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Connecting Tools Using 
Message Passing in the 

Field Environment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Field connects tools 

with selective 
broa&astin& which 

follows the Unix 
philosophy of letting 

indepenhnt tools 
cooperate throum 

simple conventions. 
F5eld demns tdes  

that this simple 
approach is feasible 

and desirable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Steven P. Rei-, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABrown University zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
orkstations that offer a host of 
graphical capabilities, power- W ful processors, and mouse- 

based input to support integrated envi- 
ronments have been available for five 
years. However, programmers still write 
code in classical languages like C and Pas- 
cal with collections of unintegrated tools. 

There are two exceptions to this rule. 
The first is the class of special-purpose, 
controlled environments for languages 
like Lisp and Smalltalk. Here, where the 
whole system is based on a single, semi- 
interpretive language, many graphical en- 
vironments exist. Most of them, however, 
are specific to their underlying language 
and do  not apply to programming in 
more common languages. 

The other exception is the blossoming 
class of simple but powerful PGbased prcl 
gramming environments for traditional 
languages. Vendors have understood the 
potential for mouse input and graphical 
output as programmer aids. Integrated 
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environments like Lightspeed Pascal are a 
powerful framework for teaching prG 
gramming and forwriting and debugging 
simple Pascal programs. PC-based en- 
vironments, however, are highly inte- 
grated and suited for small programs only. 

I undertook the Field project to show 
that you can implement on workstations 
the highly integrated, interactive environ- 
ments like those on PCs and that you can 
use them for classical-language and large- 
scale programming. I also wanted to show 
how to use a workstation’s more advanced 
capabilities to attain a more productive 
and powerful environment by providing 
functionality not found on PCs or in stan- 
dard softwareengineering environments. 

Field was designed both to accomplish 
these ends and to provide a production 
environment for research and in- 
structional programming at Brown Uni- 
versity. I designed Field to be simple and 
inexpensive so it would be operational zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 
soon as possible and to ensure that it 
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Related research zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Integrated programming environments have been widely touted as 

a way to increase productivity. Also, because they offer a controlled 
and understandable environment, they are ideal for instruction. In the 
past 20 years, a wide range of integrated environments, using many 
ways to integrate their tools, have been developed. 

File level. Most of today’s environments are integrated at the file 
level. Unix is an example of such an environment. In Unix, program- 
mers edit source files. They use the SCCS or RCS tools to check files 
in and out and to manage file versions. They run the make program 
that takes a file describing how the system is to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe built and runs the 
appropriate compilers and loaders on the source files to produce ob- 
ject files and the resulting systems. The debugger runs on the binary 
file and accesses the source files as appropriate. 

These Unix tools are integrated only in that they operate on a com- 
mon set of files. But each tool has a different interface and obeys 
different conventions. Programmers are free to choose the set of tools 
they want to use and ignore the others. None of the tools takes advan- 
tage of the others or interacts except through their eventual outputs in 
the file system. 

Others have tried to extend Unix’s limited integration. Sun’s DBX 
tool provides a Make command to run the make program and an Edit 
command to run an editor on the appropriate source file. The Gnu 
Emacs editor can parse compiler output and go to lines containing 
errors. Others have extended the default make rules to do many 
SCCS functions automatically. 

However, all these extensions are ad hoc, simple extensions to one 
tool. They do not provide acommon interface nor ageneral, extensible 
integration mechanism. 

Single system. More integration can be found in single-language 
environments that combine all the tools in a single system. The tools 
generally share a common interface and operate on a single program 
representation. Such environments exist for languages like Lisp and 
Smalltalk and on small-scale PC systems. 

These systems can be highly integrated. For example, Pecan’ lets 
multiple editors access the source code and updates them all as the 
source code changes. It uses the source-code views to animate pro- 
gram execution and provides an incremental compiler that runs as the 
editor detects a source-code change. In turn, the compiler updates a 
set of semantic views such as the symbol table, detects errors, and 
highlights them in the sourcecode views. You can set breakpoints in 
any of the sourcecode views. 

However, these systems tend to be complex. They also can’t take 
advantage of existing tools. Languages like Lisp and Smalltalk do 
support an extensible environment and give you direct access to the 
execution framework. This lets you add tools incrementally, so the 
system gains functionality and complexity over time. But to integrate a 
new tool typically means integrating it separately with each of the other 
tools, because there is no guarantee that the interfaces or conventions 
are similar. 

Systems that incorporate traditional languages like C or Pascal are 
difficult to extend, especially given their size and complexity. Most of 
the environments developed for these languages use an interpreter to 
achieve a high degree of integration between an executing program 
and the rest of the system, a strategy that limits these systems to 
handling small programs. 

Program database. Another way to integrate tools is to combine 
them into a program database. In this approach, a single database 

stores all relevant information aboutasystem.These systemsachieve 
integration by having the tools share common data structures that 
represent different aspects of the program and its execution. 

A program database also lets independent tools have controlled 
access to a specific set of common data structures. In effect, the 
shared data structures of the single system are placed under the con- 
trol of a separate database system that provides consistency and 
integrity between processes, and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtools access these structures 
through this new system. 

