
Connection-Based Proof Construction
in Linear Logic

C. Kreitz1 H. Mantel2 J. Otten3 S. Schmitt3

1
Department of Computer Science, Cornell University

Ithaca, NY 14853, USA
kreitz@cs.cornell.edu

2 Deutsches Forschungszentrum für Künstliche Intelligenz GmbH
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany

mantel@dfki.uni-sb.de
3 Fachgebiet Intellektik, Fachbereich Informatik, Technische Hochschule Darmstadt

Alexanderstr. 10, 64283 Darmstadt, Germany
{jeotten,steph}@intellektik.informatik.th-darmstadt.de

W. McCune, ed., 14th International Conference on Automated Deduction (CADE-14),
LNAI 1249, pp. 207–221, c©Springer Verlag, 1997.

Abstract. We present a matrix characterization of logical validity in
the multiplicative fragment of linear logic. On this basis we develop a
matrix-based proof search procedure for this fragment and a procedure
which translates the machine-found proofs back into the usual sequent
calculus for linear logic. Both procedures are straightforward extensions
of methods which originally were developed for a uniform treatment of
classical, intuitionistic and modal logics. They can be extended to further
fragments of linear logic once a matrix characterization has been found.

1 Introduction

Linear logic [12] is often viewed as the most adequate formalism for reasoning
about action and change in real world applications. Formulas can be considered
as resources which disappear after their use unless they are explicitly marked as
reusable. No frame axioms about the environment [18] need to be stated and one
only has to deal with axioms about those objects which are involved in the action.
Proof search in linear logic will therefore have many useful applications such as
resource sensitive logic programming [14], modeling concurrent computation by
petri nets [11], and planning [17].

Because of the expressivity of logic, however, reasoning in linear logic is
difficult to automate. Propositional linear logic is already undecidable. In order
to prove a linear logic formula syntactically one has to rely on either sequent
calculi or proof nets [12, 6], a kind of natural deduction system with multiple
conclusions. The former cover all of linear logic but are not useful for efficient
proof search because of the many redundancies contained in them. Attempts to
remove permutabilities from sequent proofs [1, 10] and to add proof strategies [26]
have provided some improvements but the main difficulties still remain. Proof
nets, on the other hand, are applicable only to a small fragment of the logic. In
order to handle the other parts one has to introduce the concept of boxes [12]
which again cause major problems for automated proof search. Although there
has been progress in removing some boxes [13] efficient proof search for full linear
logic appears to be beyond the scope of proof nets at this point of time.

In classical and many non-classical logics matrix characterizations of logi-
cal validity have successfully been used as foundation for efficient proof search
methods. They yield a very compact representation of the search space and thus
avoid many kinds of redundancies which usually occur in the sequent calcu-
lus and tableaux proof search methods. Originally developed as foundation of
Bibel’s connection method for classical logic [2, 4] they have later been extended
to non-classical logics by Wallen [27]. Wallen’s formulation serves as a basis of
a uniform proof method for a rich variety of logics [19, 21] and also allows to
transform matrix proofs into sequent-style proofs by a uniform procedure [23, 24].

By Wallen‘s conjecture [27] matrix methods can be developed for any logic
which has the same primary properties as classical logic. The linear connection
method [3] has demonstrated that matrix methods can be resource sensitive. A
desire for a matrix characterization of linear logic has already been expressed
in [9]. Because of a superficial similarity between matrix characterizations and
proof nets it is very likely that this can be achieved at least for those fragments
which can be handled by proof nets. On the other hand, as far as proof search
is concerned, matrix methods have proven to be a more general approach which
does not underly the limitations of proof nets and may therefore apply to a larger
fragment of linear logic. Therefore it is reasonable to develop matrix characteri-
zations for various fragments of linear logic and to extend both the uniform proof
method and the transformation procedure accordingly. The resulting combined
procedure will then be able to efficiently search for a matrix proof of a linear
logic formula and to present it in the more convenient sequent calculus.

In this paper we begin this work by investigating the multiplicative fragment
of linear logic (MLL). We shall develop a matrix characterization of logical va-
lidity in MLL whose formulation is close to Wallen’s characterization of validity
in modal logics [27] and prove it to be correct and complete (Section 2). On this
basis we shall extend our uniform proof method into one that generates matrix
proofs for MLL (Section 3) and our uniform transformation procedure into one
that converts the matrix proof back into a sequent proof (Section 4). Finally
we shall discuss other recent approaches to reasoning within fragments of lin-
ear logic, current and future work, and evidence which makes us confident that
extensions of our methods to larger parts of linear logic are possible.

2 A Matrix Characterization of Logical Validity in MLL
Linear Logic [12] is a resource sensitive logic. From a proof theoretical point
of view it can be seen as the outcome of removing the rules for contraction
and weakening from classical sequent calculus and re-introducing them in a con-
trolled manner. Linear negation ⊥ is involutive like classical negation. The two
different traditions for writing the sequent rule for classical conjunction result in
two different conjunctions ⊗ and & and, due to the involutive negation, in two
different disjunctions ...

..............

.............................. and ⊕. The constant true splits up into 1 and > for
the same reason and false splits up into ⊥ and 0. The unary connectives ? and
! allow a controlled application of weakening and contraction. Quantifiers ∀ and
∃ can be added like in classical logic.

208

Linear logic connectives can be divided into the multiplicative, additive, and
exponential fragment. While in the multiplicative fragment resources (i.e. formu-
las) are used exactly once, resource sharing is enforced in the additive fragment.
By means of the exponentials formulas are marked as being reusable. All frag-
ments can be combined freely and exist on their own right. However, the full
power of linear logic comes from combining all of them.

The multiplicative fragment MLL can be seen as the core of linear logic.
⊥, ⊗, ...

..............

