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We present here useful relations showing the connection between the asymptotic normalization coefficient

~ANC! and the fitting parameters in K- and R-matrix theory methods which are often used when analyzing low

energy experimental data. It is shown that the ANC of a subthreshold bound state defines the normalization of

both direct radiative capture leading to this state and resonance capture in which the state behaves like a

subthreshold resonance. A determination of the appropriate ANC~s! thus offers an alternative method for

finding the strength of these types of capture reactions, both of which are important in nuclear astrophysics.
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PACS number~s!: 24.30.2v, 25.40.Lw, 26.30.1k

I. INTRODUCTION

Nuclear excited states below the particle emission thresh-
old typically undergo g decay to lower lying states. These
decays result in the initial states having their own natural
width. In the case when g emission is the only open decay
channel, the natural width Gg is typically ;eV . If a particle
bound excited state lies very close to the particle threshold,
the natural width can result in the tail of the wave function
extending above the particle threshold. As a result of this
tail, the subthreshold bound state can behave like a reso-
nance state in a capture reaction. Such states are often re-
ferred to as subthreshold resonance states @1# and they can
play an important role in determining reaction rates of inter-
est in nuclear astrophysics.

Consider the capture of particle b by particle a at very low
relative kinetic energy E and assume that there is a sub-
threshold bound state c1 in the system c5(ab). There are
three possible mechanisms by which the capture can occur
@1#: ~i! direct radiative capture to the ground state c, ~ii!
radiative capture to the ground state through the subthreshold
resonance, and ~iii! direct radiative capture into the sub-
threshold bound state with g emission.

Process ~ii! corresponds to nonradiative capture of par-
ticle b into the subthreshold resonance c1. The excited state
then undergoes g decay to the ground state c. The energy of
the emitted photon is

Eg5E1«c , ~1!

where «c is the binding energy of the ground state c5(ab).
Note that only one gamma is emitted in the process and it
occurs after capture into the c1 state. Process ~iii! results
initially in a photon with energy

Eg5E1«c1 . ~2!

The subthreshold bound state c1 is then deexcited to the
ground state c by emitting a photon with energy «c2«c1.
Note that in mechanisms ~ii! and ~iii! the capture occurs into

the same state, but in ~ii! this state reveals itself as a reso-

nance, while in ~iii! it acts as a real bound state. All three of

these capture processes occur in nature and are important in

determining reaction rates for nuclear astrophysics.

In previous papers @2–5# we have pointed out that the
overall normalization of the cross section for a direct radia-
tive capture reaction at low binding energy is entirely defined
by the asymptotic normalization coefficient ~ANC! of the
final bound state wave function into the two-body channel
corresponding to the colliding particles. Below we show how
to extend this to capture into subthreshold resonance states.
Typically the approaches used to analyze low energy experi-
mental data in order to derive astrophysical factors are the K-
and R-matrix methods. We will present equations relating the
ANC to the residue of the pole corresponding to the sub-
threshold bound state in the K-matrix method and the re-
duced width amplitude in the R-matrix method. In the case of
a Breit-Wigner-type resonance ~above threshold!, the ANC is
related to the resonance width. The equations given here
have direct experimental implications and can be used in the
analysis of experimental data. When analyzing data using the
K- or R-matrix methods, the parameters corresponding to the
subthreshold bound states can be fixed by measuring ANC’s
independently from transfer reactions @4,5#. Also by measur-
ing ANC’s one can simultaneously determine astrophysical
factors both for direct radiative capture to the subthreshold
bound state and for capture to the subthreshold resonance.
The equations presented below are correct for scattering am-
plitudes in K- and R-matrix theory at negative energies, and
so they can be used to find the ANC by extrapolating elastic
scattering data ~phase shifts! to the pole corresponding to the
subthreshold bound state @6#.

In what follows we use the system of units in which \
5c51.