There are two ways to implement an environment that uses a pro- 
gram database. The first is to have all the tools use the database 
directly. In this approach, the tools are designed with the database in 
mind and use representations that are either stored in the database or 
can easily be derived from the database. 

This apptoach, which underlies the Ada Programming Support En- 
vironment, is efficient and consistent. The APSE environments store 
an attributed, abstract syntax representation in a common database. 
The compiler, debugger, loader, and othertools all access the program 
as Diana trees by going through the common database system. The 
principal disadvantage of this approach is that you must rewrite any 
existing tools so they can use the database. A secondary disadvan- 
tage is that you must determine the database representation before 
you implement the tools, so it can be a problem to add tools you did not 
anticipate. 

The second way to implement a program database is to treat it as a 
software backplane. Here, the tools can use whatever representation 
is most appropriate - existing tools use their current representations 
and new tools are written to use the most efficient representation for 
the application. The database then stores a single, extensible repre- 
sentation of the data. This representation is mapped by the database 
system backandforthfrom theform neededforapartiwlarapplication 
when it is run. 

This approach lets you use existing tools and makes it easier to 
incorporate new tools. However, the mappings from the database 
representation to the application representation can zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe complex and 
indirect. 

Program databases in general have disadvantages. You need an 
additional system to maintain the database, which adds complexq. 
Database systems are usually large and complex - and a program 
database that handles multiple clients and maintains consistent pro- 
gram information is no exception. Finally, this integration strategy re- 
quires you to understand well the program representation before you 
write most of the tools, which can make it difficult to add tools that do 
not fit well with your original definition. 

Message facility. Field provides a third alternative, a loosely 
coupled message facility to integrate tools. This approach has several 
advantages, primarily simplicity, ease of reuse of existing tools, and 
ease of extensibility. This, combined with the annotation editor to pro- 
vide consistent access to the source throughout the environment, 
leads to a powerful programming environment that can effectively use 
existing and future tools. While this approach cannot provide thecom- 
plete integration of the other approaches, my experience is that the 
level of integration is high enough for almost all applications and that 
complete integration is not necessary. 

Reference 
1. S.P. Reiss, “Pecan: Program-Development Systems That Support Multi- 

ple Views,” /€€€ Trans. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASoftware zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEng., March 1985, pp. 276-284. 
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could be maintained and that it would 
work in an educational environment. I 
used existing tools wherever possible, in- 
cluding standard Unix tools, workstation 
software previously developed at Brown, 
and other available software. I also wanted 
to use Field as a testbed environment in 
which new tools such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas program-anima- 
tion systems can be incorporated easily. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Integration framework. Field achieves 
all these goals by providing a consistent 
graphical front end and a simple integra- 
tion framework that lets existing and new 
Unix tools cooperate. The front end, 
based on a tool set called the Brown Work- 
station Environment,’ includes several 
input interfaces that incorporate static, 
pull-down and popup menus, dialogue 
boxes, and scroll bars; a powerful, exten- 
sible editor; a geometry package; drawing 
packges, including one for the automatic 
layout and display of structured diagrams; 
an integrated help facility; and an applica- 
tion window manager. 

Field’s principal contribution is its inte- 
gration framework, which lets me tie 
many tools togetherwith minimum effort. 
The framework combines a communi- 
cations mechanism that I call zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsehctive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
broadcasting; an annotation editor that 
provides consistent access to the source 
code in multiple contexts, and a set of 
specialized interactive analysis tools. 

In selective broadcasting, all tools talk to 
a central message server. Each tool regis 
ters a set of message patterns with the ser- 
ver. Tools communicate by sending me* 
sages to the server and receiving those 
messages that match their registered pat- 
terns. This approach is easy to implement 
and extend. It has several advantages over 
the more traditional integration mecha- 
nisms that involve program databases or 
the development of a single massive sys 
tem. Field demonstrates that my simpler 
approach is both feasible and desirable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
field overview 

Field serves three purposes: It is the 
principal programming environment for 
teaching undergraduates, it is a research 
programming environment, and it is a test- 
bed for developing new tools. The first 
purpose requires that the environment be 
easy to use, the second that it handle mod- 

erate-sized (100,0001ine) systems span- 
ning multiple files in multiple directories, 
the third that it be flexible and easily ex- 
tensible. 

The current set of Field tools includes: 
An annotation editor, a full-func- 

tioned, mouse-oriented, extensible editor 
for C and Pascal. The editor is augmented 
with an annotation window that lets you 
associate annotations with each line of 
code. You can create, remove, and query 
annotations through the editor. Field uses 
these annotations to relate the code to the 
rest of the environment. Field lets you 
have multiple annotation editors active at 
one time, so you can view and annotate 
several files simultaneously. 

A crossreferencer, which collects a re- 
lational database about a system. This zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Field’s principal 
contribution is its 

integbtion framework, 
which combines the 

selective hoadcasting 
communication 
mechanism, an 

annotation editmy and a 
set ofspecialized 

interactive analysis tools. 

database is generated the first time that 
crossreferencing is done on a system and 
incrementally thereafter, rescanning only 
those source files that have changed. You 
can specify a system as a set of source files, 
a binary file, or a directory hierarchy. A 
relational-calculus query language p r e  
vides access to the database. Current rela- 
tions include references (name, file, line, 
and assignment), declarations (name, 
scope, file, type, class, and line), calls 
(from, call, file, and l ine), functions 
(name, file, line, scope, argct, and args), 
files (name), and scopes (class, start-line, 
end-line, and file). 