.............................. , −◦ , 1, and ⊥ are the connectives of this fragment. Linear negation ⊥

expresses the difference between resources which are to be used up and resources
which are to be produced. Having a resource G⊥ means that a resource G must
be produced. Having a resource F1⊗F2 is having F1 as well as F2. A resource
F1−◦F2 allows the construction of F2 from F1. The meaning of a resource F1

...
..............
.............................. F2

is explained best by its equivalence to F1
⊥−◦F2 and to F2

⊥−◦F1. Having a
resource 1 has no impact while nothing can be constructed when ⊥ is used up.

Validity of a linear logic formula can be proved syntactically by using a
sequent calculus. For multi-sets Γ and ∆ of formulas Γ ` ∆ is called a sequent. It
can be understood as the specification of a transformation where ∆ is constructed
from Γ . All formulas in Γ are connected implicitly by ⊗ while all formulas in
∆ are connected implicitly by ...

..............

.............................. . There is a close relation between ` and linear
implication −◦ . Thus, sequents clearly lie in the multiplicative realm.

The sequent calculus LinM for the multiplicative fragment without constants
is depicted in Figure 1. In a rule the sequents above the line are called premises.
The one below is the conclusion. A principal formula is a formula which occurs
in the conclusion but not in any premise. Formulas which occur in a premise but
not in the conclusion are called active. All other formulas are the context.

identity negation

A ` A
axiom Γ ` ∆, G

Γ, G⊥ ` ∆
⊥l

Γ, F ` ∆

Γ ` ∆, F⊥
⊥r

multiplicative fragment

Γ, F1, F2 ` ∆

Γ, F1⊗F2 ` ∆
⊗l

Γ1 ` ∆1, G1 Γ2 ` ∆2, G2

Γ1, Γ2 ` ∆1, ∆2, G1⊗G2
⊗r

Γ1, F1 ` ∆1 Γ2, F2 ` ∆2

Γ1, Γ2, F1
...

..............

.............................. F2 ` ∆1, ∆2

...
..............
.............................. l

Γ ` ∆, G1, G2

Γ ` ∆, G1
...

..............

.............................. G2

...
..............
.............................. r

Γ1 ` ∆1, G1 Γ2, F1 ` ∆2

Γ1, Γ2, G1 −◦F1 ` ∆1, ∆2
−◦ l

Γ, F1 ` ∆, G1

Γ ` ∆, F1 −◦G1
−◦ r

Fig. 1. The sequent calculus LinM for MLL

In analytic proof search one starts out with the sequent to be proven and
reduces sequents by application of rules until the axiom-rule can be applied.
There are several choice points within this process. First, a principal formula in
the sequent must be chosen. Due to the restriction to the multiplicative fragment
this choice already implies the choice of the rule by which the formula shall be

209

reduced. Second, when applying ⊗r , ...
..............
.............................. l , or −◦ l the context of the sequent

must be partitioned onto the premises. This is called context splitting. Several
solutions have been proposed in order to optimize these choices.

Resource management systems have been proposed in [5] as efficient tech-
niques for splitting contexts. If subsequent applications of two rules have no
impact on each other their order is unimportant. In proof search it suffices just
to consider one possible order. This phenomenon is called permutability of rules
and has been investigated for linear logic in [1, 10, 26]. As solutions to fix an or-
der for such rules the focusing principle [1], normal proofs [10], and proof search
strategies [26] have been proposed. Though being improvements compared to
simple sequent calculus proof search all these proposals suffer from that they
are still connective oriented. During proof search the state of a proof under con-
struction needs to be stored at every choice point in order to make backtracking
in case of a later failure possible. This causes major notational redundancies.

Matrix proof methods avoid these redundancies which results in an improved
efficiency compared to sequent based proof search. They are built on notions of
polarities, position trees, prefixes, paths, connections, and substitutions.

Polarities, Types, Position–trees, and Prefixes. A signed formula 〈F, k〉
relates a formula F to a polarity k ∈ {0, 1}. The components of a signed formula
consist of an immediate sub-formula of F and a polarity as depicted in Table
1. The polarity indicates whether the number of explicit and implicit negations
during the above decomposition is even (polarity 0) or odd (polarity 1). In a
derivation of a signed formula 〈F, 0〉 a sub-formula 〈F ′, k′〉 occurs in the succe-
dent of sequents only for k′ = 0, and for k′ = 1 in the antecedent only. Signed
formulas are classified by (principal) types (α, β, o). In the case of negation we
decided to deviate from the usual tableaux scheme for reasons which will be-
come clear later on. Since each component of a signed formula 〈F, k〉 contains an
immediate sub-formula F ′ of F a relation Â such that F ′ Â F is induced. The
transitive closure of Â shall be an ordering À. As usual, the formula tree of F
is a graph with all sub-formulas of F as nodes and edges indicating Â.

α 〈G1
...

..............

.............................. G2, 0〉 〈F1⊗F2, 1〉 〈F1 −◦G1, 0〉
b1 〈G1, 0〉 〈F1, 1〉 〈F1, 1〉
b2 〈G2, 0〉 〈F2, 1〉 〈G1, 0〉

β 〈F1
...

..............

