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Abstract Dual-span failures are the key factor of the
system unavailability in a mesh-restorable network with full
restorability of single-span failures. Availability analysis
based on reliability block diagrams is not suitable to describe
failures of mesh-restorable networks with widely distributed
and interdependent spare capacities. Therefore, a new con-
cept of restoration-aware connection availability is
proposed to facilitate the analysis. Specific models of span-
oriented schemes are built and analyzed. By using the pro-
posed computation method and presuming dual-span failures
to be the only failure mode, we can exactly calculate the
average connection unavailability with an arbitrary alloca-
tion rule for spare capacity and no knowledge of any restora-
tion details, or the unavailability of a specific connection with
known restoration details. Network performance with respect
to connection unavailability, traffic loss, spare capacity con-
sumption, and dual failure restorability is investigated in a
case study for an optical span-restorable long-haul network.

Keywords Connection unavailability · Dual failure
restorability · Span restoration · p-Cycles

1 Introduction

An optical network is commonly designed to be 100%
restorable for any single-span failure, represented by
R1 = 1. However, node failures and multiple failures are not

L. Zhou (B) · M. Held · U. Sennhauser
Swiss Federal Laboratories for Materials Testing and Research
(EMPA), CH-8600 Duebendorf, Switzerland
e-mail: ling.zhou@empa.ch

L. Zhou
e-mail: lingjully@hotmail.com

taken into account. Then a network may not be fully resto-
rable anymore. Considering rates of cable cuts, frequent span
maintenance or upgrade operations, and shared risk span
groups [1], in which two logically distinct spans are routed
through a common duct, span failures can occur much more
frequently compared with node failures in practice. Accor-
ding to the concept of “most likely paths to failure” [2], the
simplest combinations of elemental failures that lead to an
outage state in any system with redundancy will dominate
the overall unavailability. Evaluating and summing the pro-
babilities of those dominant classes of failure combinations
give a good approximation to the actual failure probability,
i.e., the system unavailability. Dual-span failures can then be
the next dominant failure mode in a network with R1 = 1.
The study of connection unavailabilities considering dual-
span failures has actually become a practical issue especially
for services in need of high availability.

Earlier studies of availability analysis focused on ring
topologies [3–5]. Simulation results of end-to-end unavaila-
bility of optical networks implemented with simple protec-
tion schemes were presented in [6], but its so-called hybrid
simulation and analytical approach was not explained. In
[7], a network traffic and availability model was proposed,
which is based on the geographic distribution and the number
of network components. Integer linear programming-based
approaches were provided [8] to find network designs accor-
ding to the different availability requirements of connec-
tion requests. Its connection availability was approximated
by neglecting the different connection demands. A method
to assess the end-to-end path availability in span-restorable
mesh networks was proposed [9] and results about dual fai-
lure restorability were given. But its discussion about path
availability was only conducted under the assumption that all
spans have the same physical unavailability for a path com-
posed of four hops and no case study of path availabilities of
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a real network was presented. Dual failure restorability has
been studied [10,11] and restoration from any second span
failure was maximized in networks with 100% restorabi-
lity to single-span failures. The first analytical consideration
of the availability of paths in a network protected by pre-
configured protection cycles was presented in [12] without
capacity details. Thus we find that viable methods and exact
results about connection availability were provided just for
unprotected or dedicatedly protected networks and that resto-
ration schemes with shared spare capacity were analyzed by
distinct methods from a general point of view of availability
consideration only.

We present a new concept for availability analysis, named
the restoration-aware connection availability (RACA). When
dual-span failures are assumed to be the only failure mode,
the RACA concept can be used to exactly analyze the present
survivability strategies with dedicated or shared spare capa-
city. Basic models combined with this concept are built for the
schemes of span restoration (SR) and pre-configured protec-
tion cycles (p-cycles). The redundancy of a mesh-restorable
network with shared spare capacity is allocated to physi-
cally distributed spans and paths. Therefore, it is difficult
and impractical to explicitly represent each item of a path in
such networks with reliability block diagrams (RBDs) [1,9].
Thus we use Monte Carlo simulations to compute the sys-
tem unavailability of a basic model and to verify its analytical
functions. On the other hand, the analytical computation to
find the network performance and check the availability of
each connection in a network is desirable and obviously sim-
pler than RBD.

The article is organized as follows. Basic concepts inclu-
ding availability, span-oriented restoration schemes, dual fai-
lure restorability, and network redundancy are reviewed first.
Then we propose the new availability calculation method for
a connection. Based on models of span-oriented schemes,
analytical functions are derived and verified by Monte Carlo
simulations. Unavailability-related concepts, like average
expected down time or traffic loss per year of all connec-
tions are introduced. A case study of the US network is then
presented. Finally the conclusions are given.

2 Basic concepts

2.1 Availability

Availability is the probability of a repairable system to be
in an operating state. Failures and down states occur, but
maintenance or repair actions always return the system to an
operating state [13]. The familiar equation for availability of
a system with a constant failure λ and a repair rate µ is

A = MTTF

MTTF + MTTR
= µ

µ + λ
, (1)

Fig. 1 Basic reliability block diagrams (a) Serial structure; (b) Parallel
structure

where A is the availability, MTTF = 1/λ the mean time to
failure and MTTR = 1/µ the mean time to repair [14].

The availability As of a system represented by a serial
RBD consisting of n independent elements, shown in Fig. 1a,
is expressed as the product of availabilities of the elements:

As =
n∏

i=1

Ai ≈ 1 −
n∑

i=1

Ui . (2)

The probabilistic complement of availability A is the unavai-
lability U,U ≡ 1 − A. Unavailability of a serial system Us

is then

Us ≈
n∑

i=1

Ui . (3)

This is a good approximation for Us � 1. Analogously,
unavailability of a parallel system Up is

Up =
n∏

i=1

Ui . (4)

This is an exact equation for a parallel system [1,15].
In most availability analyses of communication networks,

unavailability quantities or expressions are used based on
simplifying assumptions, transforming an exact availability
model with intractable complexities to a feasible unavailabi-
lity model with an acceptable numerical accuracy [1].