A cross-reference interface, a menu- 
oriented interface thatletsyoumakemost 
simple database queries by filling in a dia- 
logue box. This interface lets you select a 
listed reference to look at in the editor 

and handles cross-reference queries from 
other system tools, thus integrating the 
cross-referencer to the rest of the system. 
The editor uses this facility to provide 
commands based on program contents 
such as “find and display the declaration 
of this procedure.” The debugger uses it 
to provide high-level commands such as 
“set breakpoints at all assignments to this 
variable.” 

A data-structure display, adapted from 
the Garden environment’ and incor- 
porated as a pair of tools. The first tool 
displays a data structure graphically, let- 
ting you pan and zoom to show more or 
less detail. The second tool lets you de- 
scribe quickly how the data structure 
should be displayed by the first tool. 
These two tools let Field display complex 
data structures that are similar to the dia- 
grams a programmer draws. 

A debugger, which is comparable to 
DBX on a Sun. It provides an extended, 
DBX-like user interface and an internal, 
message-based interface to other Field 
tools. Using a separate debugger makes it 
easier to port Field to other systems, p r e  
vide a consistent debugger language 
across systems, and incorporate new de- 
bugger commands. Using a message- 
based interface lets us incorporate differ- 
ent, machine-independent debugging 
languages later. In Field, you can run mul- 
tiple debuggers on separate processes 
simultaneously. 

A graphical, button-oriented debug- 
ger interface. The debugger interface lets 
you easily create new buttons to represent 
common debugger commands, provides 
a full transcript of the debugging session, 
and can display program I/O. 

A flow-graph viewer, which displays a 
hierarchical flow graph. This tool lets you 
interactively select interest areas and set 
up the display accordingly. It interacts 
with the rest of the system, so you can use 
the flow graph, obtained from the cross 
referencer, to locate routines and calls 
and to highlight execution. 

A menudriven interface to the Unix 
make pr0gram.j By building my interface 
on top of make, I could offer many exten- 
sions from different versions of make and 
incorporate tools such as an automaticde- 
pendency analyzer. When requested, this 
interface performs compilations and in- 
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Figure 1. The Field environment. 

forms editors of errors. 
A profiler interface, a graphical inter- 

face to a slightly extended version of the 
Berkeley Unix Gprof command! I ex- 
tended Gprof to make it more interactive 
and to provide timing information about 
files and lines as well as functions. This 
graphical interface lets you selectively 
view the large amount of information the 
profiler produces. 

A viewer, a general facility that lets you 
view different system aspects. I have devel- 
oped Liewers for the runtime stack, vari- 
ables and expressions being traced, and 
debugger events such as breakpoints. 

Figure 1 shows a snapshot of the Field 
environment. The window in the upper 
left is the control panel. It contains icons 
(Old English letters) for the views and 
windows you can define. Below it is the de- 
bugger-interface window, which shows 
both a transcript of a debugging session 
and, below the transcript, the debugger- 
command buttons. 

I 

mt: stmt * 
d i t  Lajout Displag Iwt Eual 

GLoBRLs: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
CaMd b o j r t  File Y i n b v s  

J&: tree i n  /aulgacm/pro-real/field/test3 

W C )  -g -p9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0 tree tree.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 
Underneath the debugger-interface 

window is the annotation editor, which is 
displaying the sourcecode file. To the left 
of the line of code are three annotations: 
An arrow indicates the line currently exe- 
cuting, eyeglasses represent the current 
debugger focus, and astop sign indicates a 
breakpoint. 

The window in the upper right shows a 
view of the program's data structure. The 
program shown here does tree insertion; 
the tree is displayed in its current state 
(the dark triangles represent empty sub  
trees). 

Below this window, on the left, is a stack 
viewer. This displays the current hnction 
and line being executed as well as the con- 
tents of the local variables at this point. 
The window next to this is the crossrefer- 
ence interface displaying the result of a 
query asking for all calls to the function- 
insert tree. 

Finally, the window at the bottom right 
is the make interface, which is displaying 

information about building the system 
being run. 

Integration framework 
Field's constraints and goals made it in- 

appropriate for me to adopt existing 
strategies for integrating tools into a pro- 
gramming environment. As the box on p. 
58 describes, other integration a p  
proaches are more complex, require 
more effort than I wanted to devote to the 
project, make it difficult to use Unix tools, 
and do  not offer the extensibility I 
wanted. I needed a simpler mechanism 
that would achieve a high degree of inte- 
gration while being easily extensible. 

