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Abstract

Humans perceive the world using multi-modal sensory

inputs such as vision, audition, and touch. In this work, we

investigate the cross-modal connection between vision and

touch. The main challenge in this cross-domain modeling

task lies in the significant scale discrepancy between the

two: while our eyes perceive an entire visual scene at once,

humans can only feel a small region of an object at any given

moment. To connect vision and touch, we introduce new tasks

of synthesizing plausible tactile signals from visual inputs as

well as imagining how we interact with objects given tactile

data as input. To accomplish our goals, we first equip robots

with both visual and tactile sensors and collect a large-scale

dataset of corresponding vision and tactile image sequences.

To close the scale gap, we present a new conditional ad-

versarial model that incorporates the scale and location

information of the touch. Human perceptual studies demon-

strate that our model can produce realistic visual images

from tactile data and vice versa. Finally, we present both

qualitative and quantitative experimental results regarding

different system designs, as well as visualizing the learned

representations of our model.

1. Introduction

People perceive the world in a multi-modal way where

vision and touch are highly intertwined [24, 42]: when we

close our eyes and use only our fingertips to sense an object

in front of us, we can make guesses about its texture and ge-

ometry. For example in Figure 1d, one can probably tell that

s/he is touching a piece of delicate fabric based on its tactile

“feeling”; similarly, we can imagine the feeling of touch by

just seeing the object. In Figure 1c, without directly contact-

ing the rim of a mug, we can easily imagine the sharpness

and hardness of the touch merely by our visual perception.

The underlying reason for this cross-modal connection is

the shared physical properties that influence both modalities

such as local geometry, texture, roughness, hardness and so

on. Therefore, it would be desirable to build a computational

model that can extract such shared representations from one

modality and transfer them to the other.

In this work, we present a cross-modal prediction system
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Figure 1. Data collection setup: (a) we use a robot arm equipped

with a GelSight sensor [15] to collect tactile data and use a webcam

to capture the videos of object interaction scenes. (b) An illustra-

tion of the GelSight touching an object. Cross-modal prediction:

given the collected vision-tactile pairs, we train cross-modal pre-

diction networks for several tasks: (c) Learning to feel by seeing

(vision → touch): predicting the a touch signal from its correspond-

ing vision input and reference images and (d) Learning to see by

touching (touch → vision): predicting vision from touch. The

predicted touch locations and ground truth locations (marked with

yellow arrows in (d)) share a similar feeling. Please check out our

website for code and more results.

between vision and touch with the goals of learning to see

by touching and learning to feel by seeing. Different from

other cross-modal prediction problems where sensory data

in different domains are roughly spatially aligned [13, 1], the
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scale gap between vision and touch signals is huge. While

our visual perception system processes the entire scene as

a whole, our fingers can only sense a tiny fraction of the

object at any given moment. To investigate the connections

between vision and touch, we introduce two cross-modal

prediction tasks: (1) synthesizing plausible temporal tactile

signals from vision inputs, and (2) predicting which object

and which object part is being touched directly from tactile

inputs. Figure 1c and d show a few representative results.

To accomplish these tasks, we build a robotic system to

automate the process of collecting large-scale visual-touch

pairs. As shown in Figure 1a, a robot arm is equipped with

a tactile sensor called GelSight [15]. We also set up a stan-

dalone web camera to record visual information of both

objects and arms. In total, we recorded 12, 000 touches on

195 objects from a wide range of categories. Each touch

action contains a video sequence of 250 frames, resulting in

3 million visual and tactile paired images. The usage of the

dataset is not limited to the above two applications.

Our model is built on conditional adversarial net-

works [11, 13]. The standard approach [13] yields less

satisfactory results in our tasks due to the following two

challenges. First, the scale gap between vision and touch

makes the previous methods [13, 39] less suitable as they

are tailored for spatially aligned image pairs. To address this

scale gap, we incorporate the scale and location information

of the touch into our model, which significantly improves the

results. Second, we encounter severe mode collapse during

GANs training when the model generates the same output

regardless of inputs. It is because the majority of our tactile

data only contain flat regions as often times, robots arms are

either in the air or touching textureless surface, To prevent

mode collapse, we adopt a data rebalancing strategy to help

the generator produce diverse modes.