.............................. F2, 1〉 〈G1⊗G2, 0〉 〈G1 −◦F1, 1〉
b1 〈F1, 1〉 〈G1, 0〉 〈G1, 0〉
b2 〈F2, 1〉 〈G2, 0〉 〈F1, 1〉

o 〈G1
⊥, 1〉 〈F1

⊥, 0〉
b1 〈G1, 0〉 〈F1, 1〉

Table 1. Principal types and polarities of formulas

With respect to some signed formula 〈F, 0〉 occurrences of sub-formulas are
abbreviated uniquely by positions from a set Pos. We use type symbols as meta-
variables for positions abbreviating formulas of that type (e.g. α for a formula
of type α), b for arbitrary types, and a for atomic formulas. The corresponding
formula, its polarity, and its type can be retrieved from a position b by means
of lab(b), pol(b), and Ptype(b), respectively. sform (b) shall denote the signed

210

formula 〈lab(b), pol(b)〉. The relations Â and À are defined like for formulas.
succ(b) denotes the set of all positions b′ for which b′ Â b holds. A position tree
for a formula F is obtained from the formula tree of F by, first, marking all
nodes of the tree with positions thereby removing the old markings and, second,
applying the rewrite rules 1–5 in Figure 2 as long as possible. The dashed lines
may be replaced by an arbitrary number of positions of type o. These rewrite
rules insert special positions φ (variable) and ψ (constant) from sets ΦL and ΨL

(both sets disjoint with Pos) into the tree. The inserted positions separate layers
of α–type positions from layers of β–type positions and atomic positions from
all other ones. During the separation of layers we do not care about positions of
type o. Constant special positions mark the ports of β-layers. For instance, when
rule 1 is applied to positions α and β where α À β holds and only positions of
type o occur between these positions a constant special position ψ is inserted as
immediate predecessor of α. The motivation for the insertion of special positions
will become clearer after the definition of σL-complementarity. Note, however,
that special positions for MLL seperate layers of formulas instead of marking
formulas with specific connectives which is done for intuitionistic logic [27].

1

α

β

α

ψ

β

2

β

α

β

φ

α

3

a

α

a

φ

α

4

a

β

a

φ

ψ

β

5

a a

φ

Fig. 2. Construction of a position tree by insertion of special positions

For each position b we define the prefix of that position as the string pre(b)
of special positions from the root of the tree to b.

Example 1. A position tree T for the formula ((A...
..............
.............................. A⊥)⊗(B...

..............

.............................. A))...
..............
.............................. (A...

..............

.............................. B)⊥

and the prefix of every position in the tree is depicted below.

b pre(b)

α0, o9

φ1, β1 φ1

ψ2, α2, o4 φ1.ψ2

φ3, a3 φ1.ψ2.φ3

φ5, a5 φ1.ψ2.φ5

ψ6, α6 φ1.ψ6

φ7, a7 φ1.ψ6.φ7

φ8, a8 φ1.ψ6.φ8

φ10, β10 φ10

ψ11 φ10.ψ11

φ11, a11 φ10.ψ11.φ11

ψ12 φ10.ψ12

φ12, a12 φ10.ψ12.φ12

211

Paths, Connections, Substitutions, and Complementarity. We define
the paths (sets of positions) through a position tree T starting at the root b0 of T .
– {b0} is a path.
– If p∪{b} is a path where b is neither a leaf-position nor of type β then

p ∪ succ(b) is a path.
– If p∪{β} is a path and succ(β)={b1, b2} then p∪{b1} and p∪{b2} are paths.

A path which contains atomic positions only is called atomic path. A connection
c is a two-element set of positions {a1, a2} for which a1, a2 are leaf-positions,
and lab(a1) = lab(a2) as well as pol(a1) 6=pol(a2) holds. We say that a path p
contains a connection c if c ⊆ p holds.

A prefix substitution is an idempotent mapping σL : ΦL → (ΦL ∪ΨL)∗ which
deviates from the identity on ΦL only for a finite subset of ΦL. We extend σL to
ΦL∪ΨL by the identity mapping on ΨL and denote the homomorphic extension to
(ΦL∪ΨL)∗ by σL as well. σL is admissible if σL(pre(b))=s1.b holds for the image
s= s1.b.s2 of every prefix, i.e. substitutions shall be computed by unification.

We call a connection {a1, a2} σL-complementary iff the images of the pre-
fixes of a1 and a2 are identical under an admissible substitution σL (i.e. iff
σL(pre(a1)) = σL(pre(a2))). A set C of connections is said to span a position
tree T iff each path through T contains at least one connection from C. A span-
ning set C of connections is minimal for T iff removing any connection from
C yields a set which is not spanning for T . T is relevant for C iff each atomic
position of T is contained in at least one connection from C.

Definition 1 (Complementarity of a Formula Tree). A position tree T is
complementary iff there exists a set of connections C and a prefix substitution
σL such that all connections in C are σL-complementary, T is relevant for C,
and C is spanning and minimal for T .

The σL-complementarity of a connection ensures that the members of a con-
nection cannot be separated during context split and therefore occur in an initial
sequent. Thus, unification guarantees the existence of an order of rule applica-
tions together with a context splitting which form a sequent proof rather than
calculating one such order. Hereby avoiding redundancies due to permutabilities
of rules, irrelevant reductions and notational redundancies.

Example 2. Consider the position tree in Example 1. The atomic paths through
T are p1={a3, a5, a11}, p2={a3, a5, a12}, p3={a7, a8, a11}, and p4={a7, a8, a12}.
p1 contains the connection c1={a3, a5} and p3 contains c2={a8, a11}. The set
C = {c1, c2, {a7, a12}} spans T . The admissible prefix substitution

σL = {φ1\ε, φ3\ε, φ5\ε, φ7\ψ12, φ8\ψ11, φ10\ψ6, φ11\ε, φ12\ε}
makes all connections in C σL-complementary. T is complementary since C is
spanning and minimal and since T is relevant for C.

From a prefix substitution σL a binary relation <L ⊆ ΨL×ΦL is constructed.
If for some φ and some ψ there exist strings s1 and s2 such that σL(φ) = s1.ψ.s2

then ψ<Lφ holds. The reduction ordering ¢ = (¿ ∪<L)+ is the transitive
closure of this relation and the tree ordering.