I established four criteriafor myintegra- 
tion framework, based on an analysis of 
the desired interactions between the 
tools: 

The tools must be able to interact with 
each other directly; 

the tools must share dynamic informa- 
tion; 
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the programmer must access the 
source code though a common editor; 
and 

the environment must make static, 
specialized information available to all the 
tools that need it. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfacility. The integration mech- 

anism I developed for Field is a selective- 
broadcast message facility, called Msg. 
Tools register patterns with Msg to de- 
scribe the messages that interest them. 
Tools interact by sending messages to 
Msg, which rebroadcasts them selectively 
to those tools that have expressed an inter- 
est in them through a previously regis- 
tered pattern. 

This simple concept zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- a central mes- 
sage server and distributed message hand- 
ling-is sufficient to put together an inte- 
grated programming environment. Its 
power comes from its flexibility: 

Field passes all messages and patterns 
as text strings of arbitrarylength. 

Msg incorporates and extracts string 
and numeric arguments according to pat- 
terns. 

Messages can be sent either asyn- 
chronously or synchronously. Asyn- 
chronous messages let the sender con- 
tinue immediately; synchronous messages 
generate a string reply to the sender once 
all eligible servers have acknowledged the 
message. 

Tool interaction. My first criterion is 
that tools must be able to interact with 
each other directly. If you want to set a 
breakpoint in the editor, the editor must 
be able to issue the corresponding debug- 
ger command. If you want to force a re- 
compilation from the editor, the editor 
must inform the make interface. If the 
compiler detects errors, Field should 
change the current editor focus to the er- 
roneous context. Ifyou want to find all oc- 
currences of avariable in your system, you 
must be able to make a request of a cross- 
referencing utility. If a variable display 
needs information about the type or con- 
tents of the value it is to display, it must be 
able to query the debugger. 

Field supports such interactions by 
using the message facility as a conimand 
interface to its tools. The niostwidelyused 
command interface is to the debugger. 

DDT ACTION system action 

DDT ASSIGN system var expr 
DDT CALL system rtn args 
DDT DUMP system from to length format 
DDT EVAL system expr 
DDT EVENT ADD system file func line expr cond addr act fgs 

action = INIT 1 QUIT I KILL I STOP 

act = TRACE I BREAK I CALL I WATCH I MONITOR I event-name 
fgs = l:internal, 2:external, 4:event 

act = TRACE I BREAK I CALL I EVENT I MONITOR I TRIGGER 

act = TRACE I BREAK I CALL I EVENT I MONITOR I TRIGGER 

DDT EVENT SHOW system file func line expr cond addr act id 

DDT EVENT REMOVE system file func line expr cond addr act id 

DDT RUN system args in out new 
DDT SET system what value 

what = INFILE I OUTFILE I USE I WHERE I NEWSYS I DDTOUT I WD 
PRINTIGN I PRINTUSE I CATCH I IGNORE 
PROG I ENDPROG I FORCE-RUN I RUN-ARGS I USER-TTY I ENV 
STACK-TOP I STACK-BOTTOM I STACK-DUMP I STACK-SHOW 

STOP-UPDATE 
DDT SHOW system what 

DDT STACKsystem from to dump 
DDT STEP system count sig unit 

DDT SYMINFO system what file func line name 

LIST-FCTS 
DDTVIEW system file func line count stack-delta 

what = SIGNAL I RUN I USE I SYSTEM I LOCATION I FOCUS I ENV 

unit = STEP I NEXT I CONT I SEW1 I NEXT1 

what = WHICH I WHAT I WHERE I VARINFO I TYPEINFO I LIST-FILES I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 2. Debugger command messages. 

The debugger’s full functionality is avail- 
able through message-based commands, 
which lets various tools interact with sys- 
tem execution. For example, the editor 
sends messages to insert and remove 
breakpoints, the variable viewers send 
messages to turn tracing on or off for a 
given expression, the flow-graph viewer 
sends tracing requests for the functions it 
is displaying, and the data-structure dis- 
play sends messages to query types and 
values from the running program. 

Figure 2 shows the current set of debug- 
ger commands. Each command has an al- 
ternative form, where the prefix Ddt is re- 
placed by Ddtr. The Ddtr command form 
is used when output to the user is not 
needed; for example, when the request is 
made by a tool other than the debugger 
interface. Many of these commands serve 
multiple functions depending on their ar- 
guments. I represent unnecessary or 
omitted arguments with asterisks for 
strings and zeros for numbers. 

Other command interfaces are prcl 
vided by the make interface, the cross-ref- 
erencer, and the editor. The make facil- 
ity’s command interface lets any other 
system component request that a com- 
mand be executed or a file be compiled. 
This is used by the editor to request that a 
file be recompiled and by the debugger to 
request that the current system be rebuilt. 

The cross-referencer’s command inter- 
face lets any other component query its 
database. The editor’s command inter- 
face lets another tool request that the cur- 
rent file be saved, that selected annota- 
tions be cleared, or that all annotations be 
implicitly recreated. It uses the first two 
requests when externally preparing a 
source file for compilation; the debugger 
uses the third to reestablish breakpoints 
after recompilation. 