We present both qualitative results and quantitative anal-

ysis to evaluate our model. The evaluations include human

perceptual studies regarding the photorealism of the results,

as well as objective measures such as the accuracy of touch

locations and the amount of deformation in the GelSight im-

ages. We also perform ablation studies regarding alternative

model choices and objective functions. Finally, we visualize

the learned representations of our model to help understand

what it has captured.

2. Related Work

Cross-modal learning and prediction People understand

our visual world through many different modalities. In-

spired by this, many researchers proposed to learn shared

embeddings from multiple domains such as words and im-

ages [9], audio and videos [32, 2, 36], and texts and visual

data [33, 34, 1]. Our work is mostly related to cross-modal

prediction, which aims to predict data in one domain from

another. Recent work has tackle different prediction tasks

such as using vision to predict sound [35] and generating

captions for images [20, 17, 41, 6], thanks to large-scale

paired cross-domain datasets, which are not currently avail-

able for vision and touch. We circumvent this difficulty by

automating the data collection process with robots.

Vision and touch To give intelligent robots the same tac-

tile sensing ability, different types of force, haptic, and tac-

tile sensors [22, 23, 5, 16] have been developed over the

decades. Among them, GelSight [14, 15, 43] is consid-

ered among the best high-resolution tactile sensors. Re-

cently, researchers have used GelSight and other types of

force and tactile sensors for many vision and robotic appli-

cations [45, 47, 44, 26, 27, 25]. Yuan et al. [46] studied

physical and material properties of fabrics by fusing visual,

depth, and tactile sensors. Calandra et al. [3] proposed a

visual-tactile model for predicting grasp outcomes. Different

from prior work that used vision and touch to improve indi-

vidual tasks, in this work we focus on several cross-modal

prediction tasks, investigating whether we can predict one

signal from the other.

Image-to-image translation Our model is built upon re-

cent work on image-to-image translation [13, 28, 50], which

aims to translate an input image from one domain to a photo-

realistic output in the target domain. The key to its success

relies on adversarial training [11, 30], where a discriminator

is trained to distinguish between the generated results and

real images from the target domain. This method enables

many applications such as synthesizing photos from user

sketches [13, 38], changing night to day [13, 51], and turn-

ing semantic layouts into natural scenes [13, 39]. Prior work

often assumes that input and output images are geometri-

cally aligned, which does not hold in our tasks due to the

dramatic scale difference between two modalities. Therefore,

we design objective functions and architectures to sidestep

this scale mismatch. In Section 5, we show that we can

obtain more visually appealing results compared to recent

methods [13].

3. VisGel Dataset

Here we describe our data collection procedure including

the tactile sensor we used, the way that robotic arms interact-

ing with objects, and a diverse object set that includes 195
different everyday items from a wide range of categories.

Data collection setup Figure 1a illustrates the setup in our

experiments. We use KUKA LBR iiwa industrial robotic

arms to automate the data collection process. The arm is

equipped with a GelSight sensor [43] to collect raw tactile

images. We set up a webcam on a tripod at the back of

the arm to capture videos of the scenes where the robotic

arm touching the objects. We use recorded timestamps to

synchronize visual and tactile images.
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(a) Training objects and known 
objects for testing

(b) Unseen test objects

Figure 2. Object set. Here we show the object set used in training

and test. The dataset includes a wide range of objects from food

items, tools, kitchen items, to fabrics and stationery.

GelSight sensor The GelSight sensor [14, 15, 43] is an

optical tactile sensor that measures the texture and geome-

try of a contact surface at very high spatial resolution [15].

The surface of the sensor is a soft elastomer painted with a

reflective membrane that deforms to the shape of the object

upon contact, and the sensing area is about 1.5cm × 1.5cm.

Underneath this elastomer is an ordinary camera that views

the deformed gel. The colored LEDs illuminate the gel from

different directions, resulting in a three-channel surface nor-

mal image (Figure 1b). GelSight also uses markers on the

membrane and recording the flow field of the marker move-

ment to sketched the deformation. The 2D image format of

the raw tactile data allows us to use standard convolutional

neural networks (CNN) [21] for processing and extracting

tactile information. Figure 1c and d show a few examples of

collected raw tactile data.