2.2 Span-oriented restorations

A span-oriented restoration reroutes failed traffic locally
through a set of distinct restoration paths or deploys the pre-
planned protection paths between the end nodes of a failed
span. In this article, we mainly discuss two span-oriented
schemes, i.e., span restoration and p-cycles.

Span restoration is a typical scheme in which restoration
paths can be found in real time or be preplanned. The resto-
ration path set may comprise all distinct paths bridging the
end nodes of a particular failed span instead of one repla-
cement path only for all failed traffic. The limitation of hop
limits or physical length limits may be applied to the distinct
restoration paths in the implementation. In this article, we
limit the physical lengths of the candidate restoration paths
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for each span and sort them in advance according to the rule
of shortest paths first.

p-Cycles belong to a special type of span-oriented resto-
ration [1]. p-Cycles including all the switching actions are
completely preplanned. They are not simply rings. As a kind
of span-oriented scheme, it can provide protection to working
paths with shortest path routing, unlike rings in which a wor-
king path has to be included. p-Cycles can restore two types
of span failures with different mechanisms. One is called
“on-cycle span failure,” which occurs on a span of a p-cycle
and can be protected by one protection path. The other is
a so-called “straddling span failure,” which does not occur
on a span of a p-cycle, but the failed span straddles on the
p-cycle, i.e., the end nodes of the failed span are two nonadja-
cent nodes of the p-cycle. The particular p-cycle may contri-
bute two protection paths to the restoration of the “straddling
span failure.” The concept of “straddling spans” makes an
important difference between p-cycles and rings. All can-
didate cycles are also sorted ascendingly by their physical
lengths.

2.3 Dual failure restorability

The “dual-span failure restorability” R2(i, j) of a pair of
failed spans i and j is defined [1] as the ratio of the restored
capacities to the total working capacities on spans i and j , if
both spans failed.

R2(i, j) ≡ 1 − N (i, j)

wi + w j
= 1 − Ni + N j

wi + w j
, (5)

where
N (i, j) is the total non-restorable capacities if a dual fai-

lure of spans i and j failed (span i failed first and span j
second);

wi and w j are the working capacities of spans i and j ,
respectively, and wi + w j is not zero;

Ni and N j are the individual non-restorable capacities of
spans i and j , respectively.

The average R2 of a network, reflecting the overall
demand-impact, can be stated as [1]:

R2 ≡

[
∑

(i, j)∈S2|i �= j
(wi + w j ) · R2(i, j)

]

[
∑

(i, j)∈S2|i �= j
(wi + w j )

]
,

(6)

where S is the set of spans of the network.
Generally a different order of occurrence of the failure

pair may lead to a different restorability for each span and
possibly for the dual failure scenario. R2(i, j) is assumed to
denote the restorability of a dual-span failure (i, j), where
span i is the first failed span and span j is the second failed
span.

For span restoration, we can compute R2(i, j) for the fai-
led span pair (i, j) in two steps. In any variant form of span
restoration, we have a determined set of backup paths for
each failed span when computing R2. In step 1 we restore
the traffic of the first failed span i by its intact backup paths,
which are not hit by the second failed span j , and seize the
necessary spare-capacity on the backup paths. If span j hits
some of the backup paths of span i , the traffic of span i is
no longer fully restored. Ni records the traffic loss. In step 2,
the same procedure of restoring span j with the remaining
spare-capacity of the network is applied. The corresponding
traffic loss is recorded in N j . If two span failures isolate a
degree-2 node, no restoration can be made and R2(i, j) = 0.
For this case we can avoid going through the above two steps.

p-Cycles, as a span-oriented scheme, have a similar R2

computational approach as that of span restoration. Howe-
ver, since it distinguishes between on-cycle and straddling
spans, more complex judgments are required. The scheme of
p-cycles applies a set of protection cycles for the whole net-
work according to an optimization calculation. We need some
criteria to find the cycles which are responsible to protect one
specific span, i.e., to determine the set of backup paths for
each span. We assume that traffic is restored in the order of
the cycle with the biggest spare capacity first. If two cycles
happen to have the same spare capacity, we use the shorter
cycle first. If the failed span is an on-cycle span, the judgment
is similar to the above span restoration. If the failed span is a
straddling span, we have to judge whether both backup paths
are required for its restoration. The shorter restoration path
is always selected first.

2.4 Network redundancy

Network redundancy indicates how efficient the design is in
its use of spare capacity. Standard network redundancy R is
defined as [1]:

R =

{∑
i∈S

(wi + si ) − ∑
i∈S

w∗
i

}

∑
i∈S

w∗
i ,

(7)

where
∑

w∗
i is the total working capacity needed to support

shortest-path routing of all demands; wi is the actual amount
of working capacity on span i ; si is the amount of spare
capacity on span i . The capacity can be counted by the units
of channels or by the product of channels and the lengths of
their spans. A span is defined as the physical entity to collect
all capacity channels in parallel between adjacent nodes [1].
In this article, we use the latter and compute the network
redundancy. Therefore,
∑

i∈S
wi =

∑

i∈S
nwi · di , (8)
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∑

i∈S
si =

∑

i∈S
nsi · di , (9)

where nwi is the number of working channels on span i , nsi
is the number of spare channels on span i , and di is the length
of span i . In this article,

∑
w∗
i and

∑
wi are identical for

both span-oriented schemes.

3 Restoration-aware connection availability

3.1 General concept of RACA

We developed a new concept, called restoration-aware
connection availability, or unavailability, to facilitate the
assessment of connection unavailability in various survivable
networks with dedicated or shared spare capacities.