It is easy to integrate a tool into the en- 
vironment so other tools can invoke i t  
through the message server when you do 
it with a new tool interface. Both in adding 
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DEBUG VALUE <system> <file> <line> oar> <value> 
DEBUG ENTER <system> <file> <func> <line> oalue> 
DEBUG EXIT <system> <file> <func> <line> <value> 
EVENT ADD <system> <id#> <event-type> <file> <line> <text> 
EVENT REMOVE <system> <id# ><event-type> <file> <line> <text> 
STOP-ERROR <signal ><file> <line> 
DEBUG AT <system ><file> d u m >  <line> 
DEBUG FOCUS <system> <file> <func> <line> 
1E <type> <system> <file> <line> <value> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA... 
DEBUG CLEAR<system> 
DEBUG RESET <system> 
WHERE <system> <level><fiIe><funo <line> <addr> <args> 
WHERE-DUMP <system> <level> <name> <value> 
WHERE-BEGIN <system> 
WHERE-END <system ><level> 
DEBUG SYSTEM <system> 
DEBUG NO SYSTEM <system> 
DEBUG FINISH <system> 
DEBUG START <system> 
DEBUG STOP <system> <signal-name> 
DEBUG STOP <system> OK 
UPDATE <system ><file> <line> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Informative messages sent by the debugger. 

a new user interface and in integrating the 
message server, functions representing 
the various commands exist or are written 
as part of the expanded tool, and it is 
straightforward to register message pat- 
terns for message-based commands and 
to call these functions as appropriate 
when a message occurs. 

This is the approach I have taken in the 
make interface, the cross-referencer, and 
the profiling interfaces, each of which 
took about two days ofwork. In the debug- 
ger interface, I took this a step further and 
at first provided only a message-based in- 
terface. I then developed an independent 
front end that generated message-based 
commands. This approach will let me de- 
velop different debugger front ends with 
additional functionality and sophistica- 
tion in the future. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Sharing dynamic information. My sec- 
ond criterion is that the integration 
framework must let tools share dynamic 
information. First, different environment 
components need to know the current 
execution context. For example, the edi- 
tor may want to highlight the current line 
of execution and the line last selected in 
crossreferencing. 

Different components also want to 
know something about the state of the 
other components. For example, the edi- 
tor wants to know where the debugger has 
set breakpoints so it can inform the user; 
the make interface wants to know when 
the editor saves a file so it can initiate an 
automatic recompilation if requested; the 
display tools need to know the new values 
of variables being traced whenever they 
change; and error messages generated by 
the compiler need to be associated with 
the appropriate source code. 

Msg is designed to handle such dynamic 
information. Each tool defines a set of 
events it deems might be of interest to 
other tools and sends messages about 
these events as they occur. Other tools reg- 
ister with Msg those event messages they 
want to handle and are duly informed 
when the events occur. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 shows the debugger’s event 
messages. The principal messages are sent 
out whenever the debugger knows - 
either from the program stopping or from 
a trace request - the current line of exe- 
cution, whenever a traced function is 
entered or exited, whenever a traced 
value changes, and whenever an event 
such as a breakpoint is added or removed. 

It sends out messages describing the con- 
tent of the stack if requested to do so by, 
say, the stackviewer. It also lets tools define 
their own messages to be tied to a p r e  
gram’s trace points, a facility used by the 
algorithm-animation package Tango: a 
separate Brown research project. 

This event-message facility is also used 
by other tools. The make interface sends 
out messages for each error or wa:ning 
the compiler detects so the editor can as- 
sociate the errors with the program 
source code. The cross-referencer and 
flow-graph viewer send out messages 
when the user clicks on an output refer- 
ence so the editor can shift its focus to the 
referenced location. The editor sends out 
a message whenever a file is opened or 
closed. 

Source access. My third requirement 
for an integration framework is that it 
must provide consistent access to the p r e  
gram’s source code. Programmers access 
the source code for many reasons. They 
edit it to create or change it. They view it 
to correlate compiler-generated error 
messages, to see where they are during 
execution, and to see what program por- 
tions the profiler has identified as bot- 
tlenecks. They set breakpoints at source 
statements, trace variables and expres 
sions defined in the source code, and des- 
ignate source-code components to cross- 
reference. Afully integrated environment 
should provide a single access mechanism 
that can accommodate all these needs 
and any others that arise. 

Field provides such a consistent inter- 
face through the annotation editor, which 
is closely tied to the message facility. The 
annotation editor starts with a powerful, 
extensible base editor that provides full 
editing capabilities. It augments each 
source line with a set of associated annota- 
tions. These serve both as commands that 
you can invoke for that line and as 
markers for the line. The current annota- 
tion set includes: 

Break, which lets you set breakpoints 
and shows where breakpoints are set. 

Trace, which lets you set trace points 
and shows where trace points are set. 

Watch, which lets you trace variables 
and shows where variable trace points are 
set. 
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Focus, which shows the line the debug- 
ger is looking at. 

Current, which shows the current exe- 
cution line. 

Def, which shows the line last referred 
to by the cross-referencing tool or the 
flowgraph viewer. 

Update, which lets you set an update 
point and shows where such points exist. 
An update point synchronizes displays 
such as the stackviewer and the data-struc- 
ture display with program execution. 

Event, which inserts an interesting 
event for program animation. 

Error, which flags a line containing a 
compilerdetected error. 

Warning, which flags a line containing 
a compilerdetected warning message. 