II. ASYMPTOTIC NORMALIZATION COEFFICIENT

We present first some useful equations for the ANC. Let
us consider a virtual decay of nucleus c into two nuclei a and
b. First we introduce the overlap function I of the bound state
wave functions of particles c, a, and b:
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where for each nucleus w is the bound state wave function, z
are a set of internal coordinates including spin-isospin vari-
ables, and J and M are the spin and spin projection. Also r is
the relative coordinate of the centers of mass of nuclei a and

b, r̂5r/r , jc , m jc
are the total angular momentum of particle

b and its projection in the nucleus c5(ab), lc , m lc
are the

orbital angular momentum of the relative motion of particles
a and b in the bound state c5(ab) and its projection,

^ j1m1 j2m2u j3m3& is a Clebsch-Gordan coefficient, Y lc mc
( r̂)

is a spherical harmonic, and Iab ,lc jc

c (r) is the radial overlap

function which includes the antisymmetrization factor due to
identical nucleons. The summation over lc and jc is carried
out over the values allowed by angular momentum and parity
conservation in the virtual process c→a1b . Since the radial
overlap function is not a solution of the Schrödinger equa-
tion, it is approximated by a model wave function of the
bound state c5(ab) as follows:

Iab lc jc

c ~r !5Sablc jc

1/2 wnclc jc
~r !. ~4!

Here wnclc jc
(r) is the bound state wave function for the rela-

tive motion of a and b which can be calculated, for example,
in the shell model or resonating group method and is normal-
ized by

E
0

`

dr r2wnclc jc

2 ~r !51. ~5!

Sablc jc
is the spectroscopic factor of the configuration (ab)

with quantum numbers lc , jc in nucleus c. It is defined as the
norm of the radial overlap function @7,4#

Sablc jc
5E

0

`

dr r2@Iab lc jc

c ~r !#2. ~6!

The asymptotic normalization coefficient Cablc jc

c defining

the amplitude of the tail of the radial overlap function

Iab lc jc

c (r) @7,4# is given by

Iab lc jc

c ~r ! →

r.RN

Cablc jc

c
W2hc ,lc11/2~2kabr !

r
, ~7!

where RN is the nuclear interaction radius between a and b,
W2hc ,lc11/2(2kcr) is the Whittaker function describing the

asymptotic behavior of the bound state wave function of two

charged particles, kc5A2mab«c is the wave number of the
bound state c5(ab), mab is the reduced mass of particles a

and b, and hkc
5ZaZbmab /kc is the Coulomb parameter of

the bound state (ab). The ANC is related to the nuclear

vertex constant Gablc jc

c by @7,2#

Gablc jc

c
52expF ipS lc1hc

2
D GAp

ma
Cablc jc

c . ~8!

Taking into account the asymptotic behavior of the bound
state wave function

wnclc jc
~r ! →

r.RN

b lc jc

W2hc ,lc11/2
~2kcr !

r
, ~9!

where b lc jc
is the single-particle ANC defining the amplitude

of the tail of the bound state wave function at large r, we
easily derive, from Eqs. ~4!, ~7!, and ~9!,

~Cablc jc

c !2
5Sablc jc

b lc jc

2 . ~10!

The ANC is related to the residue of the elastic scattering
amplitude in the so-called direct pole in the energy plane
corresponding to the bound state. To show this we introduce
the transition matrix T, which is related to the S matrix as

S512T. ~11!

The diagonal partial S-matrix element is given by S j j

5exp(2idl), where d l is the full scattering phase shift in the
partial wave l which includes the Coulomb scattering phase
shift s l also. Thus in our approach the S and T matrices
include the Coulomb phase shift if it is nonzero. Note that
usually the Coulomb rescattering is singled out — i.e., only
the Coulomb-modified nuclear phase shift is considered —
but we take into account the total scattering phase shift. Let
us consider now the elastic scattering a1b→a1b . Let j

stand for the channel a1b . If a and b can form the bound
state c5(ab) with binding energy «c and relative orbital
angular momentum l ~for simplicity we omit the subscript c

in l), then the elastic scattering amplitude has a pole corre-
sponding to this bound state in the lth partial wave at the
relative kinetic energy of particles a and b, E52«c . In the
momentum plane it corresponds to the pole at k5ikc , where
E5k2/2mab with k being the relative momentum of particles
a and b. Near this pole the partial elastic transition amplitude
T j j in the lth partial wave can be written in the form @8#

T j j~k ! '

k→ikc

~21 ! lie iphkc

uCu2

k2ikc

. ~12!

