
 Open access Journal Article DOI:10.1109/52.56450

Connecting tools using message passing in the Field environment — Source link

Steven P. Reiss

Institutions: Brown University

Published on: 01 Jul 1990 - IEEE Software (IEEE Computer Society Press)

Topics: Unix philosophy, Unix, Message passing, Broadcasting (networking) and Front and back ends

Related papers:

 Low-cost, adaptable tool integration policies for integrated environments

 Reconciling environment integration and software evolution

 Interacting with the FIELD Environment

 Design Patterns: Elements of Reusable Object-Oriented Software

 The POLYLITH software bus

Share this paper:

View more about this paper here: https://typeset.io/papers/connecting-tools-using-message-passing-in-the-field-
1p0fp6cqno

https://typeset.io/
https://www.doi.org/10.1109/52.56450
https://typeset.io/papers/connecting-tools-using-message-passing-in-the-field-1p0fp6cqno
https://typeset.io/authors/steven-p-reiss-aoazd8nc7e
https://typeset.io/institutions/brown-university-1ylslb96
https://typeset.io/journals/ieee-software-2xp8dbta
https://typeset.io/topics/unix-philosophy-3ni48hb8
https://typeset.io/topics/unix-35cstwjl
https://typeset.io/topics/message-passing-34eyoz7s
https://typeset.io/topics/broadcasting-networking-1c77ojjw
https://typeset.io/topics/front-and-back-ends-2ocy9wf5
https://typeset.io/papers/low-cost-adaptable-tool-integration-policies-for-integrated-4qrw6tndns
https://typeset.io/papers/reconciling-environment-integration-and-software-evolution-1qgvvjvgvr
https://typeset.io/papers/interacting-with-the-field-environment-1ptcb8ppzw
https://typeset.io/papers/design-patterns-elements-of-reusable-object-oriented-va1toiosdk
https://typeset.io/papers/the-polylith-software-bus-4py3uelqhl
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/connecting-tools-using-message-passing-in-the-field-1p0fp6cqno
https://twitter.com/intent/tweet?text=Connecting%20tools%20using%20message%20passing%20in%20the%20Field%20environment&url=https://typeset.io/papers/connecting-tools-using-message-passing-in-the-field-1p0fp6cqno
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/connecting-tools-using-message-passing-in-the-field-1p0fp6cqno
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/connecting-tools-using-message-passing-in-the-field-1p0fp6cqno
https://typeset.io/papers/connecting-tools-using-message-passing-in-the-field-1p0fp6cqno

Connecting Tools Using
Message Passing in the

Field Environment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Field connects tools

with selective
broa&astin& which

follows the Unix
philosophy of letting

indepenhnt tools
cooperate throum

simple conventions.
F5eld demns tdes

that this simple
approach is feasible

and desirable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
July 1990

Steven P. Rei-, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABrown University zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
orkstations that offer a host of
graphical capabilities, power- W ful processors, and mouse-

based input to support integrated envi-
ronments have been available for five
years. However, programmers still write
code in classical languages like C and Pas-
cal with collections of unintegrated tools.

There are two exceptions to this rule.
The first is the class of special-purpose,
controlled environments for languages
like Lisp and Smalltalk. Here, where the
whole system is based on a single, semi-
interpretive language, many graphical en-
vironments exist. Most of them, however,
are specific to their underlying language
and do not apply to programming in
more common languages.

The other exception is the blossoming
class of simple but powerful PGbased prcl
gramming environments for traditional
languages. Vendors have understood the
potential for mouse input and graphical
output as programmer aids. Integrated

0740-7459/90107oO/oO57/$01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.oO 0 1990 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE

environments like Lightspeed Pascal are a
powerful framework for teaching prG
gramming and forwriting and debugging
simple Pascal programs. PC-based en-
vironments, however, are highly inte-
grated and suited for small programs only.

I undertook the Field project to show
that you can implement on workstations
the highly integrated, interactive environ-
ments like those on PCs and that you can
use them for classical-language and large-
scale programming. I also wanted to show
how to use a workstation’s more advanced
capabilities to attain a more productive
and powerful environment by providing
functionality not found on PCs or in stan-
dard softwareengineering environments.

Field was designed both to accomplish
these ends and to provide a production
environment for research and in-
structional programming at Brown Uni-
versity. I designed Field to be simple and
inexpensive so it would be operational zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas
soon as possible and to ensure that it

57

Related research zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Integrated programming environments have been widely touted as

a way to increase productivity. Also, because they offer a controlled
and understandable environment, they are ideal for instruction. In the
past 20 years, a wide range of integrated environments, using many
ways to integrate their tools, have been developed.

File level. Most of today’s environments are integrated at the file
level. Unix is an example of such an environment. In Unix, program-
mers edit source files. They use the SCCS or RCS tools to check files
in and out and to manage file versions. They run the make program
that takes a file describing how the system is to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe built and runs the
appropriate compilers and loaders on the source files to produce ob-
ject files and the resulting systems. The debugger runs on the binary
file and accesses the source files as appropriate.

These Unix tools are integrated only in that they operate on a com-
mon set of files. But each tool has a different interface and obeys
different conventions. Programmers are free to choose the set of tools
they want to use and ignore the others. None of the tools takes advan-
tage of the others or interacts except through their eventual outputs in
the file system.

