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Connection Between Gaussian Periods and Cyclic Units

By Emma Lehmer

Abstract. This paper finds that all known parametric families of units in real quadratic,

cubic, quartic and sextic fields with prime conductor are linear combinations of Gaussian

periods and exhibits these combinations. This approach is used to find new units in the

real quintic field for prime conductors p = n* + 5n3 + 15n2 + 25n + 25.

1. Introduction. The idea that it might be of interest to explore the connection

between Gaussian periods and cyclic units arose from the obvious fact that for

4p = L2 + 27 Shanks's "simplest cubic" [10] and the Gaussian cubic are related

by a translation. Moreover, this is also the case for p = a2 + 16 for Marie Gras's

"simplest quartic" [2] and the cyclotomic quartic, as well as the "simplest quadratic"

in [10].

Since there were no known quintic units, while the cyclotomic quintic polynomial

[6] and its discriminant [7] were given by the author many years ago, it seemed

worthwhile to try to discover some quintic units as linear transforms of the periods

for some sequence of primes. This was accomplished for primes of the form

p = n4 + 5n3 + 15n2 + 25n + 25.

Subsequently, it was shown by René Schoof and Lawrence Washington [9] that

these were indeed fundamental units.

In another direction, Marie Gras [1], and later Günter Lettl [8], considered for

4p = 1 + 27M2 a cubic whose roots are units, but which is no longer a translation

of the Gaussian cubic. However, its roots are linear combinations of the roots of

the Gaussian cubic and therefore generalized Gaussian periods. A similar relation

holds between the roots of Marie Gras's quartic [2] for p = I + 16b2 and the

cyclotomic quartic, except that the coefficients in the linear combination of the

roots are excessively large, as we shall see in Section 4. Section 6 will be devoted

to similar results for the sextic with 4p = L2 + 27, given by Marie Gras [3], [4].

We have not studied the case of 4p = 1 + 27M2, but we expect that there exists a

similar relation.

2. Notation. We will use the notation of cyclotomy as follows: p = ef + 1 is a

prime, where e is the degree of the polynomial

e-l

(2.1) Fe(x) = Y[(x-rlj)

3=0
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536 EMMA LEHMER

with discriminant D(Fe), where the roots r¡3 of Fe(x) for j = 0, l,...,e — 1 are

given by

(2-2) ^=Efp        0=0,l,...,e-l),
iec,

where Cj is the jth coset of eth power residues and çp are the primitive pth roots

of unity. Kummer also considered a generalized cyclotomy in which, with integer

e-l

(2.3) *¿ = 2>»K+i-
i = 0

He proved that for e a prime, all the factors of the discriminant and of the numbers

represented by the polynomial whose roots are the generalized periods must be

eth power residues of p. When e is composite, however, the polynomial may have

exceptional factors which must divide the discriminant. In what follows we will be

considering a special case of generalized periods Oj which are units. We will show

that every known cyclic unit is a generalized Gaussian period and find the actual

constants c¿ in (2.3).

3. The Cubic Case. The Gaussian cubic for 4p = L2 + 27M2 is

(3.1) F3(x) = x3 + x2- {jL^-x - \(L + 3)p - 11/27

with discriminant D(F3) = p2M2.

Shanks's "simplest" cubic is given by [10]

(3.2) P3(y)=y3-ty2-(t + 3)y-l

with D(P3) = (i2 + 3i + 9)2 = p2.

If M = 1, then t = (L - 3)/2, D(F3) = D(P3), and as we have said in the

introduction, P3(y) is a linear transform of F3(x), namely

Ps(y) = F3 (y - Í^-Y

so that

0i=Vi + —£— •

If L = 1, then (3.1) becomes simply

(3.3) F3(x) = x3 + x2-9M24~lx-M2,        D(F3)=p2M2,

while t = 3(9M - l)/2 in (3.2) with D(P3) = 272p2 [8].