Objects dataset Figure 2 shows all the 195 objects used

in our study. To collect such a diverse set of objects, we start

from Yale-CMU-Berkeley (YCB) dataset [4], a standard

daily life object dataset widely used in robotic manipulation

research. We use 45 objects with a wide range of shapes,

textures, weight, sizes, and rigidity. We discard the rest of

the 25 small objects (e.g., plastic nut) as they are occluded

by the robot arm from the camera viewpoint. To further

increase the diversity of objects, we obtain additional 150
new consumer products that include the categories in the

YCB dataset (i.e., food items, tool items, shape items, task

items, and kitchen items) as well as new categories such as

fabrics and stationery. We use 165 objects during our training

and 30 seen and 30 novel objects during test. Each scene

contains 4 ∼ 10 randomly placed objects that sometimes

overlap with each other.

Generating touch proposals A random touch at an arbi-

trary location may be suboptimal due to two reasons. First,

the robotic arm can often touch nothing but the desk. Second,

the arm may touch in an undesirable direction or unexpect-

edly move the object so that the GelSight Sensor fails to

capture any tactile signal. To address the above issues and

generate better touch proposals, we first reconstruct 3D point

clouds of the scene with a real-time SLAM system called

ElasticFusion [40]. We then sample a random touch region

# touches # total vision-touch frames

Train 10,000 2,500,000

Test 2,000 500,000

Table 1. Statistics of our VisGel dataset. We use a video camera

and a tactile sensor to collect a large-scale synchronized videos of

a robot arm interacting with household objects.

whose surface normals are mostly perpendicular to the desk.

The touching direction is important as it allows robot arms

to firmly press the object without moving it.

Dataset Statistics We have collected synchronized tactile

images and RGB images for 195 objects. Table 1 shows the

basic statistics of the dataset for both training and test. To

our knowledge, this is the largest vision-touch dataset.

4. Cross-Modal Prediction
We propose a cross-modal prediction method for predict-

ing vision from touch and vice versa. First, we describe our

basic method based on conditional GANs [13] in Section 4.1.

We further improve the accuracy and the quality of our pre-

diction results with three modifications tailored for our tasks

in Section 4.2. We first incorporate the scale and location of

the touch into our model. Then, we use a data rebalancing

mechanism to increase the diversity of our results. Finally,

we further improve the temporal coherence and accuracy of

our results by extracting temporal information from nearby

input frames. In Section 4.3, we describe the details of our

training procedure as well as network designs.

4.1. Conditional GANs

Our approach is built on the pix2pix method [13], a re-

cently proposed general-purpose conditional GANs frame-

work for image-to-image translation. In the context of vision-

touch cross-modal prediction, the generator G takes either a

vision or tactile image x as an input and produce an output

image in the other domain with y = G(x). The discrimina-

tor D observes both the input image x and the output result

y: D(x, y) → [0, 1]. During training, the discriminator

D is trained to reveal the differences between synthesized

results and real images while the objective of the genera-

tor G is to produce photorealistic results that can fool the

discriminator D. We train the model with vision-touch im-

age pairs {(x,y)}. In the task of touch → vision, x is a

touch image and y is the corresponding visual image. The

same thing applies to the vision → touch direction, i.e.,

(x,y) = (visual image, touch image). Conditional GANs

can be optimized via the following min-max objective:

G∗ = argmin
G

max
D

LGAN(G,D) + λL1(G) (1)

where the adversarial loss LGAN(G,D) is derived as:

E(x,y)[logD(x,y)] + Ex[log(1−D(x, G(x))], (2)
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y
t

