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ABSTRACT: The variability of winter precipitation in the west of the Iberian Peninsula is strongly affected by the North
Atlantic Oscillation (NAO). This study focuses on identifying the relationship that exists between precipitation registered
in the city of Le6n (in northwestern Spain), the NAO index and the associated weather type during the same period. In
order to achieve this objective, the prevailing weather type has been calculated for each day in Leén from January 1948 to
March 2009, using the objective Lamb Weather Types classification method. The most significant results appear in winter
(from December to March). During these months an increase has been observed in the frequency of ‘anticyclonic’ weather
type (A) (very dry), and a decrease in the ‘cyclonic’ (C), ‘south-westerly’ (SW) and ‘westerly’ (W) types (the three rainiest
weather types). The positive trend in the NAO index could be the main cause of the decrease in the frequency of the three
rainiest weather types (C, SW and W) and therefore, responsible for the relevant decline in winter precipitation observed
in the city of Ledn. The high correlation coefficients between the NAO index, the frequency of the three rainiest weather
types and winter precipitation suggests an interesting method to forecast rainfall. Using a binary logistic regression model,
a downscaling model for daily precipitation has been obtained based on the weather types and the NAO index. The daily
results obtained for the winter months are good (TSS = 0.64) bearing in mind that only sea level pressure data were used
in the logistic model. Copyright © 2011 Royal Meteorological Society
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1. Introduction 2007). Recently, del Rio et al. (2011) carried out a study
on precipitation trends for the whole of Spain between
1961 and 2006, and found negative trends in more than
75% of the weather stations analysed. This decrease is
significant in 18% of mainland Spain.

The phenomenon of the North Atlantic Oscillation
(NAO) is one of the most important factors in the
climate of the Northern Hemisphere, as it transports heat
from one part of the world to the other (van Loon and

Rogers, 1978; Hurrell, 1996). Over the last few decades,

The rainfall regime in the Iberian Peninsula is highly
irregular, on both the spatial and the temporal scale
(Esteban-Parra et al., 1998). As a result of the orography
and the oceanic origin of precipitation, synoptic distur-
bances contribute towards the spatial variability of the
precipitation (Trigo et al., 2004). The interannual vari-
ability of precipitation that occurs during the winter, and
to a lesser degree during the autumn, may be explained

by changes in large-scale atmospheric circulation modes,
especially for the western sector of the Iberian Penin-
sula (Rodriguez-Puebla et al., 1998; Trigo and Palutikof,
2001).

Many authors have identified a trend towards a drier
climate in Spanish Iberia over the last few decades
(Esteban-Parra et al., 1998; Hulme and Sheard, 1999;
Mossman, 2002; Paredes et al., 2006; IPCC, 2007). The
decrease in winter precipitation in different areas of the
Iberian Peninsula has also been the subject of other
studies (L6pez-Bustins ef al., 2008; Rodrigo and Trigo,
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especially since the 1980s (Hurrell and van Loon, 1997),
a major increase in the annual NAO index has been
observed, especially between the months of December
and March. The main consequences of this increase in
the NAO index are regional changes in the precipitation
patterns (Hurrell, 1995; Dai et al., 1997). Hurrell and van
Loon (1997) showed that a high NAO index during the
winter correspond to higher than normal precipitation
in western Scandinavia, Denmark and northern parts
of Ireland and Great Britain. In contrast, a high NAO
index leads to drier than normal conditions in the Iberian
Peninsula and the western Balkans. As a result of the
increase observed in the NAO index, there has been
a drop in winter precipitation in southwestern Europe.
This trend is not easy to see in the case of Spain
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due to the complex spatial and temporal distribution of
the precipitation, as the vast majority of the country is
affected by a Mediterranean climate.