Hence, P3 can no longer be a linear transform of F3.   However, the equation

whose roots are ¿\ = 3(r?¿ - /,¿+i), namely

(3.4) G3(z) = z3 - 9pz - 27pM       with D(G3) = 272p2,

is a linear transform of Ps(y). In fact,
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CONNECTION BETWEEN GAUSSIAN PERIODS AND CYCLIC UNITS 537

and hence in this case,

9M - 1
(3.5) 9i = HVi-Vi+i) +

2

Therefore, all the prime factors of numbers represented by

(3.6) P3(y) = y3- |(9M - l)y2 - ^(9M + l)y - 1

are cubic residues of p, except 3 in case 3 \ M. For example, for p = 331, M = 7,

P3(í) = 33 • 7, P3(2) = -557, P3(3) = -7 • 157, P3(4) = -33 • 67, P3(5) = -7 • 383.

4. The Quartic Case. The Gaussian quartic for p = a2 + 1662 with a = 1

(mod 4) is

(«j f.M=,v-jfefti^-mz^i,+&■ -»>'-y«-')■
8 lb zob

with D(P4) = 4t6p3, while Marie Gras's quartic [2] is

(4.2) p4(y)=y^ty3-ry2 + ty + l.

She also defines

(4.3) z2 = (t2 - Ar - 8)/p   and   x2 + y2 = (t2 -2r + 4)/p.

As in the cubic case, there are two cases according as a = 1 or b = 1. In both

these cases, the field is totally real. The simplest case is when b = 1, so that

p = a2 + 16 and t — a and r = 6 in (4.2), which becomes

(4.4) P4(y) = y4-ay3-6y2 + ay+l,        D(P4) = D(F4) = 4p3.

It is not hard to verify that

(4-5) P4(y)=F4(y-a-^

so that in this case,
a-1

Oi=Vi + —^~-

If a = 1, then p = 1 + 1662, and (4.1) reduces to

(4.6) F4(x) = x4 + x3-6b2x2-b2x + b4,

while (4.2) has values of t and r that are surprisingly large. They are given by

Marie Gras [2] for p < 10000. Since there are only five values of p < 10000 for

which a = 1, we reprint the values of t from her table together with the values of

z derived from her values of r from (4.3) as follows:

p t z

257 382352 23504

401 80 10

577 123975327936 5159943648

1297 1194681 33159

1601 575066704688492400 14372175520538672

The discriminant D(P4) is

v3z4
(4.7) D(P4) = P-{L

^6 2\2 ,2   2
— + z2\   p- 4iV

(t2 +

\     V
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538 EMMA LEHMER

where the expression in square brackets appears to be a square. For example, for

p = 257, D(P4) = 2573 • 220 ■ 132 ■ 1132 ■ 16212 • 101412. We note that all the odd

prime factors are quadratic, but not quartic residues of 257, and therefore they are

all exceptional. For p = 401 we have D(P4) = 2454 • 4013 • 4212, and 2 and 421 are

both quartic residues of 401.

The roots 0¿ of (4.2) are negative reciprocals in pairs. Therefore, we can order

the 0's so that

(4.8) BQB2 = M3 = -I-

Marie Gras [2] gives two fundamental relations in terms of x, y, z defined in (4.3)

for cyclic quartic fields, which in our case can be written:

(4.9) t2 + pz2 + 16 = 2p(z2 + y2),        -tz = (x2 - y2) - 8bxy.

We next let

(4.10) Oi = coVi + cim+i + c2Vi+2 + C3VÍ+3       (¿ = 0,1,2,3).

Then (4.8) implies

(4.11) coc2 + clC3 = 2(62i2-l)/p.

Using this and the fact that ]£i=oc» = _i and 5Zi=0(—1)^1 = -2, and that

¿c2 = [p(í2+222) + í2 + 16]/4p,

t=0

we find that (4.9) is satisfied with cq — c2 = x and a — c3 = y, so that

2c0 = x + (z - i)/2, 2ci = y - (z +1)/2,

(4.12) 2c2 = -x + (z - t)/2,        2c3 = -y-(z + t)/2.

The c's given below were actually computed by D. H. Lehmer as a solution of the

system (4.10), using his multiprecision package to get the roots of the two equations

and then solving the system for the c's.

p          257 401            577             1297                   1601
-c0      81543 14 30421906939 318850 152504156397432653

-ci 110033 21 27917477683 278821 135156198948853027

-c2     97881 21 34145728853 295070 142215283707082883

-c3     92895 24 31490214461 301940 145191065635123837

These values of ct were subsequently checked by (4.2).