212

Irreflexivity of a reduction ordering would become a separate requirement
only if – as in first order modal logics [27] – a combined substitution is used.
We expect that such a substitution would be required for linear logics when the
fragment will be extended. An equivalent theorem for the propositional modal
logics in [27] could be shown similarly.

Theorem 1. If a set of connections C is σL-complementary for a position tree
T then the reduction ordering ¢ induced by σL is irreflexive.
Proof. Assume that there exists a position b such that b¢b holds. If any such
position exists, there is one of type φ. Then for some index set {0, . . . , n − 1}
(n > 1) there are positions φi and ψi (i ∈ {0, . . . , n − 1}, φ = φ0) such that
φi ¿ ψi and ψi<Lφ(i+1) mod n holds. This implies that σL is not admissible for
the image of some prefix and for some ψi – a contradiction.

We state the correctness and completeness of our characterization and sketch
the proofs only due to limitations of space. The complete proofs can be found
in [15]. All proofs are based on a sequent calculus for linear logic and do not use
any criterions from proof nets. Thus, they can serve as a basis for extensions to
other fragments of linear logic.

Lemma 1 (Correctness). If the position tree T corresponding to a formula F
is complementary then F is valid.
Proof (sketch). Since T is complementary there is a set of connections C and
a prefix substitution σL such that all complementarity conditions (relevance,
spanning, minimality, and σL-complementarity) are satisfied. Using a reduction
ordering induced by σL a sequent proof can be constructed in an analytic fashion.
Connections become the elements of initial sequents in the sequent proof. This
construction uses the sequent calculus KMLL introduced in [15]. The correctness
of the construction procedure is proven by induction on the weight of sequences.
For the complete proof of the lemma we refer to [15].

Lemma 2 (Completeness). If F is a valid formula then the corresponding
position tree T is complementary.
Proof (sketch). Since F is valid a sequent proof P for · ` F exists. We construct
a connection from every application of the axiom-rule in P. A partial ordering
<P is constructed from P such that if a special position b is reduced before a
position b′ then b <P b′ holds. We substitute φ by an ordered string of constant
special positions such that for every position ψ in the string the label of ψ is
reduced before φ but after every special position b ¿ φ. The lengthy proof in [15]
that T is complementary for C and σL uses induction on the structure of P.

The following theorem is the foundation for matrix proof methods (based on
our characterization) which prove the validity of linear logic formulas.

Theorem 2. A formula F in the multiplicative fragment of linear logic is valid
iff the corresponding position tree T is complementary.
Proof. Follows directly from Lemma 1 and 2.

213

Example 3. The position tree T of the formula ((A...
..............
.............................. A⊥)⊗(B...

..............

.............................. A))...
..............
.............................. (A...

..............

.............................. B)⊥

from Example 1 with the spanning set of connections C from Example 2 is
depicted below. Connections are drawn as curved lines. The reduction ordering
¢ induced by the substitution σL from Example 2 is depicted by arrows where
straight arrows are induced by ¿ and curved arrows by <L. Since the position
tree is complementary the formula is valid according to Theorem 2.

α0

φ1 o9

β1 φ10

ψ2 ψ6 β10

α2 α6 ψ11 ψ12

φ3 o4 φ7 φ8 φ11 φ12

a3 φ5 a7 a8 a11 a12

a5

During automated proof search a useful reduction of the search space can be
achieved by focusing on linearity. A set of connections C is linear iff each atomic
position of T is contained in at most one connection from C.

Lemma 3. If a position tree T is complementary for a set of connections C
and an admissible substitution σL, then C is linear.
Proof (sketch). σL-complementarity guarantees that proper context splitting is
possible. Minimality ensures that no unnecessary connections exist.

3 The Proof Procedure for MLL
According to the above matrix characterization the validity of a formula F can
be proven by showing that all paths through the matrix representation of F , i.e.
through the position tree, contain a complementary connection. In this section
we will describe a general path checking algorithm as well as the corresponding
complementarity test which involves an algorithm for T-string unification.
Path Checking. One possibility to perform proof search is to use an algorithm
based on analytic tableaux as done in [22] for intuitionistic logic. The path
checking algorithm presented in the following is driven by connections instead of
the logical connectives. Once a complementary connection has been identified all
paths containing this connection are deleted. This is similar to Bibel’s connection
method for classical logic and formulas in clausal form [4].

The theoretical basis of the following algorithm is described in detail in [21]
where it is used for proof search in classical, intuitionistic and modal logics. Only
a few modifications were necessary to adapt it to MLL.
Definition 2 (α-related, β-related). Two positions u and v are α-/β-related,
denoted u∼αv/u∼βv, iff u6=v and the greatest common ancestor of u and v,
wrt. the tree ordering ¿, is of principal type α/β. A position u and a set of
positions S are α-/β-related, denoted u∼αS/u∼βS, iff u∼αv/u∼βv for all v εS.

Remark 1. If two atoms are α-/β-related they appear side by side/one upon the
other in the matrix representation (see Example 4).

214

The main function ProofMLL(F) in Figure 3 returns true iff the formula F
is valid in the multiplicative linear logic MLL.

Function ProofMLL(F)
Input: multiplicative formula F
Output: true, if, and only if, F is valid in MLL

begin ProofMLL;
Con := ∅;
valid := SubproofMLL(F, ∅, ∅);
return valid;

end ProofMLL.

Fig. 3. Function ProofMLL(F)

The function ProofMLL(F) initializes the set of connections Con. After that
the function SubproofMLL is invoked.

The function SubproofMLL(F,P, C) in Figure 4 implements the path check-
ing algorithm where the set P is called the active path and the set C is called the
proven subgoals. By A we denote the set of all atomic positions in the formula
F . All variables except for A and Con are local.