It is easy to add new annotations be- 
cause they are defined by a text file that is 
read at start-up, not coded as part of the 
editor. 

Annotations interact with the message 
system in many ways. How an annotation 
interacts is specified by string values that 
represent messages and patterns associ- 
ated with an annotation. For example, 
Figure 4 shows the messages associated 
with the Break annotation. The Msg-Add 
string corresponds to a message that is 
broadcast when the user adds an annota- 
tion; the Msg-Remove string corresponds 
to one that is sent out when the user de- 
letes one. The Msg-Set string and the 
Msg-Unset string correspond to patterns 
for messages that will cause the editor to 
add and remove the annotation. 

The strings associated with annotations 
contain escape sequences that the editor 
fills in to form the message or pattern. 
These escape sequences can refer to the 
current line (%L), character position zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(%C), file name (%F), or to strings associ- 
ated with this annotation (%V and %T). 
These strings are defined by their occur- 
rences in the set pattern. Other escape 
sequences refer to arbitrary strings (%s) 
and numbers (%d) in a pattern that are to 
be scanned and ignored. 

In Figure 4, the Msg-Add string causes a 
breakpoint to be added in the file at the 
given line, using a debugger command 
from Figure 2. The asterisk in the system 
field indicates that the breakpoint should 
apply to all systems that include this 
source file. The editor fills the file field in 

MSG-ADD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= "DDTR EVENT ADD * %F * %L * * 0 BREAK 3" 
MSG-REMOVE = "DDTR EVENT REMOVE * %F * 0 * * 0 BREAK %VI 
MSG-SET = "EVENT ADD %S %VBREAK %F %L %T" 
MSG-UNSET = "EVENT REMOVE %S %VBREAK %F %L %T" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fwre 4. Messages associated with a Break annotation. 

with the name of the file being edited. 
The asterisk in the function field means to 
ignore the function. The line-number 
field contains the line where the annota- 
tion was requested. The asterisks in the ex- 
pression and conditional fields mean the 
breakpoint is unconditional whenever 
execution reaches this line. Similarly, the 
Msg-Remove string sends a debugger 
command to remove the breakpoint. 

You can define more complex annota- 
tions, such as a conditional breakpoint, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

An int-ion 
mechanism must make 

static, specialized 
information available to 
all tools. To zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdo this, Field 

uses active servers, 
which receive requests 
through the message 

server and fiMll them. 

with %T arguments (%Tl,  %T2, and 
%T3). In this case, the user is prompted 
for the condition. I now use this annota- 
tion type to define the interesting events 
that drive the Tango algorithm-animation 
package. 

The patterns associated with an annota- 
tion contain the same escape sequences as 
messages. In this case, however, the escape 
sequences refer to arguments that the edi- 
tor interprets. If the pattern provides the 
file name, it must match the file being 
edited. If it doesn't, the message will 
generally be ignored. However, you can 
make the editor sensitive to this annota- 
tion type by telling it that if the file name 
differs, it should close the current file, 
open the specified file, and process the 
message. You do this to keep an editor syn- 

chronized with the debugger and to view 
compiler error messages and cross-refer- 
ence locations. 

An annotation escape sequence must 
include a line number to identify where 
the annotation should be set (added) or 
removed. If the editor is sensitive to the 
annotation type, it will scroll so this line is 
visible. The %V and %T escape sequences 
define the values associated with the new 
annotation on a set message and ignored 
on a remove message. The %T values con- 
tain text information that you can view 
later. For breakpoints, this is a string de- 
scribing the breakpoint; for error mes- 
sages, it is the text of the message. The %V 
field is a number. The patterns in Figure 4 
correspond to the event messages in 
Figure 3. 

The annotation editor lets different 
annotations, each with its own icon and 
color, behave appropriately by letting 
them have different properties. Annota- 
tions can be exclusive to all source files, to 
a given line, or not at all. 

Annotations that are exclusive to all 
source files let the editor remove the 
annotation indicating the current line of 
execution when a new current line is 
broadcast, even if this new one is for a 
different source file. Annotations that are 
exclusive to a given line let the editor dis- 
card or merge previous annotations on 
that line. For example, each line can have 
only one Error annotation, but it contains 
all the information about all the passed 
error messages for that line. 

You can directly set annotations like 
Break annotations, while others, like 
Error annotations, can be set only 
through outside messages. 

Sharing static information. The fourth 
requirement for an integration frame- 
work is that it make static, specialized in- 
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EVENT ADD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%s %3d BREAK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% 1 s %2d %4r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a) 

static void 
handle-add-msg (file,line,value, text) 

String file; 
Integer line; 
Integer value; 
String text; 

(b) 

EVENT ADD tree 4 BREAK ./tree.c 24 [4] BREAKat line 24 offile ./tree.c 

(cl 

handle add zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmsg("./tree.c",24,4,"[4] BREAKat line 24 offile ./treed',-1) 

(d) 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Exampleof (a) message pattern, (b) routinedeclaration, (c) message, and (a) 
resulting call. 

formation available to all tools. Static in- 
formation includes system-building rules, 
cross-reference information, profiling 
data, and program and execution infor- 
mation. Program information includes in- 
formation about and descriptions of vari- 
able types. Execution information 
includes the current set of breakpoints 
and other runtime events. All this infor- 
mation must be available on demand to 
various system components, and it must 
be managed so it is kept current. 