Thus the ANC simultaneously defines the normalization of
the tail of the overlap function and the residue in the pole
corresponding to the bound state of the partial elastic transi-
tion amplitude. This connection follows from the particle
conservation law in nonrelativistic quantum mechanics @8#.

III. K-MATRIX APPROACH AND THE ANC

A. Relating the ANC to the pole residue for the subthreshold

bound state and the resonance width

Consider the radiative capture process

a1b→c1g , ~13!

where the final nucleus c has an excited bound state which is
very close to the threshold for a1b . For convenience, we
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assume that the constituent particles a and b in channel c are
spinless. We also assume that there are no close resonances
at low relative kinetic energy E between particles a and b.
Then we need to take into account only two channels j and g ,
which correspond to channels a1b and c1g , respectively.
The transition matrix has two-components, T j j which corre-
sponds to the elastic scattering a1b→a1b and Tg j which
corresponds to the radiative capture ~13! to the ground state
through the subthreshold resonance. For simplicity we con-
sider only two bound states in the system (ab), the ground
state and the excited subthreshold bound state. Since Tg j is
significantly smaller than T j j , one can write

Tg j52ipgp j

Kg j

11im jK j j

, ~14!

T j j52ip j
2

K j j

11im jK j j

. ~15!

The diagonal elements p j , pg , and m j of the diagonal ma-
trices p and m in channels j and g are given by

p j5e2(ph/2)sgn Re k
G~ l1ih11 !

l!
k l11/2, ~16!

m j5up ju
2, ~17!

pg5k
g

lg11/2
. ~18!

Here h5ZaZbmab /k is the Coulomb parameter, l is the rela-
tive orbital angular momentum of particles a and b in chan-
nel j, kg is the momentum of the photon emitted during the
transition from the subthreshold bound state c to the ground
state, and lg is its multipolarity. Since we consider only
Re k.0, even when extrapolating to the bound state pole k

5lim Re k → 101i Im k , we can take sgn Re k51.
Let us consider the partial element T j j in the partial wave

l where particles a and b form the subthreshold bound state
c1. The excited bound state close to threshold has a width
caused by its g transition to lower lying bound states. At low
relative energies E in channel j, the subthreshold bound state
can be ‘‘seen’’ by the incident particle b; i.e., it can be cap-
tured into the subthreshold bound state of nucleus c as a
resonance state with subsequent g transition to the bound
state. The matrix element describing the capture to the sub-
threshold resonance is given by Eq. ~14!.

For certain classes of local nuclear potentials, the K ma-
trix is a real symmetric matrix. Moreover, the matrix ele-
ments of the K matrix are analytic functions of k2 at k2

50
with a branch cut on part of the negative real axis and with
isolated poles on the cut in the complex k2 plane @9,10#.
Since the matrix elements K j j and Kg j are meromorphic
functions of k2 except for the cut, we present them in the
Padé form

Kg j5

PN1

QM

, K j j5

DN2

QM

, ~19!

where PN , DN , QN are polynomials of Nth order in the k2

plane. Consider first the transition matrix element T j j . Tak-
ing into account the Padé parametrization of K j j , we get

T j j52ip j
2

DN2

QM1im jDN2

. ~20!

As has been indicated, the elastic transition matrix element

T j j has a pole at k5ikc1 where kc15A2mab«c1 is the wave
number corresponding to the subthreshold bound state c1.
T j j also has a pole corresponding to the ground state of c but
we do not consider it as we assume that it is quite far from
the subthreshold bound state. We now show how to relate the
residue of T j j in the pole corresponding to the subthreshold
bound state to the ANC. To do this, we must extrapolate T j j

to the bound state pole located on the physical sheet of the k

plane at k5ikc1, i.e., to the positive imaginary axis in the
complex k plane or to the negative real axis in the E plane.