A path in an unprotected network is a concatenation of
spans. According to Eq. 3, the path unavailability Upath is
[1,9]

Upath ≈
n∑

i=1

U phy
i , (10)

where U phy
i is the physical unavailability of span i of the

path.
A working path in a survivable network has a similar serial

structure. However, each failed span of the path can be res-
tored by a designated survivability scheme. Considering the
protection or restoration effect, we use U∗

i as the equivalent

unavailability of span i instead of U phy
i in Eq. 10. The una-

vailability of a connection in such a network is then [1,9]

Uconn ≈
n∑

i=1

U∗
i . (11)

In a mesh-restorable network designed with 100% single-
span failure restorability, dual-span failure combinations
dominate the system unavailability and spans fail indepen-
dently. If the working demand of a connection is lost com-
pletely due to two failed spans i and j with either failing
sequence (i, j) or ( j, i), the occurrence probability is the
product of physical unavailabilities of the two failed spans,
i.e., U phy

i · U phy
j [1]. Let ds,t represent the traffic demand

of connection s − t and NTi the unrestored working traffic
of span i of the working path due to a dual failure (NTi ∈
[0, ds,t ]). Note that here NTi is different from Ni in Eq. 5.
The latter Ni includes the unrestored traffic of all affected
connections due to a specific dual-span failure. If only a part
of the traffic on span i is lost, the dual failure of spans i and
j contributesU phy

i ·U phy
j ·NTi/ds,t to the equivalent unavai-

lability U∗
i of span i . The fraction of NTi/ds,t represents the

occurrence probability of the non-restorable traffic of span i .
Therefore we can express U∗

i as follows:

U∗
i = U phy

i ·
∑

j∈S| j �=i

(c j ·U phy
j · NTi/ds,t ), (12)

where c j = 0.5 or 1. The particular value of c j can be deter-
mined in each basic model of survivability schemes.

The computation of connection unavailability is based on
physical unavailabilities of spans, which can be calculated
according to U = 1 − A and Eq. 1. Thus the physical una-
vailability of span i is:

U phy
i = MTTR

MTTF+MTTR
= λS

λS + µS
≈ λS · MTTR, (13)

where λS and µS are the failure rate and the repair rate of the
span, respectively. The failure rate λS of a span is its length L
multiplied by the sum of the cable failure rate per kilometer
λcable and the optical amplifier failure rate per kilometer λOA

[16,17]:

λS = L · (λcable + COA · λOA), (14)

where COA is an optical amplifier spacing constant per
kilometer.

3.2 Methodology of simulation

Since the RBD method is not suitable for survivable networks
with shared spare capacity, we use a Monte Carlo simulation
to compute the unavailabilities and to find their analytical
functions. In a simulation, we could collect actual outage
data from random trials and compute the unavailability. In
this article, we apply simulations simply to a model of one
span-restorable connection consisting of a few spans. The
general methodology is as follows:

1. Generate a very long “time-line” of randomly occurring
failures for each span of a network (in this article, only for
spans of a connection). Simulate the interval of failures by
using a random number generator of a negative exponen-
tial distribution with a parameter λ, i.e., the failure rate
of a span. If |S| is the number of spans in a network, we
have to generate |S| time-lines from the same time point
t = 0.

2. The repair time is regarded as the outage time due to a
failure. If a failure occurs, the repair time is generated
through a random number generator of a negative expo-
nential distribution with a parameter µ= 1/MTTR, where
MTTR is the mean time to repair of a span.

3. Find dual failures in a simulated system. If there is an
overlapping time of two span failures, a dual-span failure
has occurred. As shown in Fig. 2, the failure f2 of span
j occurs during the repair time of the failure f1 of span
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Fig. 2 Dual-span failures in a simulation. A certain repair time follows
the occurrence of each failure. A dual failure appears if the repair times
of two independent failures overlap each other. The expression of (i, j)
indicates the sequence of failure occurrence of the two spans, i.e., span
i fails first and span j second

i . (i, j) is then a dual failure. T (i, j) represents the pos-
sible down time caused by the dual-span failure (i, j).
The expression of (i, j) indicates the failing sequence of
the two spans, i.e., span i fails first and span j second.

4. Record the traffic loss LT (i, j). We do not record the
outages caused by single-span failures to which full resto-
rability is designed in a survivable network. If the network
with built-in redundancy can restore the dual-span failure
completely, there will be no traffic loss and no down time
for the connection due to the dual failure; otherwise we
have to record its outage time.

5. Check whether the dual failures affect the traffic for a
connection. The unavailability of connection s − t with
demand ds,t can be computed with the following equation:

Us,t
conn =

∑
k Tk(i, j) · LTk(i, j)/ds,t

T
, (15)

where T is the total operating time, e.g., 20 years. k
denotes the kth dual failure during the period of T .
LTk(i, j) is the lost traffic due to dual-span failure (i, j)
and Tk(i, j) the down time due to (i, j). Note that Eq. 15
can also be used to calculate the equivalent unavailability
of part of connection s − t , such as for one or more spans
considering their restoration effect.

6. Compute an average unavailability by running the simu-
lation 1,000 times.

Triple-span or even higher-order span failures may appear
in addition to dual-span failures. But their contributions to
a connection unavailability is negligible compared with that
of dual failures [1].

3.3 RACA model for span-oriented schemes

In span-oriented schemes including span restoration and p-
cycles, a failed span i may affect the traffic of several connec-
tions traversing it and usually has multiple restoration paths
at its disposal. In the implementation of span restoration or

p-cycles, a selection among the possible restoration paths
has to take place to determine the backup paths of a specific
failed span of a connection, which has been illustrated in
Sect. 2.3

To determine the unavailability of a connection, we use the
approach of transferring a physical structure to an equivalent
RBD of a connection for better illustration. The upper portion
of Fig. 3 shows the typical physical structure of a connection
in a span-restorable network, which can be divided into three
basic parts, actually representing three elementary types. The
lower portion of Fig. 3 shows the equivalent RBD of each
part. Span wi represents a span of the working path and span
p j a span of the protection path.

“Part A” represents that the traffic of span w1 of connec-
tion s − t , i.e., ds,t , can be restored by a backup path over
spans p1 and p2 with sufficient spare capacity if w1 fails
first. We assume that span ak is of the working path of ano-
ther connection o − d and carries traffic do,d . The backup
path of ak also includes span p1 and/or p2. If span ak fails
first and w1 fails second in a dual failure scenario, capacity
contention may occur and the traffic of w1 may not be fully
restored.