Others have tried to extend Unix’s limited integration. Sun’s DBX
tool provides a Make command to run the make program and an Edit
command to run an editor on the appropriate source file. The Gnu
Emacs editor can parse compiler output and go to lines containing
errors. Others have extended the default make rules to do many
SCCS functions automatically.

However, all these extensions are ad hoc, simple extensions to one
tool. They do not provide acommon interface nor ageneral, extensible
integration mechanism.

Single system. More integration can be found in single-language
environments that combine all the tools in a single system. The tools
generally share a common interface and operate on a single program
representation. Such environments exist for languages like Lisp and
Smalltalk and on small-scale PC systems.

These systems can be highly integrated. For example, Pecan’ lets
multiple editors access the source code and updates them all as the
source code changes. It uses the source-code views to animate pro-
gram execution and provides an incremental compiler that runs as the
editor detects a source-code change. In turn, the compiler updates a
set of semantic views such as the symbol table, detects errors, and
highlights them in the sourcecode views. You can set breakpoints in
any of the sourcecode views.

However, these systems tend to be complex. They also can’t take
advantage of existing tools. Languages like Lisp and Smalltalk do
support an extensible environment and give you direct access to the
execution framework. This lets you add tools incrementally, so the
system gains functionality and complexity over time. But to integrate a
new tool typically means integrating it separately with each of the other
tools, because there is no guarantee that the interfaces or conventions
are similar.

Systems that incorporate traditional languages like C or Pascal are
difficult to extend, especially given their size and complexity. Most of
the environments developed for these languages use an interpreter to
achieve a high degree of integration between an executing program
and the rest of the system, a strategy that limits these systems to
handling small programs.

Program database. Another way to integrate tools is to combine
them into a program database. In this approach, a single database

stores all relevant information aboutasystem.These systemsachieve
integration by having the tools share common data structures that
represent different aspects of the program and its execution.

A program database also lets independent tools have controlled
access to a specific set of common data structures. In effect, the
shared data structures of the single system are placed under the con-
trol of a separate database system that provides consistency and
integrity between processes, and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtools access these structures
through this new system.

There are two ways to implement an environment that uses a pro-
gram database. The first is to have all the tools use the database
directly. In this approach, the tools are designed with the database in
mind and use representations that are either stored in the database or
can easily be derived from the database.

This apptoach, which underlies the Ada Programming Support En-
vironment, is efficient and consistent. The APSE environments store
an attributed, abstract syntax representation in a common database.
The compiler, debugger, loader, and othertools all access the program
as Diana trees by going through the common database system. The
principal disadvantage of this approach is that you must rewrite any
existing tools so they can use the database. A secondary disadvan-
tage is that you must determine the database representation before
you implement the tools, so it can be a problem to add tools you did not
anticipate.

The second way to implement a program database is to treat it as a
software backplane. Here, the tools can use whatever representation
is most appropriate - existing tools use their current representations
and new tools are written to use the most efficient representation for
the application. The database then stores a single, extensible repre-
sentation of the data. This representation is mapped by the database
system backandforthfrom theform neededforapartiwlarapplication
when it is run.

This approach lets you use existing tools and makes it easier to
incorporate new tools. However, the mappings from the database
representation to the application representation can zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe complex and
indirect.

Program databases in general have disadvantages. You need an
additional system to maintain the database, which adds complexq.
Database systems are usually large and complex - and a program
database that handles multiple clients and maintains consistent pro-
gram information is no exception. Finally, this integration strategy re-
quires you to understand well the program representation before you
write most of the tools, which can make it difficult to add tools that do
not fit well with your original definition.

Message facility. Field provides a third alternative, a loosely
coupled message facility to integrate tools. This approach has several
advantages, primarily simplicity, ease of reuse of existing tools, and
ease of extensibility. This, combined with the annotation editor to pro-
vide consistent access to the source throughout the environment,
leads to a powerful programming environment that can effectively use
existing and future tools. While this approach cannot provide thecom-
plete integration of the other approaches, my experience is that the
level of integration is high enough for almost all applications and that
complete integration is not necessary.

Reference
1. S.P. Reiss, “Pecan: Program-Development Systems That Support Multi-

ple Views,” /€€€ Trans. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASoftware zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEng., March 1985, pp. 276-284.

58 IEEE Software

could be maintained and that it would
work in an educational environment. I
used existing tools wherever possible, in-
cluding standard Unix tools, workstation
software previously developed at Brown,
and other available software. I also wanted
to use Field as a testbed environment in
which new tools such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas program-anima-
tion systems can be incorporated easily. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Integration framework. Field achieves
all these goals by providing a consistent
graphical front end and a simple integra-
tion framework that lets existing and new
Unix tools cooperate. The front end,
based on a tool set called the Brown Work-
station Environment,’ includes several
input interfaces that incorporate static,
pull-down and popup menus, dialogue
boxes, and scroll bars; a powerful, exten-
sible editor; a geometry package; drawing
packges, including one for the automatic
layout and display of structured diagrams;
an integrated help facility; and an applica-
tion window manager.

Field’s principal contribution is its inte-
gration framework, which lets me tie
many tools togetherwith minimum effort.
The framework combines a communi-
cations mechanism that I call zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsehctive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
broadcasting; an annotation editor that
provides consistent access to the source
code in multiple contexts, and a set of
specialized interactive analysis tools.