Since m j is a modulus of p j
2 , it is not an analytic function,

and when extrapolated down to negative energies, m j50 at

E<0. However, Eq. ~16! shows that p j
2 is an analytic func-

tion in the k plane. If we write

p j
2
5e2is lm j , ~21!

then it becomes clear why the Coulomb scattering, given by

exp(2isl), was included in T j j since without this factor, p j
2

would not be analytic and its extrapolation to negative ener-
gies would lead to the wrong residue ~see the Appendix!.
Thus at E,0 we get

T j j52ip j
2

DN2

QM

. ~22!

Hence the pole of T j j at negative energy corresponds to the
zero of QM . It is convenient to represent the ratio DN2

/QM

as a sum of pole terms plus a background B j :

DN2

QM

5 (
l51

M
gcl

2

k2
2kl

2
1B j . ~23!

Then

T j j 5

k2
,0

2ip j
2 (

l51

M
gcl

2

k2
2kl

2
1B j , ~24!

where gcl
2 is the pole residue. Note that some but not all of

the poles in the expansion ~24! correspond to bound states in
c @9#. Let l51 correspond to the subthreshold bound state

c1. Then, at k2
→k1

2
52kc1

2 ,

T j j '

k2
→2k

c1
2

2ip j
2

gc1
2

k2
1kc1

2
. ~25!

Recall that the elastic transition amplitude T j j near the pole
corresponding to the bound state was given by Eq. ~12!.
Comparing Eqs. ~25! and ~12! we find the relationship be-
tween gc1 and the ANC. For k→ikc1,

p j5e iphkc1/2

G~ l1hkc1
11 !

l!
~ ikc1! l11/2. ~26!

Hence
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T j j '

k2
→2k

c1
2

i~21 ! le iphkc1FG~ l1hkc1
11 !

l!
G 2

kc1
2l

gc1
2

k2ikc1

,

~27!

with the expression for gc1,

gc1
2

5

1

kc1
2l

~ l! !2

G2~ l111hkc1
!
uCu2, ~28!

following from Eqs. ~12! and ~27!. Thus the residue of the
closest pole of K j j is proportional to the corresponding ANC.
Although we assumed that particles a and b are spinless, Eq.
~28! is valid also for particles with nonzero spins. Allowing
for spin, the ANC and the residue gc1 also depend on the
total angular momentum jc1 of particle b in the bound state
~in j j coupling! or on the spin channel ~in LS coupling!.

Consider now Tg j . From ~19! we immediately arrive at

Tg j52ipgp j

1

QM /PN1
1im j~DN2

/PN1
!

. ~29!

Once again we introduce the pole expansion for

Kg j5PN1
/QM5 (

l51

M
gglgcl

k2
2kl

2
1Bg . ~30!

At small kc1
2 , where k1

2
52kc1

2 , and k2
→0, we can use the

one pole approximation giving

Tg j 5

k2
→0

2ip jpg

gg1gc1

k2
1kc1

2
1im jgc1

2
. ~31!

Comparing this equation with the Breit-Wigner amplitude,
we find the relationship between the partial width Gc1 of the
subthreshold resonance seen by the incident particle b at E

.0 and the residue gc1
2 in the K-matrix approach:

Gc1~E !5

m j

mab

gc1
2

5

1

mab
S k

kc1
D 2l

ke2phS uG~ l1ih11 !u

G~ l111hkc1
! D

2

uCu2,

~32!

while the g width of the subthreshold resonance Gg and gg1

are related by

Gg~E !52k
g1

2lg11
gg1

2 , ~33!

where kg is the momentum of the photon emitted during the
transition from the subthreshold bound state to the ground
state c. The total width of the subthreshold resonance at posi-
tive energies is

G~E !5Gc1~E !1Gg~Eg!'Gc1~E !. ~34!

Thus the total width of the subthreshold resonance at E.0 is
proportional to uCu2.

We can now find the behavior of the cross section for
capture to the subthreshold resonance at E→0. The cross
section for this capture is given by

s lg5~2l11 !
2p mab

k2
uTg ju

2 ~35!

5~2l11 !
p

k2

GgGc1

~E1«c1!2
1Gc1

2 /4
~36!

5~2l11 !
p

mabk
S k

kc1
D 2l

3e2phS uG~ l1ih11 !u

G~ l111hkc1
! D

2

3

GguCu2

~E1«c1!2
1Gc1

2 /4
~37!