If the traffic ds,t of span w1 can be fully restored with its
direct protection path built by spans p1 and p2, the physical
structure of “part A” is then a valid RBD and the equiva-
lent unavailability U∗

w1
of span w1 can be calculated directly.

If span ak is the first failure and its traffic do,d is restored
first, the traffic of span w1 may not be fully restored with the
remaining spare capacity of the span(s) p1 and/or p2 shared
with the restoration path of ak . Therefore, span ak does affect
the restoration of span w1. The unrestored traffic of span w1

is thus called NT (ak ,w1)
w1,ct . “ct” represents contention. (ak, w1)

indicates that span ak fails first. Thus we can draw an equi-
valent RBD by adding an equivalent block for span ak to the
backup path of span w1. The “gray” block of span ak , with
the unavailability of U eqv

ak = 0.5 · U phy
ak · NT (ak ,w1)

w1,ct /ds,t , is
different from the original block of span ak with the unavai-
lability U phy

ak . Since only one failing sequence (ak, w1) may
cause unrestored traffic of span w1, the factor of 0.5 has to
be added to reflect the probability. If there are more spans
playing the same role as ak to the connection s − t , we can
add all of them into the equivalent block diagram in the same
way. Generally, the equivalent unavailability of a working
span i with the feature of “part A” is:

U∗
i,part A = U phy

i ·
⎛

⎝
∑

j∈Ri

U phy
j +

∑

k

U eqv
ak

⎞

⎠

= U phy
i ·

⎡

⎣
∑

j∈Ri

U phy
j +

∑

k

(
0.5 ·U phy

ak · NT (ak ,i)
i,ct

ds,t

)⎤

⎦ ,

(16)
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Fig. 3 Basic models of the
equivalent RBD of
span-oriented schemes. The
upper portion shows the typical
physical structure of a
connection in a span-restorable
network, which has three basic
parts A, B, and C. The lower
portion shows the equivalent
RBD of each part

where Ri is the set of spans of the restoration paths of span i .
Figure 4 shows an example of how to transfer the physical

structure with the feature of “part A” to its equivalent RBD.
Span 1 is the working span of connection s − t while the
backup path consisting of spans 2 and 3 is responsible for
restoring the traffic ds,t of span 1. Span 4 is the working span
of connection o − d and its backup path also includes span
3. The physical characteristics of spans in Fig. 4 are listed
in Table 1. There are two situations of dual-span failures
which can cause traffic loss of span 1 in this model. The first
situation is that one failed span is span 1 and the other one
is of its backup paths, i.e., span 2 or 3. The second situation,
i.e., span 4 fails first and span 1 fails second, can cause spare-
capacity contention and lead to traffic loss. Span 4 is the so-
called “special span” in Fig. 4. In the simulation, we collect
the outage due to these two types of dual-span failures. If the
dual failure belongs to the first type, we need to include the
outage caused by both failing sequences of two spans; if it
is of the second type, we only collect the outage caused by
the sequence of (4, 1) with the ratio of the lost traffic NTct
to the demand ds,t . (4, 1) means that the special span, e.g.,
span 4 in the figure, fails first and the working span second.
Finally the equivalent unavailability of span 1 is computed
with Eq. 15.

Table 2 compares the equivalent unavailability results of
span 1 in Fig. 4 computed by the simulation and analytical
approaches, if the special span is span 4, 3, or 2, respecti-

Fig. 4 Transition from the physical structure of a “part A” example to
its equivalent RBD. (a) The physical structure of the “part A ” example
where span 3 is shared by the protection paths of connections s − t and
o − d. (b) The equivalent reliability block diagram

vely. The column “Lost traffic ratio” lists the corresponding
NTct/ds,t for the case of different special span. The analytical
results were computed according to Eq. 16. The simulation
results may vary in some range due to the finite simulation
time, but its average values of just a few trials are always close
to the analytical results in each case, which demonstrates the
validity of the analytical functions.

In “part B,” there are two restoration paths which are res-
ponsible for the restoration of span w2. Each restoration path
has a different traffic flow (ta �= tb and ta + tb = ds,t ). We
put the spans of the two restoration paths into one path in
the equivalent RBD of “part B” with modified probabilities,
ta/ds,t and tb/ds,t , respectively. If the dual failure of spans w2

and p5 occurs, the traffic of ta is lost and only tb on span w2

can be transmitted successfully. If the dual failure of spans
w2 and p3 or p4 occurs, the traffic of tb is lost and ta can
survive. Therefore the equivalent unavailability of span w2

Table 1 Assumed span physical unavailability with MTTR = 24 h

Span Span failure Span
ID rate λs (FITs) unavailability

1 1,72,900 4.13E-03
2 86,240 2.07E-03
3 1,75,140 4.19E-03
4 1,50,220 3.59E-03
5 4,40,440 1.05E-02

Table 2 Simulation and analytical unavailability results (Part A)

Special Lost traffic Simulation Analytical
span ID ratio NTct/ds,t result U∗

1 result U∗
1

4 0.5 2.93E-05 2.95E-05
3 0.25 2.54E-05 2.55E-05
2 0.7 3.49E-05 3.51E-05
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is

U∗
w2

= U phy
w2 ·

(
U phy

p3 · tb
ds,t

+U phy
p4 · tb

ds,t

+U phy
p5 · ta

ds,t

)
. (17)

Here tb/ds,t or ta/ds,t is in fact the ratio of the traffic loss
to the working demand. More generally, for a working span
i with multiple restoration paths as span w2 in “part B,” we
have

U∗
i,partB = U phy

i ·
∑

j∈Ri

(
0.5 ·U phy

j

NT (i, j)
i

ds,t

+0.5 ·U phy
j

NT ( j,i)
i

ds,t

)
, (18)

where Ri is the set of spans of the restoration paths of span
i . NT (i, j)

i and NT ( j,i)
i are the unrestored traffics due to

dual failures (i, j) and ( j, i), respectively. When NT (i, j)
i =

NT ( j,i)
i = NTi , Eq. 18 becomes:

U∗
i,partB = U phy

i ·
∑

j∈Ri

(
U phy

j · NTi
ds,t

)
. (19)

Figure 5 shows an example of the “part B” model of span-
oriented schemes. Figure 5a shows its physical structure in
which span 1 is the working span carrying the demand ds,t
and has two restoration paths. Spans 2 and 3 are of a res-
toration path of span 1 with flow ta and spans 4 and 5 of
the other restoration path with flow tb (ta + tb = ds,t ). The
physical characteristics of the spans in Fig. 5 are listed in
Table 1. Figure 5b shows the equivalent reliability block dia-
gram. In the simulation, we consider all the dual-span failures
including span 1. If the other failed span is span 2 or 3, the
dual failure outage has to be multiplied with ta/ds,t before
being added into the total downtime, because the dual failure
only causes ta/ds,t traffic loss. Similarly, the outage has to
be multiplied with tb/ds,t , if the other failed span is span 4
or 5.