<latexit sha1_base64="yOSQEllXcDGTHyCRpabdo0m9Bi4=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4Amlsl00g6dPJi5EULob7hxoYhbf8adf+OkzUJbDwwczrmXe+b4iRQabfvbqqytb2xuVbdrO7t7+wf1w6OujlPFeIfFMlZ9n2ouRcQ7KFDyfqI4DX3Je/70tvB7T1xpEUcPmCXcC+k4EoFgFI3kuiHFiR/k2ewRh/WG3bTnIKvEKUkDSrSH9S93FLM05BEySbUeOHaCXk4VCib5rOammieUTemYDwyNaMi1l88zz8iZUUYkiJV5EZK5+nsjp6HWWeibySKjXvYK8T9vkGJw7eUiSlLkEVscClJJMCZFAWQkFGcoM0MoU8JkJWxCFWVoaqqZEpzlL6+S7kXTMfz+stG6Keuowgmcwjk4cAUtuIM2dIBBAs/wCm9War1Y79bHYrRilTvH8AfW5w+P8JID</latexit><latexit sha1_base64="yOSQEllXcDGTHyCRpabdo0m9Bi4=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4Amlsl00g6dPJi5EULob7hxoYhbf8adf+OkzUJbDwwczrmXe+b4iRQabfvbqqytb2xuVbdrO7t7+wf1w6OujlPFeIfFMlZ9n2ouRcQ7KFDyfqI4DX3Je/70tvB7T1xpEUcPmCXcC+k4EoFgFI3kuiHFiR/k2ewRh/WG3bTnIKvEKUkDSrSH9S93FLM05BEySbUeOHaCXk4VCib5rOammieUTemYDwyNaMi1l88zz8iZUUYkiJV5EZK5+nsjp6HWWeibySKjXvYK8T9vkGJw7eUiSlLkEVscClJJMCZFAWQkFGcoM0MoU8JkJWxCFWVoaqqZEpzlL6+S7kXTMfz+stG6Keuowgmcwjk4cAUtuIM2dIBBAs/wCm9War1Y79bHYrRilTvH8AfW5w+P8JID</latexit><latexit sha1_base64="yOSQEllXcDGTHyCRpabdo0m9Bi4=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4Amlsl00g6dPJi5EULob7hxoYhbf8adf+OkzUJbDwwczrmXe+b4iRQabfvbqqytb2xuVbdrO7t7+wf1w6OujlPFeIfFMlZ9n2ouRcQ7KFDyfqI4DX3Je/70tvB7T1xpEUcPmCXcC+k4EoFgFI3kuiHFiR/k2ewRh/WG3bTnIKvEKUkDSrSH9S93FLM05BEySbUeOHaCXk4VCib5rOammieUTemYDwyNaMi1l88zz8iZUUYkiJV5EZK5+nsjp6HWWeibySKjXvYK8T9vkGJw7eUiSlLkEVscClJJMCZFAWQkFGcoM0MoU8JkJWxCFWVoaqqZEpzlL6+S7kXTMfz+stG6Keuowgmcwjk4cAUtuIM2dIBBAs/wCm9War1Y79bHYrRilTvH8AfW5w+P8JID</latexit><latexit sha1_base64="yOSQEllXcDGTHyCRpabdo0m9Bi4=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4Amlsl00g6dPJi5EULob7hxoYhbf8adf+OkzUJbDwwczrmXe+b4iRQabfvbqqytb2xuVbdrO7t7+wf1w6OujlPFeIfFMlZ9n2ouRcQ7KFDyfqI4DX3Je/70tvB7T1xpEUcPmCXcC+k4EoFgFI3kuiHFiR/k2ewRh/WG3bTnIKvEKUkDSrSH9S93FLM05BEySbUeOHaCXk4VCib5rOammieUTemYDwyNaMi1l88zz8iZUUYkiJV5EZK5+nsjp6HWWeibySKjXvYK8T9vkGJw7eUiSlLkEVscClJJMCZFAWQkFGcoM0MoU8JkJWxCFWVoaqqZEpzlL6+S7kXTMfz+stG6Keuowgmcwjk4cAUtuIM2dIBBAs/wCm9War1Y79bHYrRilTvH8AfW5w+P8JID</latexit>
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Real touch

D True

Vision & Touch

reference

Vision sequence x̄
t
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Figure 3. Overview of our cross-modal prediction model. Here we show our vision → touch model. The generator G consists of two

ResNet encoders and one decoder. It takes both reference vision and touch images r as well as a sequence of frames x̄
t as input, and

predict the tactile signal ŷt as output. Both reference images and temporal information help improve the results. Our discriminator learns to

distinguish between the generated tactile signal ŷt and real tactile data yt. For touch → vision, we switch the input and output modality and

train the model under the same framework.

where the generator G strives to minimize the above objec-

tive against the discriminator’s effort to maximize it, and

we denote Ex , Ex∼pdata(x) and E(x,y) , E(x,y)∼pdata(x,y)

for brevity. In additional to the GAN loss, we also add a

direct regression L1 loss between the predicted results and

the ground truth images. This loss has been shown to help

stabilize GAN training in prior work [13]:

L1(G) = E(x,y)||y −G(x)||1 (3)

4.2. Improving Photorealism and Accuracy

We first experimented with the above conditional GANs

framework. Unfortunately, as shown in the Figure 4, the

synthesized results are far from satisfactory, often looking

unrealistic and suffering from severe visual artifacts. Besides,

the generated results do not align well with input signals.