In selective broadcasting, all tools talk to
a central message server. Each tool regis
ters a set of message patterns with the ser-
ver. Tools communicate by sending me*
sages to the server and receiving those
messages that match their registered pat-
terns. This approach is easy to implement
and extend. It has several advantages over
the more traditional integration mecha-
nisms that involve program databases or
the development of a single massive sys
tem. Field demonstrates that my simpler
approach is both feasible and desirable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
field overview

Field serves three purposes: It is the
principal programming environment for
teaching undergraduates, it is a research
programming environment, and it is a test-
bed for developing new tools. The first
purpose requires that the environment be
easy to use, the second that it handle mod-

erate-sized (100,0001ine) systems span-
ning multiple files in multiple directories,
the third that it be flexible and easily ex-
tensible.

The current set of Field tools includes:
An annotation editor, a full-func-

tioned, mouse-oriented, extensible editor
for C and Pascal. The editor is augmented
with an annotation window that lets you
associate annotations with each line of
code. You can create, remove, and query
annotations through the editor. Field uses
these annotations to relate the code to the
rest of the environment. Field lets you
have multiple annotation editors active at
one time, so you can view and annotate
several files simultaneously.

A crossreferencer, which collects a re-
lational database about a system. This zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Field’s principal
contribution is its

integbtion framework,
which combines the

selective hoadcasting
communication
mechanism, an

annotation editmy and a
set ofspecialized

interactive analysis tools.

database is generated the first time that
crossreferencing is done on a system and
incrementally thereafter, rescanning only
those source files that have changed. You
can specify a system as a set of source files,
a binary file, or a directory hierarchy. A
relational-calculus query language p r e
vides access to the database. Current rela-
tions include references (name, file, line,
and assignment), declarations (name,
scope, file, type, class, and line), calls
(from, call, file, and l ine), functions
(name, file, line, scope, argct, and args),
files (name), and scopes (class, start-line,
end-line, and file).

A cross-reference interface, a menu-
oriented interface thatletsyoumakemost
simple database queries by filling in a dia-
logue box. This interface lets you select a
listed reference to look at in the editor

and handles cross-reference queries from
other system tools, thus integrating the
cross-referencer to the rest of the system.
The editor uses this facility to provide
commands based on program contents
such as “find and display the declaration
of this procedure.” The debugger uses it
to provide high-level commands such as
“set breakpoints at all assignments to this
variable.”

A data-structure display, adapted from
the Garden environment’ and incor-
porated as a pair of tools. The first tool
displays a data structure graphically, let-
ting you pan and zoom to show more or
less detail. The second tool lets you de-
scribe quickly how the data structure
should be displayed by the first tool.
These two tools let Field display complex
data structures that are similar to the dia-
grams a programmer draws.

A debugger, which is comparable to
DBX on a Sun. It provides an extended,
DBX-like user interface and an internal,
message-based interface to other Field
tools. Using a separate debugger makes it
easier to port Field to other systems, p r e
vide a consistent debugger language
across systems, and incorporate new de-
bugger commands. Using a message-
based interface lets us incorporate differ-
ent, machine-independent debugging
languages later. In Field, you can run mul-
tiple debuggers on separate processes
simultaneously.

A graphical, button-oriented debug-
ger interface. The debugger interface lets
you easily create new buttons to represent
common debugger commands, provides
a full transcript of the debugging session,
and can display program I/O.

A flow-graph viewer, which displays a
hierarchical flow graph. This tool lets you
interactively select interest areas and set
up the display accordingly. It interacts
with the rest of the system, so you can use
the flow graph, obtained from the cross
referencer, to locate routines and calls
and to highlight execution.

A menudriven interface to the Unix
make pr0gram.j By building my interface
on top of make, I could offer many exten-
sions from different versions of make and
incorporate tools such as an automaticde-
pendency analyzer. When requested, this
interface performs compilations and in-

July zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1990 59

uttm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFils Edi t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlive

24 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ = r&O I1024:
Jdt 5? c m t

3 t r S e . C

M 6 i c m t

J = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArandno X 1024:
M 7>A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

He*

Cmtirue

motate CwIlwCds File Edit tkw

I
main0

Integer 1 , ~ : LPLmTE
EVEHT root = U!

f c r i i 0: 1 < 30: ++I) ?
J = r&!? Z 1024: +@,
root = , t lSRt treg(rmt,J):

>:

Figure 1. The Field environment.

forms editors of errors.
A profiler interface, a graphical inter-

face to a slightly extended version of the
Berkeley Unix Gprof command! I ex-
tended Gprof to make it more interactive
and to provide timing information about
files and lines as well as functions. This
graphical interface lets you selectively
view the large amount of information the
profiler produces.

A viewer, a general facility that lets you
view different system aspects. I have devel-
oped Liewers for the runtime stack, vari-
ables and expressions being traced, and
debugger events such as breakpoints.

Figure 1 shows a snapshot of the Field
environment. The window in the upper
left is the control panel. It contains icons
(Old English letters) for the views and
windows you can define. Below it is the de-
bugger-interface window, which shows
both a transcript of a debugging session
and, below the transcript, the debugger-
command buttons.

I

mt: stmt *
d i t Lajout Displag Iwt Eual

GLoBRLs: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
CaMd b o j r t File Y i n b v s

J&: tree i n /aulgacm/pro-real/field/test3

W C) -g -p9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0 tree tree.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3
Underneath the debugger-interface

window is the annotation editor, which is
displaying the sourcecode file. To the left
of the line of code are three annotations:
An arrow indicates the line currently exe-
cuting, eyeglasses represent the current
debugger focus, and astop sign indicates a
breakpoint.