Table 3 compares the system unavailability results com-
puted by the simulation and analytical approaches with three
groups of ta/ds,t and tb/ds,t ratios. We apply Eq. 19 in the
analytical computation of equivalent unavailability of span 1
in Fig. 5. Thus

U∗
1,partB = U phy

1 ·
[
(U phy

2 +U phy
3 )

ta
ds,t

+(U phy
4 +U phy

5 )
tb
ds,t

]
. (20)

The values in the table show that simulation and analytical
solutions for “part B” are in good agreement.

“Part C” represents a basic model which often appears
in a span-restorable network, i.e., two spans are both part

of a working path and also of the restoration path of each
other. This is a kind of RBD in which at least one element
appears more than once. This situation can be investigated
with the key item method introduced in [14]. Thus the system
availability of the “Part C” example in Fig. 3 is

ApartC = Aphy
w3 + Aphy

w4 − Aphy
w3 · Aphy

w4 , (21)

and its system unavailability

UpartC = U phy
w3 ·U phy

w4 . (22)

If we apply our RACA concept, we can get the same equation
as follows:

U∗
part C = U∗

w3
+U∗

w4

= 0.5U phy
w3 U phy

w4 + 0.5U phy
w4 U phy

w3 (23)

= U phy
w3 U phy

w4 .

In fact the equivalent unavailabilities of the working spans
w3 and w4 areU∗

w3
=0.5U phy

w3 U phy
w4 andU∗

w4
= 0.5U phy

w3 U phy
w4 ,

respectively. The factor 0.5 in the equation has a different
meaning from what we have met in the analysis of “part A”
model. In the previous equations, 0.5 is used to adjust the
probability U phy

i U phy
j of two failed spans i and j if only one

failure sequence can cause traffic loss. In Eq. 23 of “part
C,” we apply the factor 0.5 to avoid double counting of the
probability of U phy

w3 U phy
w4 in the system unavailability.

If we assume that the characteristics of spans w3 and w4

of “part C” are the same as those of spans 3 and 4 listed in
Table 1, i.e., U phy

w3 = 4.19E − 3 and U phy
w4 = 3.59E − 3,

we can use the software Relex [18], a tool providing relia-
bility and availability analysis, to compute the unavailability
of “part C” through its RBD directly, where U = 1 − A
and Eq. 21 are used. The unavailability calculated accor-
ding to its RBD is URBD

partC = 1.50366E − 5. The unavaila-
bility from the analytical equation with the RACA concept,
Eq. 23, is U analy

partC = 1.50366E − 5. Thus URBD
partC ≈ U analy

partC .
Even if we change the values of span physical unavailabili-
ties, the results directly from RBD and from the analytical
methods are in good agreement with each other. Therefore,
the RACA concept and the factor of 0.5 are used correctly in
the analytical function for “part C.”

In Fig. 6 a complicated model of “part C,” which cannot
be solved by Relex with RBD directly, is drawn. The span
characteristics are still the same as those in Fig. 5 and lis-
ted in Table 1. The working traffic of span 1, ds,t , can be
restored by one path consisting of spans 2 and 3. The wor-
king span 2 has two restoration paths. One path consists of
span 5 with ta flow and the other path includes spans 1 and
4 with tb flow. Thus the dual-span failure including spans
1 and 2 may cause the traffic of ds,t or tb to be lost. Since
ds,t > tb and spans 1, 2 are part of the same working path,
we find that the traffic loss due to dual failure (1,2) or (2,1)
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Fig. 5 Transition from the
physical structure to its
equivalent RBD for the “part B”
model of span-oriented
schemes. (a) Physical structure
where span 1 is the working
span. (b) Equivalent reliability
block diagram

Table 3 Simulation and analytical unavailability results (part B)

Trial Ratio Ratio Simulation Analytical
ta/ds,t tb/ds,t result U∗

1 result U∗
1

1 0.25 0.75 5.04E-05 5.00E-05
2 0.5 0.5 4.20E-05 4.20E-05
3 0.6 0.4 3.87E-05 3.87E-05

is always ds,t . Then we conclude that for the working spans
appearing twice in an equivalent RBD, the biggest traffic loss
determines their failure probabilities, though they may cause
different outages in the diverse parts of the RBD. The rule can
help us make simulations and derive the corresponding ana-
lytical functions correctly. In the simulation, we collect all
the outage caused by dual-span failures (2,1), (1,2), (1,3), and
(3,1). If a dual-span failure including spans 2 and 5 occurs,
the outage has to be multiplied with ta/ds,t . Similarly, the
outage caused by dual failures (2,4) or (4,2) has to be mul-
tiplied with tb/ds,t . According to the above description, the
equivalent unavailabilities of the working spans 1 and 2 can
be as follows:

U∗
1 = U phy

1

(
0.5U phy

2 +U phy
3

)
, (24)

U∗
2 = U phy

2

(
0.5U phy

1 +U phy
4

tb
ds,t

+U phy
5

ta
ds,t

)
, (25)

where factor 0.5 is used to avoid double counting of the pro-
babilityU phy

1 U phy
2 , because spans 1 and 2 appear twice in the

equivalent RBD.
The equivalent system unavailability shown in Fig. 6 is

U∗
partC = U∗

1 +U∗
2 . (26)

Table 4 compares the system unavailabilities shown in
Fig. 6, which were computed by the simulation and analytical

Fig. 6 An equivalent RBD of a complicated example for span-oriented
schemes (part C)

Table 4 Simulation and analytical unavailability results of span-
oriented schemes (part C)

Trial Ratio Ratio Simulation Analytical
ta/ds,t tb/ds,t result Us,t

conn result Us,t
conn

1 0.2 0.8 3.56E-05 3.61E-05
2 0.5 0.5 4.07E-05 4.03E-05
3 0.7 0.3 4.32E-05 4.32E-05

approaches with three ratio groups of ta/ds,t and tb/ds,t , res-
pectively. The simulation results are in good agreement with
the analytical results. Therefore, the analytical functions for
“part C” are valid.