To address the above issues, we make a few modifications

to the basic algorithm, which significantly improve the qual-

ity of the results as well as the match between input-output

pairs. We first feed tactile and visual reference images to

both the generator and the discriminator so that the model

only needs to learn to model cross-modal changes rather than

the entire signal. Second, we use a data-driven data rebalanc-

ing mechanism in our training so that the network is more

robust to mode collapse problem where the data is highly

imbalanced. Finally, we extract information from multiple

neighbor frames of input videos rather than the current frame

alone, producing temporal coherent outputs.

Using reference tactile and visual images As we have

mentioned before, the scale between a touch signal and a

visual image is huge as a GelSight sensor can only contact

a very tiny portion w.r.t. the visual image. This makes

the cross-modal prediction between vision and touch quite

challenging. Regarding touch to vision, we need to solve

an almost impossible ‘extrapolation’ problem from a tiny

patch to an entire image. From vision to touch, the model

has to first localize the location of the touch and then infer

the material and geometry of the touched region. Figure 4

shows a few results produced by conditional GANs model

described in Section 4.1, where no reference is used. The low

quality of the results is not surprising due to self-occlusion

and big scale discrepancy.

We sidestep this difficulty by providing our system both

the reference tactile and visual images as shown in Figure 1c

and d. A reference visual image captures the original scene

without any robot-object interaction. For vision to touch

direction, when the robot arm is operating, our model can

simply compare the current frame with its reference image

and easily identify the location and the scale of the touch.

For touch to vision direction, a reference visual image can

tell our model the original scene and our model only needs to

predict the location of the touch and hallucinate the robotic

arm, without rendering the entire scene from scratch. A

reference tactile image captures the tactile response when the

sensor touches nothing, which can help the system calibrate

the tactile input, as different GelSight sensors have different

lighting distribution and black dot patterns.

In particular, we feed both vision and tactile reference

images r = (xref,yref) to the generator G and the discrim-

inator D. As the reference image and the output often

share common low-level features, we introduce skip con-

nections [37, 12] between the encoder convolutional layers

and transposed-convolutional layers in our decoder.
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Input vision Ground truth touch Oursw/o reference

Input touch Ground truth vision Oursw/o reference

(b)

(a)

Figure 4. Using reference images. Qualitative results of our meth-

ods with / without using reference images. Our model trained with

reference images produces more visually appealing images.

Data rebalancing In our recorded data, around 60 percent-

age of times, the robot arm is in the air without touching any

object. This results in a huge data imbalance issue, where

more than half of our tactile data has only near-flat responses

without any texture or geometry. This highly imbalanced

dataset causes severe model collapse during GANs train-

ing [10]. To address it, we apply data rebalancing technique,

widely used in classification tasks [8, 48]. In particular,

during the training, we reweight the loss of each data pair

(xt, r,yt) based on its rarity score wt. In practice, we cal-

culate the rarity score based on a ad-hoc metric. We first

compute a residual image ‖xt − xref‖ between the current

tactile data xt and its reference tactile data xref. We then sim-

ply calculate the variance of Laplacian derivatives over the

difference image. For IO efficiency, instead of reweighting,

we sample the training data pair (xt, r,yt) with the proba-

bility w
t

∑
t
wt . We denote the resulting data distribution as pw.

Figure 5 shows a few qualitative results demonstrating the

improvement by using data rebalancing. Our evaluation in

Section 5 also shows the effectiveness of data rebalancing.

Incorporating temporal cues We find that our initial re-

sults look quite realistic, but the predicted output sequences

and input sequences are often out of sync (Figure 7). To ad-

dress this temporal mismatch issue, we use multiple nearby

frames of the input signal in addition to its current frame. In

practice, we sample 5 consecutive frames every 2 frames:

x̄t = {xt−4,xt−2,xt,xt+2,xt+4} at a particular moment t.

To reduce data redundancy, we only use grayscale images

and leave the reference image as RGB.