'
E→0

~2l11 !
p2kc1

mab
2

1

E
e22ph

3

~hkc1
!2l11

G2~ l111hkc1
!

GguCu2

~E1«c1!2
. ~38!

Hence the astrophysical factor at E→0 behaves as

S~E !5Ee2phs lg '
E→0

~2l11 !
p2kc1

mab
2

3

~hkc1
!2l11

G2~ l111hkc1
!

GguCu2

~E1«c1!2
. ~39!

Thus we have shown that the ANC of the subthreshold
bound state defines the overall normalization of the cross
section and therefore the astrophysical factor for the capture
into the subthreshold resonance at E→0. Usually when fit-
ting low energy experimental data in the K-matrix approach,
the one pole approximation is not sufficient. Nevertheless,
the main fitting parameter gc1 can be fixed from an indepen-
dent measurement of the ANC.

B. Subthreshold bound state, ANC, and the scattering length

Consider now the relationship between the ANC and the
scattering length assuming that there is a subthreshold
s-wave (l50) bound state c1. The scattering amplitude is
related to T j j by

f j j52

1

2ik
T j j . ~40!

Consider now the behavior of f j j at k→0:
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f j j '
k→0

2e2phG2~ ih11 !
K j j

11m jK j j

'2e2phG2~ ih11 !
gc1

2

k2
1kc1

2
1im jgc1

2
. ~41!

We used in Eq. ~41! the single-pole approximation for K j j

K j j '
k→0 gc1

2

k2
1kc1

2
. ~42!

Approximation ~42! is valid at k2
→0 and small enough kc1

2 .

At k→0,

f j j '
k→0

2e2is0
C

e2(ph)uG~ ih11 !u2
gc1

2

kc1
2

. ~43!

The quantity

a5

gc1
2

kc1
2

~44!

is nothing but the scattering length. Taking into account Eq.
~28! we derive the relationship between the scattering length
and the ANC:

a5

1

kc1
2

1

G2~11hkc1
!
uCu2. ~45!

IV. R-MATRIX APPROACH AND THE ANC

Below we present some useful equations relating ANC’s
and paramerters in the R-matrix method. Although the
R-matrix method was developed for analysis of resonance
reactions, the reduced width of the R matrix, which corre-
sponds to the subthreshold resonance, can be related to
ANC’s of the subthreshold bound states. Let us consider the
elastic scattering a1b→a1b at k→0 assuming the pres-
ence of the subthreshold bound state c1. We note that the
elastic scattering S-matrix element in channel j is given by
@11,12#

S j j5e22i(f l2s l)
1/R l2@D l~E !2B l2iVl~E !#

1/R l2@D l~E !2B l1iVl~E !#
, ~46!

where R l is the R matrix for the lth partial wave, D l(E) is the
Thomas shift, B l is the energy-independent R-matrix bound-
ary condition constant, and Vl(E) is given by

Vl~E !5kr0P l~E !. ~47!

P l(E) is the penetration factor which is given by

P l~E !5

1

G l
2~k ,r0!1F l

2~k ,r0!
, ~48!

where r0 is the channel radius, and G l(k ,r0) and F l(k ,r0)
are the singular ~at the origin! and regular solutions of the
radial Schrödinger equation with a pure Coulomb potential at
E.0, i.e.,

e2if l5

G l~k ,r0!1iF l~k ,r0!

G l~k ,r0!2iF l~k ,r0!
. ~49!

The elastic scattering amplitude is given by the sum of two
terms,

Tj j512S j j5T j j
(pot)

1T j j , ~50!

where T j j
(pot) is the potential scattering amplitude and T j j is

the so-called resonance scattering amplitude which is

T j j522ie22i(f l2s l)
Vl~E !

R l2@D l~E !2B l1iVl~E !#
. ~51!

In the above equation, the R matrix is

R l5(
l

gcl
2

Ecl2E
, ~52!

where Ecg are the poles of the R matrix and gcl is the re-
duced width of the lth level. If the energy of the subthresh-
old bound state is very close to threshold and the incident
energy E→0, we can use the one-level R-matrix approxima-
tion which leads to

T j j522ie22i(f l2s l)
Vl~E ! gc1

2

Ec12E2@D l~E !2B l1iVl~E !#gc1
2

.