We also checked the frequency of triple-span failures in
each simulation. Even if triple-span failures can bring traffic
loss, they only occur with a very low probability compared
with dual-span failures and can be neglected in the com-
putation. For example, when we ran the simulation 1,000
times for 20 years in a network composed of five spans, 99%
of them did not have any triple-span failures while 96% of
the simulations did have dual-span failures. The number of
triple-span failures in one simulation can never exceed three.

We sum up the described equations for the three basic
parts and obtain the total equivalent unavailability U∗

i . The
restoration-aware connection unavailability for span-oriented
schemes, USO

conn, is as follows:

USO
conn =

∑

i∈S|i∈W
U∗
i , (27)

where S is the set of all spans in a network and W is the span
set of the working path of a connection.

The case of an element appearing more than once in a RBD
is only discussed in “part C.” We have to note that the same
spans may appear in the restoration paths of two working
spans of a connection, especially for adjacent working spans.
We now discuss this situation to show that it does not affect
the computation of connection unavailability according to
the RACA concept.

In Figure 7, spans 2 and 3 are two adjacent working spans,
whose restoration paths both include span 1. The physical
characteristics of Fig. 7 are listed in Table 1. According to
our RACA concept, the equivalent unavailabilities of spans
2 and 3 are:

U∗
2 = U phy

2 ·
(
U phy

1 +U phy
4

)
, (28)
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Fig. 7 Span 1 appears in both the restoration paths of the working
spans 2 and 3

and

U∗
3 = U phy

3 ·
(
U phy

1 +U phy
5

)
, (29)

respectively. The system unavailabilityUsys of Fig. 7 is thus:

U∗
sys = U∗

2 +U∗
3 = 7.70E − 5. (30)

By the key item method introduced in [14], the system
availability is:

Asys = Aphy
1 ·

(
Aphy

2 + Aphy
4 − Aphy

2 Aphy
4

)
(Aphy

3 + Aphy
5

−Aphy
3 Aphy

5 ) +
(

1 − Aphy
1

)
Aphy

2 Aphy
3

= 0.9999232. (31)

Thus its unavailability is Usys =1−Asys =7.68E−05, which
can also be verified through the software Relex. The system
unavailability Usys is almost the same as the equivalent una-
vailabilityU∗

sys (see Eq. 30) calculated by the RACA concept,
considering the unavailability approximation of serial struc-
tures. If we make an even simpler RBD, the two unavailabi-
lity values calculated by different methods can be completely
the same. However, the RBD method is too complex to draw
reliability block diagrams and make their formulations to be
applied for all the connections of a network.

We have analyzed the basic models of span-oriented
schemes and derived their proper analytical functions, which
all have the form presented in Eq. 12. In a practical unavaila-
bility computation of a connection in a span-restorable net-
work, more complicated situations may appear, e.g., a com-
bination of part A and B (i.e., there is also a spare-capacity
contention on the basis of the “part B” model). We can always
apply the rules concluded from the basic models and make a
correct analysis of connection unavailability.

If EDCs,t represents the expected down time per year of
a connection between nodes s and t , then

EDCs,t = Us,t
conn ∗ 365 ∗ 24, s, t ∈ N . (32)

After we have EDCs,t for each connection, we can define
the average connection downtime of a network, i.e., ave-
rage expected downtime per year of all connections (AEDC)
(hour/year) [19].

AEDC = 1

|N |(|N | − 1)
·

∑

(s,t)∈N2|s �=t

EDCs,t , (33)

where |N | is the number of nodes of the network.
To calculate the connection traffic loss in a span-restorable

network, we introduce a concept of restoration-aware connec-
tion traffic loss (RCTL), to sum up the product of the traffic
loss due to a dual-span failure and its occurrence probability
for all dual failure cases. If RCTL∗

i is the equivalent traffic
loss of each working span of connection s − t . The loss of
traffic of connection s − t , RCTLs,t is then:

RCTLs,t =
∑

i∈S|i∈W
RCTL∗

i , s, t ∈ N , (34)

and the average value, i.e., average restoration-aware connec-
tion traffic loss (ARCTL), is

ARCTL = 1

|N |(|N | − 1)
·

∑

(s,t)∈N2|s �=t

RCTLs,t . (35)

3.4 The assumption of allocation priority

After the development of the basic connection availability
concept for networks with span-oriented survivability
schemes, we apply the concept to networks optimized for
single-span failures. One must be aware that the result of
optimization merely consists of the provisioning of enough
spare capacity for the case of single-span failures and the span
capacity allocation to restore all the traffic of a span. Howe-
ver, this contains no information about connection backup
routing, i.e., about the allocation of restoration paths of a fai-
led working span of a connection to restore its connection
demand, which will be necessary in a real implementation.
The situation gets even more complicated with the occur-
rence of the second failure if contention about spare capacity
can occur. Decisions on connection-related spare capacity
allocation are required as well. The exact information about
which channels are allocated to which restoration path and
which restoration paths of a span are responsible to restore
its connection-related working traffic is what we call the res-
toration details.