Our full model Figure 3 shows an overview of our final

cross-modal prediction model. The generator G takes both

input data x̄t = {xt−4,xt−2,xt,xt+2,xt+4} as well as ref-

erence vision and tactile images r = (xref,yref) and produce

a output image ŷt = G(x̄t, r) at moment t in the target

domain. We extend the minimax objective (Equation 1)

LGAN(G,D) + λL1(G), where LGAN(G,D) is as follows:

E(x̄t,r,yt)[logD(x̄t, r,yt)] +E(x̄t,r)[log(1−D(x̄t, r, ŷt)],
(4)

where G and D both takes both temporal data x̄t and refer-

ence images r as inputs. Similarly, the regression loss L1(G)
can be calculated as:

L1(G) = E(x̄t,r,yt)∼pw
||yt − ŷ

t||1 (5)

Figure 3 shows a sample input-output combination where

the network takes a sequence of visual images and the cor-

responding references as inputs, synthesizing a tactile pre-

diction as output. The same framework can be applied to the

touch → vision direction as well.

4.3. Implementation details

Network architectures We use an encoder-decoder archi-

tecture for our generator. For the encoder, we use two

ResNet18 models [12] for encoding input images x and

reference tactile and visual images r into 512 dimensional

latent vectors respectively. We concatenate two vectors from

both encoders into one 1024 dimensional vector and feed it

to the decoder that contains 5 standard strided-convolution

layers. As the output result looks close to one of the refer-

ence images, we add a few skip connections between the

convolutional layers from the reference branch in our en-

coder and strided-convolutional layers in the decoder. For

the discriminator, we use a standard ConvNets with multiple

convolutional layers. Please find more architectural details

in our supplementary material.

Training We train the models with the Adam solver [18]

with a learning rate of 0.0002. We set λ = 10 for L1 loss.

We use LSGANs loss [29] rather than standard GANs [11]

for more stable training, as shown in prior work [50, 39].

We apply standard data augmentation techniques [19] includ-

ing random cropping and slightly perturbing the brightness,

contrast, saturation, and hue of input images.

5. Experiments
We evaluate our method on cross-modal prediction tasks

between vision and touch using the VisGel dataset. We

report multiple metrics that evaluate different aspects of

the predictions. When predicting touch from vision, we

measure (1) perceptual realism using AMT: whether results

look realistic, (2) the moment of contact: whether our model

can predict if a GelSight sensor is in contact with the object,

and (3) markers’ deformation: whether our model can track

the deformation of the membrane. Regarding touch → vision

direction, we evaluate our model using (1) visual realism

via AMT and (2) the sense of touch: whether the predicted

touch position shares a similar feel with the ground truth

position. We also include the evaluations regarding full-

reference metrics in the supplement. Please find our code,

data, and more results on our website.
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Vision input Ground truthpix2pix pix2pix w/

temporal

Ours w/o

temporal

Ours w/o

rebalancing

Ours

(a)

(b)

Touch reference

Vision referenceTouch input pix2pix pix2pix w/

temporal

Ours w/o

temporal

Ours Supervised

prediction

(c)

(d)

Ground truth

Figure 5. Example cross-modal prediction results. (a) and (b) show two examples of vision → touch prediction by our model and

baselines. (c) and (d) show the touch → vision direction. In both cases, our results appear both realistic and visually similar to the ground

truth target images. In (c) and (d), our model, trained without ground truth position annotation, can accurately predict touch locations,

comparable to a fully supervised prediction method.

Seen objects Unseen objects

Method
% Turkers labeled

real

% Turkers labeled

real

pix2pix [13] 28.09 % 21.74%

pix2pix [13] w/ temporal 35.02% 27.70%

Ours w/o temporal 41.44% 31.60%

Ours w/o rebalancing 39.95% 34.86%

Ours 46.63% 38.22%

Table 2. Vision2Touch AMT “real vs fake” test. Our method

can synthesize more realistic tactile signals, compared to both

pix2pix [13] and our baselines, both for seen and novel objects.

We feed reference images to all the baselines, as they are

crucial for handling the scale discrepancy (Figure 4).

5.1. Vision → Touch

In this experiment, we compare our method with various

baselines. We first run the trained models to generate Gel-

Sight outputs frame by frame and then concatenate adjacent

frames together into a video. Each video contains exactly

one action with 64 consecutive frames.