To do this, I could have stored all the 
necessary information in a central data- 
base. Instead, Field uses active servers. Ac- 
tive servers are Field components that re- 
ceive information requests through the 
message server and fulfill them either by 
dynamically computing the information 
or by caching it in a local database. 

This message interface lets the various 
tools get necessary information without 
needing to know how it is stored. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlso, by 
compartmentalizing specialized informa- 
tion, Field simplifies individual servers so 
it can use existing or slightly modified 
tools in many cases. 

Four Field tools can share static infor- 
mation to some extent. The debugger 
provides information about program vari- 
ables, program types, and the runtime en- 

vironment. The cross-reference server 
handles queries to a relational database 
that represents program information. 
The profiling interface supplies informa- 
tion about functions, files, and lines and 
supports queries about program bot- 
tlenecks. The make interface stores infor- 
mation about dependencies and how to 
build the system. 

Message facility 
Field's message facility, Msg, is based on 

selective broadcasting. Each tool registers 
with the message server a set of patterns 
that describe the messages it is interested 
in. Any tool can send a message to the ser- 
ver, which rebroadcasts it to all the tools 
that have registered a pattern matching 
the message. The message facility allows 
synchronous and asynchronous broad- 
casting. 

I implementated this facility in two 
parts. The actual Msg server runs as a sep 
arate Unix process and communicates via 
sockets. Each tool includes a client inter- 
face that talks to the server and distributes 
the message from the server to the tool. 
When a tool sends a message, the client 
interface passes it to the server. The server 
passes the message back to the client in- 
terface for each process with a pattern 

matching the message. The client inter- 
face then scans the message and takes the 
appropriate action to send it to the re- 
ceiver. 

I used TCP-domain sockets so Field's 
tools can reside on different machines 
and still share a common message server. 
This lets me integrate the debugging of a 
distributed system and lets you use one 
machine to debug a program running on 
a second. 

The current Msg implementation is a 
2,00@1ine C program that is divided 
equally among the server, the client inter- 
face, and a pattern matcher. 

Message passing. All Field messages are 
passed as strings. While this introduces 
some inefficiencies, it greatly simplifies 
pattern matching and message decoding 
and eliminates machine dependencies 
like byte order and floating-point repre- 
sentation. Similarly, strings represent mes 
sage patterns. 

While it is easy to encode a message into 
a string, it can be complex to decode it. 
Therefore, the Msg client interface - not 
the tools - decodes messages. When a 
tool registers a message pattern, it pro- 
vides an entry point to a routine that will 
handle the message. The pattern identi- 
fies not only the message but also those 
parts of the message that correspond to 
arguments for that routine and the for- 
mat of those arguments. A side effect of 
matchingamessage to apattern is thatthe 
arguments are decoded into the proper 
internal form. If the pattern matches the 
message, the client interface calls the rou- 
tine associated with the pattern and passes 
it the decoded arguments. This simplifies 
the tools' message-handling routines. For 
example, Figure 5 shows a message pat- 
tern, the associated routine declaration, a 
sample message, and the resulting call. 

Message patterns are literal characters 
that must match the corresponding char- 
acters in the message and escape 
sequences that represent either argu- 
ments or generic strings. The format of 
these patterns is based on the Unix Scanf 
facility. 

Escape sequences consist of a percent 
sign, an optional description, and an al- 

phabetic character denoting the escape 
sequence. Escape sequences representing 
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arguments have the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
% [argument-number] [. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlength] 

type-c harac ter 

Argument-number lets the message give 
the routine arguments in any order in the 
message; length allows for fixed-length 
fields where appropriate; and type-char- 
acter can be one of 

d, decimal integer; 
o, octal integer; 
x, hexadecimal integer; 
e, floating point; 
c, character; 
s, string; 
r, string representing the remainder of 

the message; 
q, string in quotes; 
[characters], string consisting only of 

given characters; and 
[Acharacters], string consisting of any- 

thing but given characters. 
The call to define a pattern can also set 

default values for arguments the pattern 
does not define directly, so a common 
routine can handle many messages. For 
example, the message pattern in Figure 5 
accepts the sample message. The first 
escape sequence in the message pattern, 
%s, causes the system name tree to be dis 
carded. The second escape sequence, 
%3d, causes the number 4 to become the 
third parameter to the function. The 
third escape sequence, %Is, matches the 
file name ./tree.c and causes the corre- 
sponding string to be passed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the first 
parameter. The fourth escape sequence, 
%2d, causes line 24 to be scanned and 
passed as the second parameter. Finally, 
the fifth escape sequence, %4r, causes the 
rest of the breakpoint message containing 
a definition string to be passed to the rou- 
tine as the fourth parameter. 

Message types. Most of the messages 
sent in Field are asynchronous and are 
broadcast to provide potential clients with 
information. Messages that represent 
commands must be synchronous and 
must provide the caller with a reply. Field 
clients send synchronous messages in 
much the same way they send asyn- 
chronous messages. However, once the 
message is sent, the client partially blocks 
until a reply is received. 