~53!

A priori the poles of the R matrix do not coincide with the
poles of the S matrix. However, if we choose the boundary
condition parameter B l5D l(2ec1), then the level shift of
the subthreshold bound state disappears, Ec152«c1 @13#,
and Eq. ~53! reduces to

T j j522ie22i(f l2s l)
Vl~E ! g̃c1

2

2«c12E2iVl~E !g̃c1
2

, ~54!

where the effective reduced width of the subthreshold bound
state is

g̃c1
2

5

gc1
2

11gc1
2 @dD l~E !/dE#uE52ec1

. ~55!

Next we extrapolate Eq. ~54! down to the bound state pole at
E52«c1. The factor Vl(E) can be written as

Vl~E !5kr0

1

uG l~k ,r0!1iF l~k ,r0!u2
. ~56!

This is not an analytic function. As we did when considering
the K matrix, we take Vl(E)50 at E,0 in the denominator,
since Vl(E) is the imaginary part of the logarithmic deriva-
tive of the wave function which is real at negative energies.
However, in the numerator we have
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e22i(f l2s l)Vl~E !5kr0

1

e22is l@G l~k ,r0!1iF l~k ,r0!#2

5kr0

1

@u l
(1)~k ,r0!#2

, ~57!

where

u l
(1)~k ,r0!5~2i ! leph/2W2ih ,l11/2~2i2kr0!. ~58!

u l
(1)(k ,r0) is an analytic function in the entire complex

plane, uku,` , except at k50 @14#. Hence we can extrapolate
Eq. ~54! down to the subthreshold bound state pole, bypass-
ing the singular point k50. At negative energies near this
pole, we get

T j j '

k→ikc1

2imab~21 ! le iphkc1

r0

W
2hkc1

,l11/2
2 ~2kc1r0!

g̃c1
2

k2ikc1

.

~59!

Comparing Eqs. ~12! and ~59! gives

g̃c1
2

5

1

2mab

W
2hkc1

,l11/2
2 ~2kc1r0!

r0

uCu2. ~60!

From Eqs. ~28! and ~60! we find the relationship between the
residue in the pole of the subthreshold bound state c1 in the

K-matrix method and g̃c1 @13#:

gc1
2

2mab

5

1

kc1
2l

~ l! !2

G2~ l111hkc1
!

r0

W
2hkc1

,l11/2
2 ~2kc1r0!

g̃c1
2 .

~61!

The relationship between the ANC and the dimensionless

effective reduced width amplitude ũc1 of the subthreshold
bound state c1 is

ũc1
2

5mabr0
2g̃c1

2
5

r0

2
W

2hkc1
,l11/2

2 ~2kc1r0!uCu2. ~62!

This result coincides with Eq. ~16! in Ref. @15# and Eq. ~7! in
Ref. @16# if one takes into account that the normalization
factor N f (Nc) in @15–17# is given by ~for the one-channel
case!

N f5

1

11gc1
2 @dD l~E !/dE#uE52ec1

, ~63!

and the dimensionless reduced width amplitude ucl
2

52mabr0
2gc1

2 . Note, however, that the ANC is model inde-

pendent while the effective reduced width ũc1 depends on
the channel radius r0.

Having g̃c1 expressed in terms of the ANC, the partial
width of the subthreshold resonance c1 at E.0 is given by

Gc152Vl~E !g̃c1
2

5

1

mab

Vl

W
2hkc1

,l11/2
2 ~2kc1r0!

r0

uCu2.

~64!

Thus the only model dependence of the subthreshold reso-
nance partial width comes through the channel radius r0.

Since the normalization of the radiative capture cross sec-

tions in cases ~ii! and ~iii! is defined by gc1
2 ;uCu2, we have

shown that in both cases the overall normalization of the
cross section is defined by the same quantity — the ANC for
the subthreshold bound state.