An ideal model should produce a perceptually realistic

and temporal coherent output. Furthermore, when humans

observe this kind of physical interaction, we can roughly

infer the moment of contact and the force being applied to

the touch; hence, we would also like to assess our model’s

understanding of the interaction. In particular, we evaluate

whether our model can predict the moment of contact as well

as the deformation of the markers grid.

Perceptual realism (AMT) Human subjective ratings

have been shown to be a more meaningful metric for image

synthesis tasks [48, 13] compared to metrics such as RMS

or SSIM. We follow a similar study protocol as described

in Zhang et al. [48] and run a real vs. fake forced-choice

test on Amazon Mechanical Turk (AMT). In particular, we

present our participants with the ground truth tactile videos

and the predicted tactile results along with the vision inputs.

We ask which tactile video corresponds better to the input vi-

sion signal. As most people may not be familiar with tactile

data, we first educate the participants with 5 typical ground

truth vision-touch video pairs and detailed instruction. In

total, we collect 8, 000 judgments for 1, 250 results. Table 2

shows that our full method can outperform the pix2pix [13]

as well as the alternative design choices on both seen objects

(different touches) and unseen objects.

The moment of contact The deformation on the GelSight

marker field indicates whether and when a GelSight sensor

touches the surface. We evaluate our system by measuring

how well it can predict the moment of contact with respect

to the ground truth data from tactile sensors. We track the

GelSight markers and calculate the average L2 distance for

each marker. For each touch episode, we denote the largest

deformation distance as dmax and the smallest deformation as

dmin, we then set a cutoff threshold at r · (dmax−dmin)+dmin,

where r is set to 0.6 in our case. We mark the left most

and right most cutoff time point as tl and tr individually.
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(a)

(b)

Figure 6. Vision2Touch - quantitative results. Top: Errors on

detecting the moment of contact. Our method generally performs

the best. The use of temporal cues can significantly improve the

performance or our model. Bottom: Errors on the average markers’

deformation. Our method still works best.

Similarly, we compute the ground truth cutoff time as t
gt

l and

t
gt
r ; then the error of the moment of contact for this episode

is determined as econtact = |tl − t
gt

l |+ |tr − t
gt
r |.

As shown in Figure 6a, the methods without temporal

cues produce a large error due to temporal misalignment.

Meanwhile, our model works better on seen objects than un-

seen objects, which coincides with the empirical observation

that human beings can better predict the touch outcomes if

we have interacted with the object before.

We also show a few deformation curves over the time.

Figure 7a illustrates a case where all the methods perform

well in detecting the ground truth moment of contact. Fig-

ure 7b shows an example where the model without temporal

cues completely missed the contact event. Figure 7c shows

another common situation, where the moment of contact

predicted by the method without temporal cues shifts from

the ground truth. Figure 7 shows several ground truth and

the predicted frames. As expected, a single-frame method

fails to accurately predict the contact moment.

Tracking markers’ deformation The flow field of the

GelSight markers characterizes the deformation of the mem-

brane, which is useful for representing contact forces as

well as detecting slippery [7]. In this section, we assess

our model’s ability by comparing the predicted deforma-

tion with the ground truth deformation. We calculate the

average L2 distance between each corresponding markers in

the ground truth and the generated touch image. Figure 6b

shows that the single-frame model performs the worst, as

it misses important temporal cues, which makes it hard to
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Figure 7. Vision2Touch - detecting the moment of contact. We

show the markers’ deformation across time, determined by the

average shift of all black markers. Higher deformation implies

object contact with a larger force. Top: Three typical cases, where

(a) all methods can infer the moment of contact, (b) the method

without temporal cues failed to capture the moment of contact, and

(c) the method without temporal cues produces misaligned results.

Bottom: We show several vision and touch frames from case (c).

Our model with temporal cues can predict GelSight’s deformation

more accurately. The motion of the markers is magnified in red for

better visualization.

infer information like force and sliding.

Visualizing the learned representation We visualize the

learned representation using a recent network interpretation

method [49], which can highlight important image regions

for final decisions (Figure 8a and b). Many meaningful pat-

terns emerge, such as arms hovering in the air or touching

flat area and sharp edges. This result implies that our repre-

sentation learns shared information across two modalities.

Please see our supplemental material for more visualizations.