When it receives a synchronous message 

request, the message server first deter- 
mines how many receivers exist for the 
given message and then sends the mes- 
sage to all these clients. Each client is re- 
sponsible for telling the server that it has 
processed the message by returning a 
string reply. The message server and the 
associated client interface return control 
to the initial caller only when they have 
received replies from all recipients. When 
this occurs, the client server returns to the 
sender the first nonnull string reply it re- 
ceived. I designed Field to ignore all but 
the first reply because it is simpler than 
accumulating all replies and because I 
haven’t found an occasion where more 
than one reply was necessary or expected. 

While it waits for a reply, Msg will still 
send new messages to the tool for prc- 
cessing. Field tools must be able to accept 
and process new messages while waiting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

While most of the current 
Held implementation 

involves progkamming 
imthe-small, the concepts 

and integlation 
mechanisms can easily 

ibe extended to 
proglammi~~mthelarge, 

which I plan to do. 

for a reply because, while the update and 
event messages the debugger sends are 
synchronous (so the tools run in step), the 
typical reaction of a data viewer when it 
gets an update message is to request the 
debugger to get the information it needs 
to be up to date. 

To allow synchronous messages, the 
message server appends an argument to 
the end of the argument list for each mes 
sage. This new value is either negative or 
the identity of the message to reply to. The 
message recipient will check this value 
and, if it is not negative, will use it when 
issuing a reply. This lets tools like the de- 
bugger receive commands that don’t nec- 
essarily require a reply. By using a specific 
reply identifier, Msg also lets many syn- 

chronous messages be outstanding and 
be processed by a variety of tools. 

This facility is robust as long as the tools 
do not ignore a reply request. The mes 
sage facility immediately returns control 
to the caller if it could not match the pat- 
tern and therefore could not send the 
message. The server also keeps track of 
what replies are outstanding by what tools. 
If a tool goes away, normally or abnor- 
mally, the message server detects this and 
simulates a null response to all its pending 
messages. 

I decided against imposing a time-out 
feature on message replies because the ac- 
tion associated with a synchronous mes 
sage may require user interaction with 
another tool and thus can take an arbi- 
trary amount of time. 

eld demonstrates a simple but ef- 
fective way to unite many existing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF tools in an integrated program- 

ming environment. It runs on Sun 3 and 
Sun 4 workstations; I have ported parts of 
it to a Digital Equipment Corp. MicroVAX 
and to an Encore Multimax. 

In the Computer Science Department 
at Brown, Field is being used in under- 
graduate courses ranging from an algc- 
rithms and data-structures course to a 
software-project course. For the elemen- 
tary courses, I created a restricted form of 
Field that provides a limited tool set and 
that automatically selects the tools of in- 
terest. In the advanced courses, students 
use the full environment. 

Field is also being used in research as a 
debugging aid and as a testbed for devel- 
oping additional programming aids. So 
far, our experiences have been generally 
positive, but it is too early to evaluate 
Field’s effectiveness. 

I am continuing to do research with 
Field. Tango, a project undertaken by 
John Stasko, now at Georgia Tech, is an 
algorithm-animation system that uses 
Field to specify and generate interesting 
events. Tango is designed to provide 
access to Balsa-like‘ animations that are 
easy to create and easy to tie into the user’s 
program. 

Over the past six months, I have added 
to Field support for C++. This support in- 
cludes full-name mangling and deman- 
gling in the debugger and cross-refer- 
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encer, additional debugger commands, 
and a graphical class browser. More re- 
cently, I replaced the original make inter- 
face with a more general one that can 
handle the intricacies of the newer make 
version and interact with the sourcecode 
context system and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASCCS or RCS. I have 
also been working on improving the lay- 
out algorithms used in the flow-graph 
viewer, the data-structure display tool, and 
the new class browser and make inter- 
face. 

I in tend to develop more tools for pru 
gramming-in-the-small. Among the tools I 
am considering are variable displays that 
would graphically show variables as dials 
or gauges, program views that display the 

program and let you visualize and control 
program execution, a testing view that 
would automatically run test cases and dis 
play the results, better profiling tools to 
get a finer level of granularity, and better 
debugging interfaces based on new de- 
bugging languages. 

Field could also be extended to handle 
parallel programming. Field already can 
debug multiprocess programs and has 
hooks to handle multithreaded pro- 
grams. To use these hooks effectively, the 
debugger has to understand multiple 
threads of control. Also, I could add many 
monitoring tools, depending on the par- 
allelism model I choose. 

While most of the current implemen- 

tation involves programming-in-the- 
small, the concepts and integration mech- 
anisms can easily be extended to pro- 
gramming-in-the-large. I plan to 
incorporate into Field new and existing 
Unix-based tools for programming-in-the- 
large. These will include tools for version 
control, better configuration manage- 
ment, interface checking, history record- 
ing, and bug reporting. 

In my experience, Field’s performance 
and degree of integration is more that 
adequate for most users and most applica- 
tions. I believe Field’s simple mechanisms 
are a practical alternative for producing a 
highly integrated programming environ- 
ment. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.:. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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