V. ANC AND THE WIDTH OF THE ABOVE

THRESHOLD RESONANCE

We found above the relationship between the ANC and
the width of the subthreshold resonance in the K- and
R-matrix methods. However, the ANC is also directly related
to the width of a resonance which is above threshold. We
will give this relationship for a Breit-Wigner resonance lo-
cated at Er5E02iG/2 (G/E0,1). The partial S-matrix ele-
ment near the isolated Breit-Wigner resonance is given by
@18#

S j j~k !5e2in l
~k1kr!~k2kr

*!

~k2kr!~k1kr
*!

, ~65!

where the partial scattering phase shift n l is a smooth func-
tion of energy near the resonance and real at real k and kr

'k02i(mab/2k0)G . At k→kr ,

S j j~k ! 5

k→kr A l

k2kr

1g j j , ~66!

where g j j is the regular function at k5kr . The residue of the
S matrix in the resonance pole in leading order ~up to terms
of order 'G/2E0) is

A l'2i e2in l(k0)
mab

k0

G . ~67!

One can also use the Gamow wave function ckr l(r), which

is a regular solution of the radial Schrödinger equation de-
scribing the relative motion of particles a and b interacting
via the sum of the nuclear and Coulomb potentials at reso-
nance energy Er , to describe the resonance. The asymptotic
behavior of ckr l(r) at large distances is

ckr l~r ! '
r→`

b l

e i(krr2hr ln 2krr)

r
. ~68!

Here b l is the single-particle ANC of the Gamow function
and hr5ZaZbmab /kr . Using the regularization procedure
introduced by Baz’, Zel’dovich, and Perelomov for reso-
nance states @8#, the Gamow wave function can be normal-
ized to 1 by

lim
b→10

E
0

`

dr r2 e2b r2
ckr l

2 ~r !51. ~69!
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The relationship between the residue of the S matrix in the
resonance pole can also be written as @19#

A l52i ~21 ! lb l
2 . ~70!

Comparing Eqs. ~67! and ~70! gives @19#

b l
2'~21 ! l e2in l(k0)

mab

k0

Gsp . ~71!

It is important to note that Eq. ~71! defines the relationship
between the single-particle ANC, b l , and the single-particle
g width Gsp . Multiplying both sides of Eq. ~71! by the spec-
troscopic factor S l we find

C l
2'~21 ! l e2in l(k0)

mab

k0

G . ~72!

VI. CONCLUSION

We have presented equations relating the ANC of the sub-
threshold bound state with the residue of the K-matrix
method in the pole corresponding to this bound state and
with the reduced width in the R-matrix method. In the pres-
ence of the subthreshold bound state, there are two possible
mechanisms of capture, direct capture to the subthreshold
bound state and capture to the subthreshold resonance. It
follows from Eqs. ~28!, ~32!, and ~60! that the ANC of the
subthreshold bound state defines the overall normalization of
the cross sections and, hence, the astrophysical factors for
both capture mechanisms. Thus by independently measuring
the ANC for the subthreshold bound state, one can calculate
the astrophysical factors for both capture mechanisms.

Several techniques are available to determine ANC’s. One
of the ways to extract them is to extrapolate the experimental
phase shift to the pole of the elastic scattering amplitude

corresponding to the subthreshold bound state @6#. Equation
~27! gives the correct behavior of the elastic scattering am-
plitude at negative energies. Also we have shown @4,5# that
peripheral nucleon transfer reactions are a useful tool to ex-
tract ANC’s for bound states. Equation ~72! shows that trans-
fer reactions to resonance states also can be used to extract
directly the widths of the resonances.
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APPENDIX

If we formally use m j5up ju
2 instead of p j

2 in Eq. ~25!
when extrapolating to the subthreshold bound state, we get
different results for the residues in that bound state pole. Let
us consider for simplicity l50. At E.0 from Eq. ~16! we
derive

m j5up ju
2
5ue2(ph/2)G~ ih11 !k1/2u2

5

2ph

e2ph
21

k .

~A1!

Extrapolating Eq. ~A1! to negative energies, we derive

m j5ikc1 e iphkc1

phkc1

sin~phkc1
!

. ~A2!

However, the extrapolation of p j
2 to negative energies gives

p j
2
5i kc1 e iphkc1G2~hkc1

11 !. ~A3!
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