In practice, allocation rules can be based on criteria such
as traffic priority levels, the lengths of working paths of
connections, etc. In order to demonstrate the RACA concept
for span-oriented schemes, we have implemented allocation
rules to determine restoration details as follows: a fixed num-
ber is assigned to each connection, or connections are given
numbers according to the numbering of their end nodes. Then
a priority criterion is applied, e.g., the lowest number first.
This is of course a quite arbitrary rule but it is sufficient for the
evaluation of the RACA concept and can be easily expanded
to rules with a more practical background, for instance, when
priorities of connections or certain traffic demands can be
defined for the network. Therefore, we have to make assump-
tions on the unknown information by the following two steps.
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Step 1 is to define backup paths of spans of each connec-
tion by assuming a certain allocation rule. In our case study,
we define four rules with the following codes written in C:

• Ascending sequence:

for(n1 = 1; n1 < #nodes; n1 + +)

for(n2 = n1 + 1; n2 <= #nodes; n2 + +)

• Descending sequence:

for(n1 = #nodes − 1; n1 >= 1; n1 − −)

for(n2 = #nodes; n2 > n1; n2 − −)

• Mixed sequence 1:

for(n1 = #nodes; n1 >= 2; n1 − −)

for(n2 = n1 − 1; n2 >= 1; n2 − −)

• Mixed sequence 2:

for(n2 = 2; n2 <= #nodes; n2 + +)

for(n1 = 1; n1 < n2; n1 + +)

The demand matrix of a test network is symmetric, i.e.,
dn1,n2 = dn2,n1 , where n1, n2 are the end nodes of a connec-
tion. Therefore it is sufficient to check half of the demand
matrix only. If the node-ID n1 < n2, we check (n1, n2);
otherwise, we check (n2, n1) only. Table 5 shows an example
of each rule with various allocation sequences, if the total
number of nodes is four.

Now we can use an allocation rule to restore each fai-
led connection. Figure 8 illustrates the operation of step 1.

Table 5 Four assumed allocation rules

Sequence Ascending Descending Mixed 1 Mixed 2

Example (1,2) (3,4) (3,4) (1,2)
total (1,3) (2,4) (2,4) (1,3)
nodes = 4 (1,4) (2,3) (1,4) (2,3)
(n1, n2) (2,3) (1,4) (2,3) (1,4)

(2,4) (1,3) (1,3) (2,4)
(3,4) (1,2) (1,2) (3,4)

Fig. 8 Determination of restoration paths for each connection under an
ascending sequence. (a) A physical structure, where span a carries the
working demands (dn1,n2 and dn3,n4 ) of connections n1−n2 and n3−n4
only. (b) Restoration paths in the equivalent RBD of each connection
(0 < dn1,n2 − f p1 < f p2 where f pi is the flow on path pi )

Span a, which is protected by three backup paths p1, p2,
and p3, carries the working demands of connections n1 − n2

and n3 − n4 only. The optimized results of an integer linear
programming (ILP) formulation give this routing informa-
tion directly. However, the backup paths, responsible for the
restoration of each connection, can be determined only after
an allocation rule has been assumed. If we use the “ascen-
ding sequence,” connection n1 −n2 will have higher priority
than connection n3 − n4 and n1 − n2 can be provided as
much spare capacity as possible first. If we use the “descen-
ding sequence,” connection n3 −n4 will have higher priority.
In Fig. 8, the “ascending sequence” is used. Fig. 8b shows
that backup paths p1 and p2 are responsible to restore the
working demand dn1,n2 between nodes n1 and n2 under the
condition that 0 < dn1,n2 − f p1 < f p2 . The spans of path
p1 and its restoration flow, f p1 , is recorded as part of backup
paths in the equivalent RBD of connection n1−n2. The spans
of path p2 and its capacity contribution, (dn1,n2 − f p1), need
to be recorded for connection n1 − n2 as well. Thus backup
paths p2 and p3 with their corresponding remaining flows
are responsible for the restoration of connection n3 − n4. In
this way, we can record all the restoration paths with their
contribution of spare capacity for each working span of a
connection in a span-restorable network.

After allocating connection-related restoration paths for
each span, we go to step 2 to find the special spans which
affect the restoration of a connection due to spare-capacity
contention. Step 2 is conducted in the process that indi-
vidual dual failure restorabilities are computed. Dual-span
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Fig. 9 Impact of dual failure (a, b) on connections and its restora-
tion with an “ascending sequence.” LT1,2(a, b) = 0 ⇒ 0 → U1,2

conn,

LT2,3(a, b) = 1 ⇒ 0.5Uphy
a Uphy

a · 1/2 → U2,3
conn, LT2,4(a, b) = 1 ⇒

0.5Uphy
a Uphy

a · 1/1 → U2,4
conn

failure (a, b) may cause part of the working traffic on a span
(a or b) to be lost. The survivable spare capacity will be
allocated for the connection with higher priority first. The
dual failure (a, b) affects the unavailability of a connec-
tion with the probability of 0.5U phy

a U phy
b · LTs,t (a, b)/ds,t ,

where 0.5U phy
a U phy

b denotes the occurrence probability of
(a, b); LTs,t (a, b) is the lost traffic of connection s − t due
to dual failure (a, b); ds,t is the working demand of connec-
tion s − t . Figure 9 shows the impact of dual failure (a, b)
on three connections and the corresponding restoration when
the “ascending sequence” is applied. Connections 1–2, 2–3,
2–4 are affected due to the dual failure (a, b). The working
demands of the three connections are d1,2 = 1, d2,3 = 2
and d2,4 = 1, respectively. Two units of the traffic can be
restored and two units are lost. If the “ascending sequence”
is applied, spare capacity is allocated first to connection 1–2,
second to 2–3 , and last to 2–4. Because d1,2 = 1 < 2 units
of restored traffic, connection 1–2 can be restored comple-
tely (LT1,2(a, b) = 0) and the dual failure (a, b) does not
contribute to its connection unavailabilityU 1,2

conn. Connection
2–3 can only be restored half (LT2,3(a, b) = 1 < d2,3 = 2)
and 0.5U phy

a U phy
b · 1/2 is added to its connection unavaila-

bility U 2,3
conn. The traffic of connection 2–4 is lost completely

(LT2,4(a, b) = 1) due to dual failure (a, b) with the proba-
bility of 0.5U phy

a U phy
b .