Function SubproofMLL(F,P, C)
Input: formula F , active path P⊆A, proven subgoals C⊆A
Output: true, if (P, C) wrt. F is provable (see [21]); false, otherwise

begin SubproofMLL;
if there is no A εA where A∼αP and A∼βC then return true;

E := ∅; Con′ := Con;
repeat

select A εA where A∼α(P∪E) and A∼βC;
if there is no such A then return false;
E := E ∪ {A}; D := ∅; valid := false; noconnect := false;
repeat

select Ā εA where Ā 6εD and Ā∼α(P∪{A}) and

ComplementaryMLL(F, Con′∪{{A, Ā}}) and Line(F, Con′∪{{A, Ā}});
if there is no such Ā

then noconnect := true
else D := D ∪ {Ā}; Con := Con′ ∪ {{A, Ā}};

valid := SubproofMLL(F,P∪{A}, {Ā});
if valid=true then valid := SubproofMLL(F,P, C∪{A});
if valid=true and P=∅ then valid := Mini Rele(F, Con);

until valid=true or noconnect=true;
until valid=true;
return true;

end SubproofMLL.

Fig. 4. Function SubproofMLL(F,P, C)
During the proof search the active path P will specify those paths which are

just being investigated for complementarity. All paths which contain the active
path P and additionally one element of the proven subgoals C will already have
been proven complementary. The only modifications wrt. [21] are an additional
set Con which contains the connections computed so far and the two additional
functions Line(F, Con) and Mini Rele(F, Con). Line returns true iff Con is linear
wrt. F . Mini Rele returns true iff Con is minimal and relevant wrt. F and is
invoked only after a spanning set Con has been found.1

1 In this case linearity and relevance of Con implies minimality, if the following condi-
tion holds: |Con| = #β +1 where #β is the number of β-type positions in the formula
tree of F . This cardinality criterion optimizes proof search in MLL but may not
generalize to larger fragments of linear logic (see [15] for details).

215

T-String Unification. In our path checking algorithm we have to ensure that
after adding a connection to the current set Con there still is a (multiplicative)
substitution σL under which all connections are complementary. Therefore the
function ComplementaryMLL(F, Con) is used, which returns true iff there is a
substitution σL that unifies the prefixes of the connected atoms Con, i.e. iff the
set of prefix-equations {pre(u) = pre(v) | {u, v} ε Con} is solvable.

To unify the set of prefixes Γ = {p1=q1, . . . , pn=qn} we use a specialized
string unification which respects the restrictions on every two prefixes p and q: no
character is repeated either in p nor in q and equal characters only occur within a
common substring at the beginning of p and q. This restriction allows us to give
an efficient algorithm computing a minimal set of most general unifiers. Similar
to the ideas of Martelli and Montanari [16] rather than by giving a recursive
procedure we consider the process of unification as a sequence of transformations.

We start with the given set of (prefix-) equations Γ = {p1=q1, . . . , pn=qn}
and an empty substitution σL=∅. Each transformation step replaces the tuple
Γ, σL by a modified tuple σL

′(Γ ′), σL
′(σL) in which one equation {pi=qi} in Γ

is replaced by {p′i=q′i} and the (modified) substitution σL
′ is applied to it. The

algorithm is described by transformation rules “ {pi=qi}, σL → {p′i=q′i}, σL
′ ”

which can be applied nondeterministically to the selected equation {pi=qi} ε Γ .2

The set Γ is solvable, iff there are some transformation steps transforming Γ
into the empty set Γ ′=∅. In this case the (final) substitution σL

′ represents an
idempotent most general unifier for Γ . For technical reasons we divide the right
part qi of each equation into two parts q1

i |q2
i where the left part contains the

substring which is not yet assigned to a variable. Therefore we start with the set
of prefixes Γ = {p1 = ε|q1, . . . , pn=ε|qn}.
Definition 3 (Transformation Rules for MLL).
Let V be a set of variables, C a set of constants, and V ′ a set of auxiliary variables
with V ∩ V ′=∅. The set of transformation rules for MLL is defined in Table 2.

R1. {ε = ε|ε}, σL → {}, σL

R3. {Xs = ε|Xt}, σL → {s = ε|t}, σL

R5. {V s = z|ε}, σL → {s = ε|ε}, {V \z}∪σL

R8. {V s+ = ε|V1t}, σL → {V1t = V |s+}, σL

R9. {V s+ = z+|V1t}, σL → {V1t = V ′|s+}, {V \z+V ′}∪σL

R10. {V s = z|Xt}, σL → {V s = zX|t}, σL (V 6=X, and s=ε or t6=ε or X ε C)

s, t and z denote (arbitrary) strings and s+, z+ non-empty strings. X, V , and V1 denote single

characters with X εV ∪C ∪V′ and V, V1 εV ∪V′ (with V 6=V1). V ′ εV′ is a new variable which does

not occur in the substitution σL computed so far.

Table 2. Transformation Rules for Multiplicative Linear Logic (MLL)

These rules are identical with the rules used in [21] and [20] which deal
with intuitionistic logic. Since the prefixes to be unified in MLL have either
the form C1V1C2V2 . . . CnVn or V1C2V2 . . . CnVn (where Ci ε C and Vi εV for
1≤i≤n, n≥1), we do not need the rules R2, R4, R6, and R7 anymore.
2 To obtain an efficient unification procedure the order of the selected equations
{pi=qi} is essential, i.e. must be selected according to the tree ordering ¿.

216

For a comprehensive treatment of the algorithm for T-string unification to-
gether with an intuitive graphical motivation we refer to [20].

Example 4. Let F ≡ ((A...
............
.................................. A⊥) ⊗ (B...

............
.................................. A))...

............
.................................. (A...