The window in the upper right shows a
view of the program's data structure. The
program shown here does tree insertion;
the tree is displayed in its current state
(the dark triangles represent empty sub
trees).

Below this window, on the left, is a stack
viewer. This displays the current hnction
and line being executed as well as the con-
tents of the local variables at this point.
The window next to this is the crossrefer-
ence interface displaying the result of a
query asking for all calls to the function-
insert tree.

Finally, the window at the bottom right
is the make interface, which is displaying

information about building the system
being run.

Integration framework
Field's constraints and goals made it in-

appropriate for me to adopt existing
strategies for integrating tools into a pro-
gramming environment. As the box on p.
58 describes, other integration a p
proaches are more complex, require
more effort than I wanted to devote to the
project, make it difficult to use Unix tools,
and do not offer the extensibility I
wanted. I needed a simpler mechanism
that would achieve a high degree of inte-
gration while being easily extensible.

I established four criteriafor myintegra-
tion framework, based on an analysis of
the desired interactions between the
tools:

The tools must be able to interact with
each other directly;

the tools must share dynamic informa-
tion;

60 IEEE Software

the programmer must access the
source code though a common editor;
and

the environment must make static,
specialized information available to all the
tools that need it. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfacility. The integration mech-

anism I developed for Field is a selective-
broadcast message facility, called Msg.
Tools register patterns with Msg to de-
scribe the messages that interest them.
Tools interact by sending messages to
Msg, which rebroadcasts them selectively
to those tools that have expressed an inter-
est in them through a previously regis-
tered pattern.

This simple concept zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- a central mes-
sage server and distributed message hand-
ling-is sufficient to put together an inte-
grated programming environment. Its
power comes from its flexibility:

Field passes all messages and patterns
as text strings of arbitrarylength.

Msg incorporates and extracts string
and numeric arguments according to pat-
terns.

Messages can be sent either asyn-
chronously or synchronously. Asyn-
chronous messages let the sender con-
tinue immediately; synchronous messages
generate a string reply to the sender once
all eligible servers have acknowledged the
message.

Tool interaction. My first criterion is
that tools must be able to interact with
each other directly. If you want to set a
breakpoint in the editor, the editor must
be able to issue the corresponding debug-
ger command. If you want to force a re-
compilation from the editor, the editor
must inform the make interface. If the
compiler detects errors, Field should
change the current editor focus to the er-
roneous context. Ifyou want to find all oc-
currences of avariable in your system, you
must be able to make a request of a cross-
referencing utility. If a variable display
needs information about the type or con-
tents of the value it is to display, it must be
able to query the debugger.

Field supports such interactions by
using the message facility as a conimand
interface to its tools. The niostwidelyused
command interface is to the debugger.

DDT ACTION system action

DDT ASSIGN system var expr
DDT CALL system rtn args
DDT DUMP system from to length format
DDT EVAL system expr
DDT EVENT ADD system file func line expr cond addr act fgs

action = INIT 1 QUIT I KILL I STOP

act = TRACE I BREAK I CALL I WATCH I MONITOR I event-name
fgs = l:internal, 2:external, 4:event

act = TRACE I BREAK I CALL I EVENT I MONITOR I TRIGGER

act = TRACE I BREAK I CALL I EVENT I MONITOR I TRIGGER

DDT EVENT SHOW system file func line expr cond addr act id

DDT EVENT REMOVE system file func line expr cond addr act id

DDT RUN system args in out new
DDT SET system what value

what = INFILE I OUTFILE I USE I WHERE I NEWSYS I DDTOUT I WD
PRINTIGN I PRINTUSE I CATCH I IGNORE
PROG I ENDPROG I FORCE-RUN I RUN-ARGS I USER-TTY I ENV
STACK-TOP I STACK-BOTTOM I STACK-DUMP I STACK-SHOW

STOP-UPDATE
DDT SHOW system what

DDT STACKsystem from to dump
DDT STEP system count sig unit

DDT SYMINFO system what file func line name

LIST-FCTS
DDTVIEW system file func line count stack-delta

what = SIGNAL I RUN I USE I SYSTEM I LOCATION I FOCUS I ENV

unit = STEP I NEXT I CONT I SEW1 I NEXT1

what = WHICH I WHAT I WHERE I VARINFO I TYPEINFO I LIST-FILES I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 2. Debugger command messages.

The debugger’s full functionality is avail-
able through message-based commands,
which lets various tools interact with sys-
tem execution. For example, the editor
sends messages to insert and remove
breakpoints, the variable viewers send
messages to turn tracing on or off for a
given expression, the flow-graph viewer
sends tracing requests for the functions it
is displaying, and the data-structure dis-
play sends messages to query types and
values from the running program.

Figure 2 shows the current set of debug-
ger commands. Each command has an al-
ternative form, where the prefix Ddt is re-
placed by Ddtr. The Ddtr command form
is used when output to the user is not
needed; for example, when the request is
made by a tool other than the debugger
interface. Many of these commands serve
multiple functions depending on their ar-
guments. I represent unnecessary or
omitted arguments with asterisks for
strings and zeros for numbers.

Other command interfaces are prcl
vided by the make interface, the cross-ref-
erencer, and the editor. The make facil-
ity’s command interface lets any other
system component request that a com-
mand be executed or a file be compiled.
This is used by the editor to request that a
file be recompiled and by the debugger to
request that the current system be rebuilt.

