied the following specific problem:

V (x, y) := sup
(ξ+,ξ−)∈A′y

J(x, y; ξ+, ξ−), (18)

with

J(x, y; ξ+, ξ−) := E
[∫ ∞

0

e−ρtH(Yt)Xx
t dt

−
∫ ∞

0

e−ρtK1dξ+
t −

∫ ∞

0

e−ρtK0dξ−t

]
, (19)

subject to

Yt := y + ξ+
t − ξ−t , y ∈ [a, b],

dXx
t := µXx

t dt +
√

2σXx
t dWt, X0 := x > 0,

H : [a, b] → R is concave with H(y) = H(a) +
∫ y

a

h(z)dz,

K1 + K0 > 0, µ < ρ, K1 > 0.

The supremum is taken over all strategies (ξ+, ξ−) ∈ A′y ,
where
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A′y :={(ξ+, ξ−) : ξ± are left continuous,

non-decreasing processes, ξ±0 = 0;
y + ξ+

t − ξ−t ∈ [a, b];

E
[∫ ∞

0

e−ρtdξ+
t +

∫ ∞

0

e−ρtdξ−t

]
< ∞}.

Theorem 4.1: [Value function]

V (x, y) = ηH(a)x +
∫ y

a

v1(x, z)dz +
∫ b

y

v0(x, z)dz,

(20)

where v0 and v1 are given explicitly based on K0:
Case I (K0 ≥ 0):

1) For each z ∈ (a, b) such that h(z) = 0 : v0(x, z) =
v1(x, z) = 0.

2) For each z ∈ (a, b) such that h(z) > 0:




v0(x, z) =
{

A(z)xn, x < G(z),
ηh(z)x−K1, x ≥ G(z),

v1(x, z) = ηh(z)x,

where G(z) = νh(z)−1, and A(z) = K1
(n−1) (

h(z)
ν )n,

with ν = K1σ
2n(1−m).

3) For each z ∈ (a, b) such that h(z) < 0:




v0(x, z) = 0,

v1(x, z) =
{

B(z)xn + ηh(z)x, x < F (z),
−K0, x ≥ F (z),

where F (z) = − κ
h(z) , and B(z) =

K0
(n−1)κ

−n(−h(z)
κ )n, with κ = K0σ

2n(1−m).
Case II (K0 < 0):
1) For each z ∈ (a, b) such that h(z) ≤ 0: v0(x, z) =

0, v1(x, z) = −K0.
2) For each z ∈ (a, b) such that h(z) > 0 :

v0(x, z) =
{

A(z)xn, x < G(z),
B(z)xm + ηh(z)x−K1, x ≥ G(z),

(21)

v1(x, z) =
{

A(z)xn −K0, x ≤ F (z),
B(z)xm + ηh(z)x, x > F (z).

(22)

Here

A(z) =
h(z)n

(n−m)νn

(
ν

σ2(n− 1)
+ mK1

)

=
h(z)n

(n−m)κn

(
κ

σ2(n− 1)
−mK0

)
; (23)

B(z) =
−h(z)m

(n−m)νm

(
ν

σ2(1−m)
− nK1

)

=
−h(z)m

(n−m)κm

(
κ

σ2(1−m)
+ nK0

)
. (24)

The functions F and G are non-decreasing with
F (z) = κ

h(z) and G(z) = ν
h(z) , with κ < ν

being the unique solutions to 1
1−m

[
ν1−m − κ1−m

]
=

− ρ
m [K1ν

−m + K0κ
−m] , 1

n−1

[
ν1−n − κ1−n

]
=

ρ
n [K1ν

−n + K0κ
−n] . Here, m < 0 < 1 < n

are the roots of σ2x2 + (µ − σ2)x − ρ = 0 and
η := 1

ρ−µ = −mn
(n−1)(1−m)ρ = 1

σ2(n−1)(1−m) .

Theorem 4.2: [Optimal control] The optimal singular
control (ξ̂+, ξ̂−) ∈ A′y exits. For each z ∈ (a, b), the
optimal control is described in terms of F (z) and G(z) from
Theorem 4.1 such that
• (Case I, K0 ≥ 0): For z such that h(z) > 0, it

is optimal to invest in the project past level z when
Xx

t ∈ [G(z),∞), and never disinvest. When h(z) < 0,
it is optimal to disinvest below level z when Xx

t ∈
[F (z),∞), and it is never optimal to invest. When
h(z) = 0, it is optimal to neither invest nor disinvest
(i.e. F (z) = ∞ = G(z)).

• (Case II, K0 < 0): For z such that h(z) > 0, it is
optimal to invest in the project past level z when Xx

t ∈
[G(z),∞), and to disinvest below level z when Xx

t ∈
(0, F (z)]. For z such that h(z) ≤ 0, it is always optimal
to disinvest.