............
.................................. B)⊥ as in Example 1. The

proof of F below is marked in the matrix representation3 of F . Furthermore the
set of connections Con as well as the (multiplicative) substitution σL is given. This
substitution represents the most general unifier for the prefixes of the connected
atoms. The substitution σL from Example 2 is a special instance which results
from replacing φ1, φ5, φ11, φ12, and φ20 by the empty word ε.

A0

B0

A1

Ã0

Ã1

B1

Con := {{A0, A1}, {B0, B1}, {Ã1, Ã0}}
σL := {φ3\φ5, φ8\φ20ψ11φ11, φ7\φ20ψ12φ12,

φ10\φ1ψ6φ20} where φ20 is a new variable.

4 Transforming MLL Matrix Proofs into Sequent Proofs

In [24, 25] we have developed a conversion procedure for transforming matrix
proofs into conventional sequent proofs for classical and non-classical logics.
When constructing this procedure our main emphasis was the uniformity of
the approach according to the matrix characterizations for these logics [27]. To
emphasize uniformity we have developed unified representations of matrix char-
acterizations and sequent calculi which were divided into variant and invariant
parts. The division resulted in an invariant transformation algorithm which con-
sults a variant table system reflecting different properties of the logics.

We were able to adapt our uniform transformation procedure to MLL by
extending its variant part while leaving its general structure unchanged. In order
to convert MLL-matrix proofs into sequent proofs the procedure has to obtain a
linearization of the partial reduction ordering ¢. Essentially this can be done by
traversing ¢ but certain non-permutabilities of sequent rules which are not yet
represented in ¢ have to be respected as well. Similar to [24], we have achieved
a “completion” of ¢ by dynamically adding wait-labels to certain nodes which
prevent the corresponding sequent rules from being applied too early. This con-
cept fills the gap between the target calculus LinM (Figure 1) of our conversion
and a sequent calculus KMLL [15] on which the matrix characterization is based.

Proof Reconstruction in MLL. Our algorithm takes as input a reduction
ordering ∝? which for technical reasons is generated from ¢ by adding a new
root w. While traversing ∝? it will mark all the visited positions x as solved
(solved [x] = >). At the beginning, w is considered solved and its successor x
is open for being solved next. Then the following process proceeds: an open
position x will be selected and marked as solved if it is solvable. Afterwards
the corresponding sequent rule will be constructed and the successor nodes of x
will be added to the set of open positions. This means that the corresponding
sub-formulas are now isolated in the actual sequent and may be reduced. This
process is repeated until two solved positions form a connection which allows us
to close the corresponding branch of the sequent proof with an axiom rule.
3 We use labels instead of positions and distinguish the two atoms A0/A1 by a tilde.

217

In addition to the above traversal process there are a few subtle details that
need to be taken care of. Before we explain these let us illustrate the reconstruc-
tion process by our running example.

Example 5. We take the formula ((A...
..............
.............................. A⊥)⊗(A...

..............

.............................. B))...
..............
.............................. (A...

..............

.............................. B)⊥ and the re-
duction ordering ¢ from Example 3. We start traversal by selecting the only open
position α0 in ∝? and mark it as solved . From Ptype (α0) = α and sform (α0) =
〈lab(α0), pol(α0)〉, with pol(α0)=0, we construct a sequent rule of type α reduc-
ing the operator ...

..............

.............................. of lab(α0) in the succedent, i.e. α(sform (α0)) = ...
..............
.............................. r. For

computing the sub-formulas in the rule’s premises we consult Table 1.
After this step φ1 and o9, the successors of α0, become open in ∝?. φ1 is not

yet solvable since the principle of layer reductions has to be respected, which
means that a series of open α- (or β-) and o-positions has to be reduced as
long as possible. To express this additional non-permutability of LinM–rules we
dynamically assign a wait-label to φ1 (a wait2-label, to be precise). Hence, we
will visit o9 next, construct ⊥r, and mark the successor φ10 of o9 as open.

φ10 is not yet solvable since the unsolved node ψ6, a successor of φ1, has
a higher priority wrt. <L. To express (ψ6, φ10) ∈ <L, a wait1-label has been
statically assigned to φ10 before the traversal process. Upon reaching this wait1-
label the algorithm will compute the ¿-greatest open predecessor of ψ6, that is
φ1. This node can now be marked as solved since wait2[φ1] not longer holds. No
rule will be constructed since φ1 is a special position which does not encode a
sequent rule in LinM .

In the next step we reach the β-position β1 and construct the rule ⊗r which
will cause the sequent proof to branch into two independent sub-proofs. In MLL
the remaining resources (i.e. sequent formulas) will now have to be distributed
over the new sub-branches. This additional process, called context splitting ,
yields ∅ for the left sub-branch and 〈A...

..............

.............................. B, 1〉 for right one. In the algorithm,
context splitting is realized by an operation split (∝?, β1) which will divide the
reduction ordering ∝? into two sub-orderings [∝?

1′ ,∝?
2′]. In our example ∝?

1′ has
one open position ψ2 whereas ∝?

2′ contains two open position ψ6 and φ10.
Proof reconstruction will now continue separately on each sub-ordering. For

∝?
2′ we continue by solving ψ6 and deleting the wait1-label which blocks φ10

(called update). But now wait2[φ10] must be set dynamically since α6 is open
(layer reduction). Solving α6 yields the rule ...

..............

.............................. r which prepares correct context
splitting at the next β-position β10. The reconstruction process will now continue
as before and eventually yield the following LinM–proof.

A ` A
axiom (a3, a5)

` A
...
...................................... A⊥

...
...................................... r, ⊥r (α2, o4)

A ` A
axiom (a11, a8)

B ` B
axiom (a12, a7)

A
...
...................................... B ` B, A

...
...................................... l (β10)

A
...
...................................... B ` B

...
...................................... A

...
...................................... r (α6)

A
...
...................................... B ` (A

...
...................................... A⊥)⊗(B

...
...................................... A)

⊗r (β1)

` ((A
...
...................................... A⊥)⊗(B

...
...................................... A))

...
...................................... (A

...
...................................... B)⊥

...
...................................... r, ⊥r (α0, o9)

Adapting the Conversion Algorithm to MLL. From the above example
we develop the concepts for the conversion procedure. We omit formal details
(see [24, 25]) in order to emphasize properties which are specific to MLL.