5. The Quintic Case. As was mentioned in the introduction, no quintic units

were known, but the Gaussian quintic was given in [6] in terms of the Dickson form

in four variables (x,u,v,w), which represents

(5.1) 16p = x2 + 50it2 + bOv2 + 125w2

with the side conditions

(5.2) xw = v2 - u2 - 4uv,        x = 1 (mod 5).
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CONNECTION BETWEEN GAUSSIAN PERIODS AND CYCLIC UNITS 539

After some experimentation it was decided to consider the special case in which

x, u, v, w were expressed in terms of a single variable n as follows (where (f ) is the

Legendre symbol):

w Hi)-(5.3) v = -(n + l),    u = 2 + n,

so that u + v — 1 and x is given by (5.2) as

(5.4) x = -(^)(4n2 + 10n-r-5),

so that, using (5.1), we have

(5.5) x2 = 16p - lOOn2 - 300n - 375.

Hence, p is given by the quartic

(5.6) p = n4 + 5n3 + 15n2 + 25n + 25.

We can now write the polynomial F*,(t) given in [6] in terms of n as follows:

F5(t) = t5 + t4--(p-l)t3
25

(5.7)

6p - 2 - (^) p(4n2 + lOn + 5)  t2

+ -|r [-3p2 + p(25n2 + 75n + 119) + 1 + 2 (|) p(4n2 + lOn + 5)] t

+ -Î— ¡-lap2 + 5p(25n2 + 75n + 123) + 1
3125 I

+ (-) [p2(4rc2 + lOn - 45) + 5p(-5n3 + 29n2 + 160n + 255)1 } .

It can be verified that the linear transformation

*=»-[(!)-t5
leads to

P5(y) =y5 + n2y4 - 2(n3 + 3n2 + 5n + b)y3 + (p - 4n2 - lOn - 20)j/2

(5.8) + (n3 + 4n2 + lOn + \Q)y + 1

with

*-0+[(ïM/»-
The discriminant of F5(t), given in [7], reduces in this case to

(5.9) D(F5) = D(PS) = (n3 + 5n2 + lOn + 7)2p4.

Hence all the prime factors of n3 -I- 5n2 + lOn + 7 are quintic residues of p and

so are the divisors of all the numbers represented by either equation. We give a list

of P5(y), together with their discriminants, for all appropriate primes p < 1000:

n P5(y)

- 2   y5 + 4y4 + 2y3 - by2 - 2y + 1

- 3 y5+9y4 + 20y3 + by2 - lly + 1

1 y5 + y4 - 28y3 + 37y2 + 25y + 1
- 4 y5 + 16y4 + 62y3 + 57y2 - 30y + 1

2 y5 + 4y4 - 70y3 + 135j/2 + 54y + 1
- 6 y5 + 36y4 + 266y3 + 527y2 - 122y + 1

4   y5 + 16y4 - 274y3 + 817y2 + 178y + 1

P
11

31

71

101

191

631

941

VW
1

5

23

17

5.11

89

191

A(l)
1

5s

37

107

53

709

739
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There may possibly be a second case for which

p = 25n4 - 25n3 + 15n2 - 5n + 1,

but we have not been able to find the coefficients, which could be quite large in this

case.

6. The Sextic Case. The sextic period polynomials were given in [5]. Recently,

Marie Gras [4] has given a sextic whose roots are units in a real sextic field. In the

simplest case, in which

(6.1) 4p = L2 + 27,        p= 1 (mod 12) and L = 1 (mod 6),

her equation can be written with n = \L\ as

(6.2) P6(y) = y6 - (n - 3)y5 - b^y4 - 2Qy3 + b^y2 + (n + 3)y + 1.

If we let ipi be the roots of the cubic (3.2) with t = (L — 3)/2, then it was shown

in [4] that

(6.3) & = -(2ôl+1)/(ei+2Ôl),

where 0¿ are the roots of (6.2). Therefore, we have

(20, + l)/[(0, + 2)0i] = (20t+3 + l)/[(0,+3 + 2)0J+3],

which leads to

(6.4) 0, + 0I+3 + 2 = -20t0î+3.

If we now let r?¿ be the roots of the Gaussian cubic (3.1), then the roots of the

period sextic ry¿ satisfy

(6.5) m + Vi+3 = Vi-

Experiments show that

(6.6) (i*j)-

—-2rii - n'j       if L > 0

Z±_ïl + 2m + ri'j    ifKO

This can be verified, using (6.4) as follows.