The cross-referencer’s command inter-
face lets any other component query its
database. The editor’s command inter-
face lets another tool request that the cur-
rent file be saved, that selected annota-
tions be cleared, or that all annotations be
implicitly recreated. It uses the first two
requests when externally preparing a
source file for compilation; the debugger
uses the third to reestablish breakpoints
after recompilation.

It is easy to integrate a tool into the en-
vironment so other tools can invoke i t
through the message server when you do
it with a new tool interface. Both in adding

July 1990 61

DEBUG VALUE <system> <file> <line> oar> <value>
DEBUG ENTER <system> <file> <func> <line> oalue>
DEBUG EXIT <system> <file> <func> <line> <value>
EVENT ADD <system> <id#> <event-type> <file> <line> <text>
EVENT REMOVE <system> <id# ><event-type> <file> <line> <text>
STOP-ERROR <signal ><file> <line>
DEBUG AT <system ><file> d u m > <line>
DEBUG FOCUS <system> <file> <func> <line>
1E <type> <system> <file> <line> <value> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA...
DEBUG CLEAR<system>
DEBUG RESET <system>
WHERE <system> <level><fiIe><funo <line> <addr> <args>
WHERE-DUMP <system> <level> <name> <value>
WHERE-BEGIN <system>
WHERE-END <system ><level>
DEBUG SYSTEM <system>
DEBUG NO SYSTEM <system>
DEBUG FINISH <system>
DEBUG START <system>
DEBUG STOP <system> <signal-name>
DEBUG STOP <system> OK
UPDATE <system ><file> <line> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Informative messages sent by the debugger.

a new user interface and in integrating the
message server, functions representing
the various commands exist or are written
as part of the expanded tool, and it is
straightforward to register message pat-
terns for message-based commands and
to call these functions as appropriate
when a message occurs.

This is the approach I have taken in the
make interface, the cross-referencer, and
the profiling interfaces, each of which
took about two days ofwork. In the debug-
ger interface, I took this a step further and
at first provided only a message-based in-
terface. I then developed an independent
front end that generated message-based
commands. This approach will let me de-
velop different debugger front ends with
additional functionality and sophistica-
tion in the future. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Sharing dynamic information. My sec-
ond criterion is that the integration
framework must let tools share dynamic
information. First, different environment
components need to know the current
execution context. For example, the edi-
tor may want to highlight the current line
of execution and the line last selected in
crossreferencing.

Different components also want to
know something about the state of the
other components. For example, the edi-
tor wants to know where the debugger has
set breakpoints so it can inform the user;
the make interface wants to know when
the editor saves a file so it can initiate an
automatic recompilation if requested; the
display tools need to know the new values
of variables being traced whenever they
change; and error messages generated by
the compiler need to be associated with
the appropriate source code.

Msg is designed to handle such dynamic
information. Each tool defines a set of
events it deems might be of interest to
other tools and sends messages about
these events as they occur. Other tools reg-
ister with Msg those event messages they
want to handle and are duly informed
when the events occur.

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 shows the debugger’s event
messages. The principal messages are sent
out whenever the debugger knows -
either from the program stopping or from
a trace request - the current line of exe-
cution, whenever a traced function is
entered or exited, whenever a traced
value changes, and whenever an event
such as a breakpoint is added or removed.

It sends out messages describing the con-
tent of the stack if requested to do so by,
say, the stackviewer. It also lets tools define
their own messages to be tied to a p r e
gram’s trace points, a facility used by the
algorithm-animation package Tango: a
separate Brown research project.

This event-message facility is also used
by other tools. The make interface sends
out messages for each error or wa:ning
the compiler detects so the editor can as-
sociate the errors with the program
source code. The cross-referencer and
flow-graph viewer send out messages
when the user clicks on an output refer-
ence so the editor can shift its focus to the
referenced location. The editor sends out
a message whenever a file is opened or
closed.

Source access. My third requirement
for an integration framework is that it
must provide consistent access to the p r e
gram’s source code. Programmers access
the source code for many reasons. They
edit it to create or change it. They view it
to correlate compiler-generated error
messages, to see where they are during
execution, and to see what program por-
tions the profiler has identified as bot-
tlenecks. They set breakpoints at source
statements, trace variables and expres
sions defined in the source code, and des-
ignate source-code components to cross-
reference. Afully integrated environment
should provide a single access mechanism
that can accommodate all these needs
and any others that arise.

Field provides such a consistent inter-
face through the annotation editor, which
is closely tied to the message facility. The
annotation editor starts with a powerful,
extensible base editor that provides full
editing capabilities. It augments each
source line with a set of associated annota-
tions. These serve both as commands that
you can invoke for that line and as
markers for the line. The current annota-
tion set includes:

Break, which lets you set breakpoints
and shows where breakpoints are set.

Trace, which lets you set trace points
and shows where trace points are set.

Watch, which lets you trace variables
and shows where variable trace points are
set.

62 IEEE Software

Focus, which shows the line the debug-
ger is looking at.

Current, which shows the current exe-
cution line.

Def, which shows the line last referred
to by the cross-referencing tool or the
flowgraph viewer.

Update, which lets you set an update
point and shows where such points exist.
An update point synchronizes displays
such as the stackviewer and the data-struc-
ture display with program execution.

Event, which inserts an interesting
event for program animation.

Error, which flags a line containing a
compilerdetected error.

Warning, which flags a line containing
a compilerdetected warning message.