218

function TOTAL(∝?,MLL) : S-list =
for all x∈positions (∝?) do solved [x] := ⊥;
solved [root (∝?)] := >;
return TOT(∝?,MLL)

function TOT(∝?,MLL) : S-list =
proven∝? := ⊥; S∝? := []; compute Po;
for all x∈ positions (∝?) do compute wait1[x];
while not proven∝? do
x := select fair Po;
S∝? := append (S∝? , SOLVE (x,∝?,MLL))

return S∝?

function SOLVE (x,∝?,MLL) : S-list =

(1)

if wait1[x] then
select (y, x)∈ <L; (k, r) := free(y,∝?);
return SOLVE (succr(k),∝?,MLL)

else if wait2[x] then
y := select fair {z∈Po | x 6=z};
return SOLVE (y,∝?,MLL)

else
solved [x] := >;
Po := (Po \ {x}) ∪ succ (x);
if Ptype (x) = ψ then update (x,∝?);
case Ptype (x) of
{φ, ψ} : return []
{atom} : select {x, y}∈C

if solved [y] then
proven∝? := >;
return [axiom (sform (x), sform (y))]

else
(k, r) = free(y,∝?);
return SOLVE (succr(k),∝?,MLL)

{o, α} : return [Ptype (x) (sform (x))]
{β} :

(2)

[∝?
1′ ,∝?

2′] = split (∝?, x);

p0 = [β (sform (x), (∝?
1′ ,∝?

2′))];
p1 = TOT (∝?

1′ ,MLL);

p2 = TOT (∝?
2′ ,MLL);

proven∝? := >;
return append (p0, append (p1, p2))

function update (x,∝?) =
for all {y | (x, y)∈ <L} do
<L := <L \ {(x, y)}; wait1[y] := ⊥

Definitions:

open (x) ⇔ solved [pred (x)]
∧¬solved [x]

Po = {x∈positions (∝?
) |open (x)}

wait1[x] ⇔ ∃y.(y, x)∈ <L

wait2[x] ⇔ Ptype (x)∈ {ψ, φ}
∧∃y ∈Po.Ptype (y) 6∈ {ψ, φ}

succ
+
j (x) := {succj(x)}∪succ

+
(succj(x))

free(x,∝?) computes an ancestor/rank
pair (k, r) with the ¿-greatest

ancestor k such that x∈ succ+
r (k)

and open (succ+
r (k))

select fair denotes a fair selection
strategy of open positions to
guarantee termination wrt. the
different wait-labels.

Fig. 5. The uniform transformation procedure adapted to MLL.

The set of immediate successors/predecessors of a position x wrt. ¿ is
denoted by succ (x)/pred (x). succ+(x)/pred+(x) denotes all successors/prede-
cessors of x. If succ (x)={x1, x2} we assume a unique selection function succj(x)
= xj , j ∈{1, 2}. The definitions on the right hand side of Figure 5 summarize
the necessary concepts which we introduced informally in Example 5.

For context splitting at a β-position x we have adopted the operation
split (∝?, x) from [25]. It first divides ∝? into two subrelations ∝?

1,∝?
2 where

each ∝?
i contains the successor tree of x having root xi ∈ succ (x). The connec-

tions Ci and the relation <Li are divided accordingly. Second, it applies two
non-normal form reductions to each ∝?

i for correct context splitting, resulting in
∝?

i′ . ForMLL we can simplify these reductions to the followingMLL-reduction:
Iteratively delete all subtrees with root y from ∝?

i if y ∈Po and there exists some
b ∈ succ+(y) with b 6∈ c for all c ∈Ci. Using Lemma 1 and wait2-labels we obtain.

Lemma 4. split (∝?, x) is correct & complete for context splitting in LinM .

219

The resulting algorithm TOTAL adapted to MLL is depicted in Figure 5.
The boxed area (1) focuses on integrating rule non-permutabilities into the con-
version process. Box (2) summarizes the splitting process and recursive calls at
β-positions. The procedure terminates with proven∝? and results a list of se-
quent rules S∝? forming the sequent proof in LinM . No search is needed for
conversion, i.e. the LinM proof can be reconstructed in polynomial time in the
size of the MLL matrix proof.

Theorem 3 (Completeness/Correctness). The procedure TOTAL for con-
verting MLL matrix proofs into LinM sequent proofs is correct & complete.
Proof (sketch). Correctness follows from the correct construction of sequent rules
at each position and correct context splitting (Lemma 4). For completeness the
non-permutabilities of rule applications are captured by wait1- and wait2-labels
where the latter fill the gap between LinM and KMLL (Lemma 1), i.e.layer
reductions. Finally, wait2-labels do not cause deadlocks during traversal since by
definition there always exists an open non-special position. TOTAL terminates
because the set of unsolved positions is decreased by each step.

5 Conclusion

We have presented a matrix characterization of logical validity in the multiplica-
tive fragment of linear logic MLL. On this basis we have extended our uniform
proof search method [21] into a matrix-based proof procedure for MLL and our
uniform transformation method [24] into a procedure for translating the resulting
matrix proofs back into a sequent proof. Both methods could be adapted without
modifications of the algorithmic structure. ‘Only’ the entries of logic-dependent
tables which are consulted by the algorithms had to be elaborated.