Theorem 4.3: [Optimally controlled process] The result-
ing optimal control process Ŷt is give by:

Case I: (up to indistinguishability) for t > 0,
• If h(y+) > 0 then Ŷt = max{G→(Mt), y},
• If h(y+) = 0 or h(y−) = 0 then Ŷt = y,
• If h(y−) < 0 then Ŷt = min{F→(Mt), y}.

Here Mt = max{Xx
s : s ∈ [0, t]}, and F→ and G→

are respectively the left-continuous inverses of F (non-
increasing) and G (non-decreasing).

Case II: (up to indistinguishability) for t > 0,

Ŷt =





G→(M0
t ) ∨ y, on {t ≤ S1},

F←(mn
t ) ∧ ŶSn , on {Sn < t ≤ Tn},

G→(Mn
t ) ∨ ŶTn , on {Tn < t ≤ Sn+1},

(25)

and limn→∞ Sn = ∞ = limn→∞ Tn almost surely.
Here F←(x) and G→(x) are respectively the right con-

tinuous inverse of F and the left-continuous inverse of G.
Moreover, the stopping times (Sn) and (Tn) are given by
S1 = inf{t > 0 : (Xx

t , Ŷt) ∈ S0}, T1 = inf{t > S1 :
(Xx

t , Ŷt) ∈ S1}, Sn = inf{t > Tn−1 : (Xx
t , Ŷt) ∈ S0}, and

Tn = inf{t > Sn : (Xx
t , Ŷt) ∈ S1}. Lastly, the processes

Mn
t , mn

t are defined by M0
t = max{Xx

t : 0 ≤ s ≤ t},
and mn

t = min{Xx
t : Sn ≤ s ≤ t}1{Sn≤t}, and Mn

t =
max{Xx

t : Tn ≤ s ≤ t}1{Tn≤t}.
Theorem 4.4: [Sufficient Conditions] V (x, y) is C1 in x

for all (x, y) ∈ (0,∞)× [a, b], and

∂

∂x
V (x, y) = ηH(a) +

∫ y

a

∂

∂x
v1(x, z)dz +

∫ b

y

∂

∂x
v0(x, z)dz.

Moreover, if H is C1 on an open interval J ⊂ [a, b], then
V (x, y) is C1 in y on (0,∞) × J ; that is, V (x, y) is C1,1

on (0,∞)× J .
Theorem 4.5: [Necessary and Sufficient Conditions for

Smooth Fit] V (x, y) is continuously differentiable in x for
all (x, y) ∈ (0,∞) × [a, b]. V (x, y) is differentiable in y at
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the point (x, y) if and only if

(x, y) ∈{(x, y) ∈ (0,∞)× (a, b) : H is differentiable at y}
∪ S0 ∪ S1,

where S0 and S1 are given in Eq. (26). Alternatively, it is
not differentiable in y at the point (x, y) if and only if

(x, y) ∈{(x, y) ∈ (0,∞)× (a, b) : H not differentiable at y}
∩ C.

Theorem 4.6: [Region characterization] Under the opti-
mal singular control (ξ̂+, ξ̂−) ∈ A′y , define the correspond-
ing investment (S1), disinvestment (S0), and continuation (C)
regions by




S0 :=





{(x, z) ∈ (0,∞)× [a, b] : x ≥ limw↑z F (w)},
if K0 ≥ 0 (Case I),

{(x, z) ∈ (0,∞)× [a, b] : x ≤ limw↑z F (w)},
if K0 < 0 (Case II),

S1 := {(x, z) ∈ (0,∞)× [a, b] : x ≥ limw↓z G(w)},
C := (0,∞)× [a, b] \ (S0 ∪ S1).

(26)
Then, the action and continuation regions can be character-
ized as




S0 = {(x, y) ∈ (0,∞)× [a, b] : Vy(x, y) = −K0},
S1 = {(x, y) ∈ (0,∞)× [a, b] : Vy(x, y) = K1},
C = {(x, y) ∈ (0,∞)× [a, b] : Vy−(x, y) > −K0,

Vy+(x, y) < K1}.
(27)
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absorption,” in Séminaire de Probabilités, XXIII, ser. Lecture Notes in
Math. Berlin: Springer, 1989, vol. 1372, pp. 405–420.

[24] F. Boetius and M. Kohlmann, “Connections between optimal stopping
and singular stochastic control,” Stochastic Process. Appl., vol. 77,
no. 2, pp. 253–281, 1998.

[25] F. Boetius, “Singular stochastic control and its relations to dynkin
game and entry-exit problems,” Ph.D. Dissertation, Universität Kon-
stanz, Konstanz, Germany, 2003.

[26] ——, “Bounded variation singular stochastic control and Dynkin
game,” SIAM J. Control Optim., vol. 44, no. 4, pp. 1289–1321
(electronic), 2005.

[27] K. A. Brekke and B. Øksendal, “Optimal switching in an economic
activity under uncertainty,” SIAM J. Control Optim., vol. 32, no. 4,
pp. 1021–1036, 1994.

[28] S. Hamadène and M. Jeanblanc, “On the starting and stopping
problem: Application in reversible investments,” 2004, working Paper,
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