Combining these two steps, we can draw a complete equi-
valent reliability block diagram for a connection of a span-
restorable network. Step 1 is aiming to find the direct backup
paths of a connection. Step 2 is to find the special spans which
affect the restoration of a connection due to spare-capacity
contention. We call the method including the two steps “fixed
backups” (FB), which reflects the realistically expected res-
toration.

4 Case study of connection unavailability

We made an experiment on the US network [20], consisting
of 19 nodes, 28 spans, and 171 bidirectional connections. The

Fig. 10 The topology of the US network

Table 6 Reference reliability data

Parameter Reference value

λcable 100 FIT/km
MTTRS = 1/µS 24 h
COA 0.02/km
λOA 2,000 FIT

network is investigated from the availability point of view, as
shown in Fig. 10, when protected with span restoration and
p-Cycles, respectively. Node failures are neglected because
the node equipment usually comprises a redundancy and its
repair time is very short. Analytical calculations are based
on reference data [21,22], as given in Table 6, which lists all
the parameters of Eq. 14. MTTRS applies to the complete
span, i.e., repair times of optical amplifiers and fiber opti-
cal cables are considered to be equal. The length of spans
and the demand matrix are from the data in [20]. A connec-
tion demand ds,t between nodes s and t ranges from 1 to 3
(10 Gb/s).

Table 7 shows the connection unavailability-related results
of span restoration and p-cycles. The working path of a
connection is the shortest path for the US network with span
restoration or p-cycles. In the computation of span resto-
ration, at most ten shortest backup paths of each working
span were exploited, resulting in R2 = 0.74. In the compu-
tation of p-cycles, 50 candidate protection cycles were used
in the optimization, leading to R2 = 0.75. The column “R”
represents the “standard network redundancy” as described
in Sect. 2.4. The column “Allocation rules” lists four allo-
cation rules “Ascending sequence,” “Descending sequence,”
“Mixed sequence 1” and “Mixed sequence 2,” respectively.
For both computations of span restoration and p-cycles, the
average results under four allocation rules are almost unchan-
ged. Therefore, we can conjecture that the average connec-
tion unavailability-related measures of a network will not
change when computed with any allocation rule and can
reflect the performance of a span-restorable network. Thus a
computation under one presumed allocation rule is enough.
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Table 7 Average connection
performance of the US network
with span restoration or p-cycles
under four presumed rules

Schemes Allocation R R2 Average AEDC ARCTL
rules Uconn (hour/year) (10 Gb/year)

Span Res. ascending 1.08 0.74 1.34E-04 1.18 8.09E+03
descending 1.31E-04 1.15 8.01E+03
mix1 1.31E-04 1.15 8.00E+03
mix2 1.36E-04 1.19 8.13E+03

pcycles ascending 1.26 0.75 1.60E-04 1.40 9.67E+03
descending 1.60E-04 1.40 9.61E+03
mix1 1.61E-04 1.41 9.71E+03
mix2 1.61E-04 1.41 9.82E+03

In Table 7, the corresponding values of Uconn, AEDC or
ARCTL of span restoration and p-cycles are of the same
order of magnitude when their dual failure restorabilities R2

are similar. But p-cycles are less capacity efficient with about
17% more network redundancy compared with that of span
restoration.

5 Conclusions

We developed an availability analysis concept, restoration-
aware connection availability (RACA), to analyze the unavai-
labilities of connections in span-restorable mesh networks.
According to this new concept, basic computation models
were built for span-oriented survivability schemes such as
span restoration and p-cycles. The core of our concept is
the transformation of the physical structure of a span and its
backup paths equipped with spare capacity to an equivalent
reliability block diagram by taking into account the positions
and sequence of dual failures. Therefore we obtain generic
computational functions for connection unavailability affec-
ted by all kinds of dual failure scenarios. The functions have
been verified by simulations.

With the developed concept combined with restoration
details, i.e., the definite and predefined allocation of related
spare capacity units to the particular backup paths of a span,
we are able to exactly compute connection unavailabilities
as the concatenation of equivalent span unavailabilities for
networks with shared spare capacity. Previously this could
only be conducted by a rough estimate of its availability per-
formance. Even if we do not know any restoration details of
an optical transport network, we can still use this concept to
find average connection availability by presuming an allo-
cation rule. We can use the average value to compare the
overall availability performance of networks with different
survivability schemes.

The case study shows that the investigated survivability
schemes span restoration and p-cycles with similar levels
of dual failure restorability R2 do not yield a similar availa-

bility performance. Average connection unavailability, the
dependent down time and traffic loss measures are about
18% lower for span restoration compared to p-cycles even
though span restoration consumes about 14% less spare capa-
city. This underlines the importance of exact and restoration-
aware availability assessment for optical transport networks
beyond just comparisons on dual failure restorability.

Acknowledgements This work was partly financed by the Swiss
Federal Office for Education and Science BBW (project C01.0087).

Appendix

N (i, j) — Total non-restorable capacity if a dual
failure of span i and j failed (span i
failed first and span j second);

Ni — Individual non-restorable capacity of
span i ;

U phy
i — Physical unavailability of span i ;

U∗
i — Equivalent unavailability of span i

considering restoration effects;
Uconn — Unavailability of a connection;
Us,t

conn — Unavailability of the connection
s − t ;

T (i, j) — Down time caused by the dual-span fai-
lure (i, j) in a simulation;

Tk(i, j) — Down time caused by the kth dual-span
failure (i, j) in a simulation;

LT(i, j) — Traffic loss caused by the dual-span fai-
lure (i, j) in a simulation;

LTk(i, j) — Traffic loss caused by the kth dual-span
failure (i, j) in a simulation;

LTs,t (a, b) — Lost traffic of connection s − t due to
dual failure (a, b) in a simulation;

EDCs,t — Expected down time per year for a
connection between nodes s and t
(hours/year);

AEDC — Average expected down time per year
of all connections (hours/year);
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RCTLs,t — Restoration-aware connection traffic
loss per year between nodes s and t
(Gb/year);

ARCTL — Average restoration-aware connec-
tion traffic loss (Gb/year).
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