Preliminary attempts for obtaining matrix characterizations in fragments of
linear logic have been made on the basis of acyclic connection graphs [7, 8]. This
acyclicity condition is very close to proof nets and these attempts will therefore
very like have similar limitations. In contrast to that our approach is based
on prefixes and unifies the advantages of several approaches to proof search in
linear logic without sharing their problems. Like Andreoli’s focusing principle [1]
and normal proofs [10] it avoids the permutabilities of sequent rules. Context
splitting can be performed as efficiently as in resource management systems [5].
There is, however, no need for transformations in negational normal form or for
following the connectives during proof search (an advantage also over Tammet’s
proof search strategies [26]). Prefix-Unification appears to be as efficient as the
acyclicity test implicitly contained in [7] but yields informations which make the
conversion into sequent proofs more efficient. Checking the cardinality criterion
instead of an exponential minimality test is another improvement.

The most striking feature ouf our approach, however, is its generality and
uniformity. It is emphasized by the fact that both the proof search procedure
and the algorithm for conversion into sequent proofs, which originally had been
developed for dealing with classical, intuitionistic, and modal logics, could so
easily be adapted to MLL, which semantically is entirely different. This makes

220

us very confident that our method can be extended to further fragments of linear
logic once a matrix characterization has been found. The similarities between
sequent calculi for linear logics and those for the logics already characterized
gives us additional evidence that extensions of our approach to larger fragments
of linear logic will be possible. We believe that Wallen’s conjecture (see intro-
duction) will eventually turn out to be true for linear logic. Currently we are
developing a matrix characterization for MELL, the combination of MLL and
exponentials and will investigate other fragments afterwards.

In the logics investigated so far the matrix characterization was always
strongly related to the Kripke semantics of the logic. It may therefore become
possible to follow this relation in the opposite direction and to construct a Kripke
semantics for linear logic out of the matrix characterizations. We shall explore
this possibility once a larger fragment of linear logic has been characterized.

References
1. J.-M. Andreoli. Logic programming with focussing proofs in linear logic. Journal of Logic

and Computation, 2(3):297–347, 1993.
2. W. Bibel. On matrices with connections. Journal of the ACM, 28:633–645, 1981.
3. W. Bibel. A deductive solution for plan generation. New Generation Computing, 4:115–132,

1986.
4. W. Bibel. Automated theorem proving. Vieweg, 1987.
5. I. Cervesato, J.S. Hodas, F. Pfenning Efficient resource management for linear logic proof

search. Extensions of Logic Programming, LNAI 1050, pp. 67–81, 1996.
6. V. Danos, L. Regnier The structure of the multiplicatives. Archive for Mathematical Logic,

28:181–203, 1989.
7. B. Fronhöfer The action-as-implication paradigm, CS Press, 1996.
8. D. Galmiche Connection methods in linear logic fragments and proof nets construction. CADE–

13 workshop on proof search in type-theoretic languages, 1996.
9. D. Galmiche, G. Perrier. A procedure for automatic proof nets construction. LPAR’92, LNAI

624, pp. 42–53, Springer Verlag, 1992.
10. D. Galmiche, G. Perrier. On proof normalization in linear logic. TCS, 135:67–110, 1994.
11. V. Gehlot, C. Gunter. Normal process representatives. In Proc. 5-th Annual IEEE Sympo-

sium on Logic in Computer Science, pp. 200–207, 1991.
12. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
13. J.-Y. Girard. Proof-nets: the parallel syntax for proof-theory. In Logic and Algebra, LNPAM

150, pp. 97–124, 1996.
14. J.S. Hodas, D. Miller. Logic programming in a fragment of linear logic. Journal of Information

and Computation, 110(2):327–365, 1994.
15. H. Mantel. Eine Matrixcharakterisierung für ein Fragment der linearen Logik. Diplomarbeit,

TH-Darmstadt, Germany, 1996.
16. A. Martelli, U. Montanari.An efficient unification algorithm.ACM TOPLAS, 4:258–282, 1982.
17. M. Masseron, C. Tollu, J. Vauzielles Generating plans in linar logic. In Foundations of

Software Technology and Theoretical Computer Science, LNCS 472, pp. 63–75, Springer, 1990.
18. J. McCarthy, P.H. Hayes Some philosophical problems from the standpoint of Artificial In-

telligence Machine Intelligence,4:463–502, 1969.

19. J. Otten, C. Kreitz. A connection based proof method for intuitionistic logic. 4th TABLEAUX
Workshop, LNAI 918, pp. 122–137, Springer Verlag, 1995.

20. J. Otten, C. Kreitz. T-string-unification: unifying prefixes in non-classical proof methods. 5th

TABLEAUX Workshop, LNAI 1071, pp. 244–260, Springer Verlag, 1996.
21. J. Otten, C. Kreitz. A uniform proof procedure for classical and non-classical logics. KI-96:

Advances in Artificial Intelligence, LNAI 1137, pp. 307–319, Springer Verlag, 1996.
22. J. Otten. ileanTAP: An intuitionistic theorem prover. International Conference TABLEAUX-

97, LNAI, Springer Verlag, 1997.
23. S. Schmitt, C. Kreitz. On transforming intuitionistic matrix proofs into standard-sequent

proofs. 4th TABLEAUX Workshop, LNAI 918, pp. 106–121, Springer Verlag, 1995.
24. S. Schmitt, C. Kreitz. Converting non-classical matrix proofs into sequent-style systems.

CADE–13, LNAI 1104, pp. 418–432, Springer Verlag, 1996.
25. S. Schmitt, C. Kreitz. A uniform procedure for converting non-classical matrix proofs into

sequent-style systems. Journal of Information and Computation, submitted.
26. T. Tammet. Proof strategies in linear logic.Jour. of Automated Reasoning, 12:273–304, 1994.
27. L. Wallen. Automated deduction in non-classical logics. MIT Press, 1990.

221