First suppose that L > 0; then by (6.4) and (6.6) we have

-20,0!+3 = ^1 - 2fai + n'j) + 2 = ^p - 2(-l -n'k) + 2

-n*-ñ(^+*)-«(-^)->.
i=0 fc=0  x / \ /

This can be easily verified by substituting —(L + 5)/6 into (3.1).

Similarly, for L < 0 we find that F3((-L + l)/6) = 1.

It is possible that there might exist another case of the sextic for 4p = 1 + 27M2

corresponding to the second cubic case, but one may expect very large coefficients

in that case.
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7.  The Octic Case. In this case we consider primes of the form p = n4 + 16

which implies that p = (n2 - 4)2 + 2(2n)2. We let

(7.1) 0, = m + r,l+2 - (n2 - l)/4        (¿ = 0(1)7).

Then obviously 0¿ + 0¿+4 = 0¿+2 + 0¿+6 and it can be easily seen that 0¿0¿+2 =

l/0,+40¿+6, so that the 02¿ and the 02¿+i respectively satisfy the two quartics

x4 + (n2 - v/p)x3 + ± [n4 + 4 - ^(n2 + 2)]x2 + \ [n4 - 2n2 + 16 - ^/p(n2 - 2)]x +1

and

x4 + (n2 + yp)x3 + 1 [n4 + 4 + ^(n2 + 2)]x2 + \\n4 - 2n2 + 16 + ^(n2 - 2)]x + 1,

whose product is

P8(x) = x8 + 2n2x7 + (p- 28)x6 - (P + 14n2)x5 - [p(n2 + 3) - 70]x4

(7.2) + [14n2 - p(n2 - 4)]x3 + (5p - 28)x2 + (p - 2n2)x + 1,

so that the 0's are units. We note that P8(-l) = —n4.

The discriminant of this equation can be written as

D = D2D2D2D4,

where
7

D^HWi-ßi+j)    (y = 1(1)4).
t=i

We find that

Dx = p[(n - 4)p + 6n3 -24n + 68], D2 = n4p,

D3 = p[-(n + 4)p - 6n3 + 24n + 68],        D4 = 16n4p,

so that Dx and D3 interchange with the change of sign of n. All prime factors of

D\ and D3 are octic residues of p, but 2 and n are only quadratic. For example,

for p = 641, n = 5 and £>,/p = 13 • 103, D3/p = 13 • 487.

It remains to be seen whether the 0's are actually relative units in the field

defined by (7.2), but we expect this to be the case.

1180 Miller Avenue

Berkeley, California 94708

1. MARIE-NICOLE Gras,  "Sur les corps cubiques cycliques dont l'anneau des entiers est

monogène," Ann. Sei. Univ. Besançon Math. (3), No. 6, 1973, pp. 1-26.

2. MARIE-NICOLE GRAS, "Table numérique du nombre de classes et des unités des extensions

cycliques réelles de degré 4 de Q," Publ. Math. Besançon, fase. 2, 1977/78, pp. 1-26, 1-53.

3. MARIE-NICOLE GRAS, "Familles d'unités dans les extensions cycliques réelles de degré 6

de Q," Publ. Math. Besançon 1984/85-1985/86.
4. MARIE-NICOLE GRAS, "Special units in real cyclic sextic fields," Math Comp., v. 48, 1987,

pp. 179-182.
5. D. H. LEHMER & EMMA LEHMER, "The sextic period polynomials," Pacific J. Math., v.

Ill, 1984, pp. 341-355.

6. EMMA LEHMER, "The quintic character of 2 and 3," Duke Math. J., v. 18, 1951, pp. 11-18.

7. EMMA LEHMER,  "On the divisors of the discriminant of the period equation," Amer. J.

Math., v. 90, 1968, pp. 375-379.

8. GÜNTER LETTL,  "A lower bound for the class number of certain cubic number fields,"

Math. Comp., v. 46, 1986, pp. 659-666.

9. RENÉ SCHOOF & LAWRENCE C. WASHINGTON, "Quintic polynomials and real cyclotomic

fields with large class numbers," Math. Comp., v. 50, 1988, pp. 543-556.

10. DANIEL Shanks, "The simplest cubic fields," Math Comp., v. 28, 1974, pp. 1137-1152.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