It is easy to add new annotations be-
cause they are defined by a text file that is
read at start-up, not coded as part of the
editor.

Annotations interact with the message
system in many ways. How an annotation
interacts is specified by string values that
represent messages and patterns associ-
ated with an annotation. For example,
Figure 4 shows the messages associated
with the Break annotation. The Msg-Add
string corresponds to a message that is
broadcast when the user adds an annota-
tion; the Msg-Remove string corresponds
to one that is sent out when the user de-
letes one. The Msg-Set string and the
Msg-Unset string correspond to patterns
for messages that will cause the editor to
add and remove the annotation.

The strings associated with annotations
contain escape sequences that the editor
fills in to form the message or pattern.
These escape sequences can refer to the
current line (%L), character position zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(%C), file name (%F), or to strings associ-
ated with this annotation (%V and %T).
These strings are defined by their occur-
rences in the set pattern. Other escape
sequences refer to arbitrary strings (%s)
and numbers (%d) in a pattern that are to
be scanned and ignored.

In Figure 4, the Msg-Add string causes a
breakpoint to be added in the file at the
given line, using a debugger command
from Figure 2. The asterisk in the system
field indicates that the breakpoint should
apply to all systems that include this
source file. The editor fills the file field in

MSG-ADD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= "DDTR EVENT ADD * %F * %L * * 0 BREAK 3"
MSG-REMOVE = "DDTR EVENT REMOVE * %F * 0 * * 0 BREAK %VI
MSG-SET = "EVENT ADD %S %VBREAK %F %L %T"
MSG-UNSET = "EVENT REMOVE %S %VBREAK %F %L %T" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fwre 4. Messages associated with a Break annotation.

with the name of the file being edited.
The asterisk in the function field means to
ignore the function. The line-number
field contains the line where the annota-
tion was requested. The asterisks in the ex-
pression and conditional fields mean the
breakpoint is unconditional whenever
execution reaches this line. Similarly, the
Msg-Remove string sends a debugger
command to remove the breakpoint.

You can define more complex annota-
tions, such as a conditional breakpoint, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

An int-ion
mechanism must make

static, specialized
information available to
all tools. To zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdo this, Field

uses active servers,
which receive requests
through the message

server and fiMll them.

with %T arguments (%Tl, %T2, and
%T3). In this case, the user is prompted
for the condition. I now use this annota-
tion type to define the interesting events
that drive the Tango algorithm-animation
package.

The patterns associated with an annota-
tion contain the same escape sequences as
messages. In this case, however, the escape
sequences refer to arguments that the edi-
tor interprets. If the pattern provides the
file name, it must match the file being
edited. If it doesn't, the message will
generally be ignored. However, you can
make the editor sensitive to this annota-
tion type by telling it that if the file name
differs, it should close the current file,
open the specified file, and process the
message. You do this to keep an editor syn-

chronized with the debugger and to view
compiler error messages and cross-refer-
ence locations.

An annotation escape sequence must
include a line number to identify where
the annotation should be set (added) or
removed. If the editor is sensitive to the
annotation type, it will scroll so this line is
visible. The %V and %T escape sequences
define the values associated with the new
annotation on a set message and ignored
on a remove message. The %T values con-
tain text information that you can view
later. For breakpoints, this is a string de-
scribing the breakpoint; for error mes-
sages, it is the text of the message. The %V
field is a number. The patterns in Figure 4
correspond to the event messages in
Figure 3.

The annotation editor lets different
annotations, each with its own icon and
color, behave appropriately by letting
them have different properties. Annota-
tions can be exclusive to all source files, to
a given line, or not at all.

Annotations that are exclusive to all
source files let the editor remove the
annotation indicating the current line of
execution when a new current line is
broadcast, even if this new one is for a
different source file. Annotations that are
exclusive to a given line let the editor dis-
card or merge previous annotations on
that line. For example, each line can have
only one Error annotation, but it contains
all the information about all the passed
error messages for that line.

You can directly set annotations like
Break annotations, while others, like
Error annotations, can be set only
through outside messages.

Sharing static information. The fourth
requirement for an integration frame-
work is that it make static, specialized in-

July 1990 63

EVENT ADD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%s %3d BREAK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% 1 s %2d %4r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a)

static void
handle-add-msg (file,line,value, text)

String file;
Integer line;
Integer value;
String text;

(b)

EVENT ADD tree 4 BREAK ./tree.c 24 [4] BREAKat line 24 offile ./tree.c

(cl

handle add zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmsg("./tree.c",24,4,"[4] BREAKat line 24 offile ./treed',-1)

(d)

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Exampleof (a) message pattern, (b) routinedeclaration, (c) message, and (a)
resulting call.

formation available to all tools. Static in-
formation includes system-building rules,
cross-reference information, profiling
data, and program and execution infor-
mation. Program information includes in-
formation about and descriptions of vari-
able types. Execution information
includes the current set of breakpoints
and other runtime events. All this infor-
mation must be available on demand to
various system components, and it must
be managed so it is kept current.

To do this, I could have stored all the
necessary information in a central data-
base. Instead, Field uses active servers. Ac-
tive servers are Field components that re-
ceive information requests through the
message server and fulfill them either by
dynamically computing the information
or by caching it in a local database.

This message interface lets the various
tools get necessary information without
needing to know how it is stored. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlso, by
compartmentalizing specialized informa-
tion, Field simplifies individual servers so
it can use existing or slightly modified
tools in many cases.