5.2. Touch → Vision

We can also go from touch to vision - by giving the model

a reference visual image and tactile signal, can the model

imagine where it is touching? It is impossible to locate the

GelSight if the sensor is not in contact with anything; hence,

we only include vision-touch pairs where the sensor touches

the objects. The model shall predict a reasonable touch

position based on the geometric cues from the touch images.

The Sense of Touch Different regions and objects can

stimulate similar senses of touch. For example, our finger
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(a)

(b)

(c)

(d)

Figure 8. Visualizing the learned representations using Zhou et

al. [49] (a) and (b) visualize two internal units of our vision →

touch model. They both highlight the position of the GelSight,

but focus on sharp edges and flat surfaces respectively. (c) and (d)

visualize internal units of our touch → vision model. They focus

on different geometric patterns.

may feel the same if we touch various regions on a flat

surface or along the same sharp edge. Therefore, given a

tactile input, it is unrealistic to ask a model to predict the

exact same touch location as the ground truth. As long as the

model can predict a touch position that feels the same as the

ground truth position, it is still a valid prediction. To quantify

this, we show the predicted visual image as well as the

ground truth visual image. Then we ask human participants

whether these two touch locations feel similar or not. We

report average accuracies over 400 images per method (200

known objects, 200 unknown objects), and Table 3 shows

the performance of different methods. Our full method can

produce much more plausible touch positions.

We also compare our method with a baseline trained with

external supervisions provided by humans. Specifically, we

hand-label the position of the GelSight on 1,000 images, and

train a Stacked Hourglass Networks [31] to predict possible

touch positions. Qualitative and quantitative comparisons

are shown in Figure 5 and Table 3. Our self-supervised

method is comparable to its fully-supervised counterpart.

Perceptual Realism (AMT) Since it is difficult for hu-

mans participants to imagine a robotic manipulation scene

given only a single tactile data, we only evaluate the quality

of results without showing the tactile input. In particular, we

show each image for 1 second, and AMT participants are

then given unlimited time to decide which one is fake. The

first 10 images of each HITs are used for practice and we

give AMT participants the correct answer. The participants

Seen objects Unseen objects

Method
% Turkers labeled

Feels Similar

% Turkers labeled

Feels Similar

S
el

f-

S
u

p
er

v
is

ed pix2pix [13] 44.52% 25.21%

pix2pix w/ temporal 53.27% 35.45%

Ours w/o temporal 81.31% 78.40%

Ours 89.20% 83.44%

Supervised prediction 90.37% 85.29%

Table 3. Touch2Vision “Feels Similar vs Feels Different” test.

Our self-supervised method significantly outperforms baselines.

The accuracy is comparable to fully supervised prediction method

trained with ground truth annotations.

Seen objects Unseen objects

Method
% Turkers labeled

real

% Turkers labeled

real

pix2pix [13] 25.80% 26.13%

pix2pix [13] w/ temporal 23.61% 19.67%

Ours w/o temporal 30.80% 20.74%

Ours 30.50% 24.22%

Table 4. Touch2Vision AMT “real vs fake” test. Although

pix2pix achieves the highest score for unseen objects, it always

produces identical images due to mode collapse. Figure 5 shows

a typical collapsed mode, where pix2pix always places the arm at

the top-right corner of the image. More qualitative results can be

found in our supplementary material.

are then asked to finish the next 40 trials.

In total, we collect 8, 000 judgments for 1, 000 results.

Table 4 shows the fooling rate of each method. We note that

results from pix2pix [13] suffer from severe mode collapse

and always produce identical images, although they look

realistic according to AMT participants. See our website

for a more detailed comparison. We also observe that the

temporal cues do not always help improve the quality of

results for touch → vision direction as we only consider

vision-touch pairs during the moment of touch.

Visualizing the learned representation The visualiza-

tion of the learned representations (Figure 8c and d) show

two units that focus on different geometric cues. Please see

our supplemental material for more examples.

6. Discussion
In this work, we have proposed to draw connections be-

tween vision and touch with conditional adversarial net-

works. Humans heavily rely on both sensory modalities

when interacting with the world. Our model can produce

promising cross-modal prediction results for both known

objects and unseen objects. In the future, vision-touch cross-

modal connection may help downstream vision and robotics

applications, such as object recognition and grasping in a

low-light environment, and physical scene understanding.
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