Four Field tools can share static infor-
mation to some extent. The debugger
provides information about program vari-
ables, program types, and the runtime en-

vironment. The cross-reference server
handles queries to a relational database
that represents program information.
The profiling interface supplies informa-
tion about functions, files, and lines and
supports queries about program bot-
tlenecks. The make interface stores infor-
mation about dependencies and how to
build the system.

Message facility
Field's message facility, Msg, is based on

selective broadcasting. Each tool registers
with the message server a set of patterns
that describe the messages it is interested
in. Any tool can send a message to the ser-
ver, which rebroadcasts it to all the tools
that have registered a pattern matching
the message. The message facility allows
synchronous and asynchronous broad-
casting.

I implementated this facility in two
parts. The actual Msg server runs as a sep
arate Unix process and communicates via
sockets. Each tool includes a client inter-
face that talks to the server and distributes
the message from the server to the tool.
When a tool sends a message, the client
interface passes it to the server. The server
passes the message back to the client in-
terface for each process with a pattern

matching the message. The client inter-
face then scans the message and takes the
appropriate action to send it to the re-
ceiver.

I used TCP-domain sockets so Field's
tools can reside on different machines
and still share a common message server.
This lets me integrate the debugging of a
distributed system and lets you use one
machine to debug a program running on
a second.

The current Msg implementation is a
2,00@1ine C program that is divided
equally among the server, the client inter-
face, and a pattern matcher.

Message passing. All Field messages are
passed as strings. While this introduces
some inefficiencies, it greatly simplifies
pattern matching and message decoding
and eliminates machine dependencies
like byte order and floating-point repre-
sentation. Similarly, strings represent mes
sage patterns.

While it is easy to encode a message into
a string, it can be complex to decode it.
Therefore, the Msg client interface - not
the tools - decodes messages. When a
tool registers a message pattern, it pro-
vides an entry point to a routine that will
handle the message. The pattern identi-
fies not only the message but also those
parts of the message that correspond to
arguments for that routine and the for-
mat of those arguments. A side effect of
matchingamessage to apattern is thatthe
arguments are decoded into the proper
internal form. If the pattern matches the
message, the client interface calls the rou-
tine associated with the pattern and passes
it the decoded arguments. This simplifies
the tools' message-handling routines. For
example, Figure 5 shows a message pat-
tern, the associated routine declaration, a
sample message, and the resulting call.

Message patterns are literal characters
that must match the corresponding char-
acters in the message and escape
sequences that represent either argu-
ments or generic strings. The format of
these patterns is based on the Unix Scanf
facility.

Escape sequences consist of a percent
sign, an optional description, and an al-

phabetic character denoting the escape
sequence. Escape sequences representing

IEEE Software 64

arguments have the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
% [argument-number] [. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlength]

type-c harac ter

Argument-number lets the message give
the routine arguments in any order in the
message; length allows for fixed-length
fields where appropriate; and type-char-
acter can be one of

d, decimal integer;
o, octal integer;
x, hexadecimal integer;
e, floating point;
c, character;
s, string;
r, string representing the remainder of

the message;
q, string in quotes;
[characters], string consisting only of

given characters; and
[Acharacters], string consisting of any-

thing but given characters.
The call to define a pattern can also set

default values for arguments the pattern
does not define directly, so a common
routine can handle many messages. For
example, the message pattern in Figure 5
accepts the sample message. The first
escape sequence in the message pattern,
%s, causes the system name tree to be dis
carded. The second escape sequence,
%3d, causes the number 4 to become the
third parameter to the function. The
third escape sequence, %Is, matches the
file name ./tree.c and causes the corre-
sponding string to be passed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the first
parameter. The fourth escape sequence,
%2d, causes line 24 to be scanned and
passed as the second parameter. Finally,
the fifth escape sequence, %4r, causes the
rest of the breakpoint message containing
a definition string to be passed to the rou-
tine as the fourth parameter.

Message types. Most of the messages
sent in Field are asynchronous and are
broadcast to provide potential clients with
information. Messages that represent
commands must be synchronous and
must provide the caller with a reply. Field
clients send synchronous messages in
much the same way they send asyn-
chronous messages. However, once the
message is sent, the client partially blocks
until a reply is received.

When it receives a synchronous message

request, the message server first deter-
mines how many receivers exist for the
given message and then sends the mes-
sage to all these clients. Each client is re-
sponsible for telling the server that it has
processed the message by returning a
string reply. The message server and the
associated client interface return control
to the initial caller only when they have
received replies from all recipients. When
this occurs, the client server returns to the
sender the first nonnull string reply it re-
ceived. I designed Field to ignore all but
the first reply because it is simpler than
accumulating all replies and because I
haven’t found an occasion where more
than one reply was necessary or expected.

While it waits for a reply, Msg will still
send new messages to the tool for prc-
cessing. Field tools must be able to accept
and process new messages while waiting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

While most of the current
Held implementation

involves progkamming
imthe-small, the concepts

and integlation
mechanisms can easily

ibe extended to
proglammi~~mthelarge,

which I plan to do.

for a reply because, while the update and
event messages the debugger sends are
synchronous (so the tools run in step), the
typical reaction of a data viewer when it
gets an update message is to request the
debugger to get the information it needs
to be up to date.

To allow synchronous messages, the
message server appends an argument to
the end of the argument list for each mes
sage. This new value is either negative or
the identity of the message to reply to. The
message recipient will check this value
and, if it is not negative, will use it when
issuing a reply. This lets tools like the de-
bugger receive commands that don’t nec-
essarily require a reply. By using a specific
reply identifier, Msg also lets many syn-

chronous messages be outstanding and
be processed by a variety of tools.

This facility is robust as long as the tools
do not ignore a reply request. The mes
sage facility immediately returns control
to the caller if it could not match the pat-
tern and therefore could not send the
message. The server also keeps track of
what replies are outstanding by what tools.
If a tool goes away, normally or abnor-
mally, the message server detects this and
simulates a null response to all its pending
messages.

I decided against imposing a time-out
feature on message replies because the ac-
tion associated with a synchronous mes
sage may require user interaction with
another tool and thus can take an arbi-
trary amount of time.

eld demonstrates a simple but ef-
fective way to unite many existing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF tools in an integrated program-

ming environment. It runs on Sun 3 and
Sun 4 workstations; I have ported parts of
it to a Digital Equipment Corp. MicroVAX
and to an Encore Multimax.

In the Computer Science Department
at Brown, Field is being used in under-
graduate courses ranging from an algc-
rithms and data-structures course to a
software-project course. For the elemen-
tary courses, I created a restricted form of
Field that provides a limited tool set and
that automatically selects the tools of in-
terest. In the advanced courses, students
use the full environment.

Field is also being used in research as a
debugging aid and as a testbed for devel-
oping additional programming aids. So
far, our experiences have been generally
positive, but it is too early to evaluate
Field’s effectiveness.

I am continuing to do research with
Field. Tango, a project undertaken by
John Stasko, now at Georgia Tech, is an
algorithm-animation system that uses
Field to specify and generate interesting
events. Tango is designed to provide
access to Balsa-like‘ animations that are
easy to create and easy to tie into the user’s
program.

Over the past six months, I have added
to Field support for C++. This support in-
cludes full-name mangling and deman-
gling in the debugger and cross-refer-

July 1990 65

encer, additional debugger commands,
and a graphical class browser. More re-
cently, I replaced the original make inter-
face with a more general one that can
handle the intricacies of the newer make
version and interact with the sourcecode
context system and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASCCS or RCS. I have
also been working on improving the lay-
out algorithms used in the flow-graph
viewer, the data-structure display tool, and
the new class browser and make inter-
face.

I in tend to develop more tools for pru
gramming-in-the-small. Among the tools I
am considering are variable displays that
would graphically show variables as dials
or gauges, program views that display the

program and let you visualize and control
program execution, a testing view that
would automatically run test cases and dis
play the results, better profiling tools to
get a finer level of granularity, and better
debugging interfaces based on new de-
bugging languages.

Field could also be extended to handle
parallel programming. Field already can
debug multiprocess programs and has
hooks to handle multithreaded pro-
grams. To use these hooks effectively, the
debugger has to understand multiple
threads of control. Also, I could add many
monitoring tools, depending on the par-
allelism model I choose.

While most of the current implemen-

tation involves programming-in-the-
small, the concepts and integration mech-
anisms can easily be extended to pro-
gramming-in-the-large. I plan to
incorporate into Field new and existing
Unix-based tools for programming-in-the-
large. These will include tools for version
control, better configuration manage-
ment, interface checking, history record-
ing, and bug reporting.

In my experience, Field’s performance
and degree of integration is more that
adequate for most users and most applica-
tions. I believe Field’s simple mechanisms
are a practical alternative for producing a
highly integrated programming environ-
ment. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.:. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Acknowledgments
This research was supported in part by grants

from the US Defense Dept.’s Advanced Re-
search Projects Agency, the National Science
Foundation, and Digital Equipment Corp. The
NSF also provided equipment support.

References
1. J.N. Pato, S.P. Keiss, and M.K. Brown, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“An

Environment for Workstations,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPror. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEbX
Con/: Softimre ?bok, IEEE, New York, 1985,

Huwazz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn& 1 CmJ System zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASrimws, CS Press,
Ims Alamitos, Calif., 1987.

3. S.1. Feldman, “Make: A Program for Main-
taining Computer Programs,” Software
PlucticeandExperienw, 1979, pp. 255-265.

4. S.L. Graham, P.B. Kessler, and M.K.
McKusick, “Gprof: ACdlCraph Execution
Profiler,” SIGPlan Notices, June 1982, pp.
120- 126.

5. J. Stasko, ‘The Tango Algorithm-Anima-
tion System,”Tech. Report CSWZO, Com-
puterScience Dept., Providence, RI., 1988.

Steven P. Reiss is a professor of computer
science at Brown University. His research inter-
ests include the use of workstations for pro-
gramming, programming environments, and
visual programming. Before working on Field,
h e developed the Pecan program-develop
ment system and the Garden object-oriented
programming environment.

Reiss received a BA in mathematics from
Dartmouth College and a PhD in computer
science from Yale University

pp. 112-117.
2. S.P. Reiss and J.N. Pato, “Displaying Pro-

gram and Data Structures,” Prm. 20th

6. M.H. Brown and R. Sedgewick, ‘Tech-
niques for Algorithm Animation,” DEE
&ftwure,Jan. 1985, pp. 28-39.

Address questions about this article to Reiss
at Computer Science Dept., Brown University,
Providence, RI 029 12; CSnet sps@cs.brown.edu.

66 IEEE Software

mailto:sps@cs.brown.edu