The NAO index is the most important parameter used
to model the winter rainfall regime in the Iberian Penin-
sula (Rod6 et al., 1997; Trigo and Palutikof, 2001). Good
correlations were obtained between winter precipitation
and the NAO index in different territories of Spain (Zorita
et al., 1992; Muiioz-Diaz and Rodrigo, 2004; Garcia
et al., 2005; Lorenzo and Taboada, 2005; Rodrigo and
Trigo, 2007; Queralt et al., 2009), and an attempt has
been made to predict precipitation using the values of
the NAO index (Castro et al., 2011). In the western
Mediterranean area, the NAO may explain up to 50% of
the variability of precipitation during the spring (Martin
et al., 2004).

The modes of variability and weather types are two
approaches for dealing with atmospheric circulation.
Initially, weather types were classified according to the
dominant synoptic situation on a given day. This involved
establishing a series of specific isobaric configurations,
and all the days when isobars had this configuration
were assigned to the same type. This meant that the
circulation was classified based on sea level pressure.
This is actually a circulation-to-environment approach.
Today, there is a tendency to use weather types classified
according to objective criteria, such as those developed
by Spellman (2000), which have the advantage of being
observer-independent. The models used for the automatic
classification of the synoptic situation were initially
developed for the British Isles (Jones et al., 1993). Huth
et al. (2008) have offered an excellent review about
catalogues of circulation-types classifications.

In recent years, several authors have published differ-
ent automatic classification models for the Iberian Penin-
sula, most of which are connected to a specific climatic
application. Goodess and Palutikof (1998) adapted one of
these methods for the southeast of Spain. In a later study,
Goodess and Jones (2002), identifying the relationships
between large-scale atmospheric circulation and daily
precipitation in different parts of the Iberian Peninsula,
demonstrated the relationship between an increased fre-
quency of the anticyclonic weather type and an increase
in the NAO index. They also found positive correla-
tions between the frequency of the cyclonic weather type
and precipitation in many parts of the Iberian Penin-
sula. Corte-Real et al. (1999) established four daily atmo-
spheric circulation patterns associated with precipitation
in Portugal: ‘blocking-like’, ‘summer dry’, ‘winter dry’
and ‘rainy’.

Classifications of this kind have also been used to
obtain climate change scenarios (Goodess and Palutikof,
1998), even associating the electrical activity of storms
with atmospheric circulation (Tomds et al., 2004). Some
authors have gone even further and proposed methods
for predicting precipitation, based on the relationships
between atmospheric circulation and precipitation (Heyen
et al., 1996; Zorita and von Storch, 1997). Queralt et al.
(2009) claim that the NAO index and weather types have
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a significant influence on rainfall regimes, with the effects
varying widely depending on the area of the Iberian
Peninsula selected.

Recently, these automatic classification methods have
been used to study variability and changes in the charac-
teristics of precipitation (Paredes et al., 2006). Lorenzo
et al. (2008) modified the method developed by Trigo
and DaCamara (2000) to adapt it to the Spanish region
of Galicia.

Several authors have focused their studies on the winter
months (Rodriguez-Puebla et al., 2001; Sdenz et al.,
2001). Zorita et al. (1992) confirmed the relationship
between NAO and winter precipitation in the Iberian
Peninsula. It also focused on the winter months, as this
is when the most significant results are obtained.

In this study, a logistic regression model has been
used to define a nowcast on whether precipitation will
be registered or not on a given day in our study area,
based on the parameters used to obtain weather types
and the NAO index. This type of model has already
been used to study the environment. For example, Jomeli
et al. (2007) make use of a logistic regression model to
analyse the probability of avalanches occurring, based
on the precipitation registered on the day before the
avalanche, the precipitation that has fallen on the day
of the avalanche and on the previous day, or only on the
day of the avalanche.

Logistic regression models have also been used for the
short-term forecasting of storms and hailstorms (Marcos-
Menéndez, 2001). This study offers a forecast in binary
terms (yes/no) for storm phenomena. Angus et al. (1988)
and Billet et al. (1997) both used this type of model for
the short-term forecasting of storm events. This model
has also been used to study the probability of precipitation
(Crosby et al., 1995), and, more recently, the visibility
factor at airports (Hiliker and Fritsch, 1999).

The main aims of this article are to:

1. Obtain an objective classification of weather types
in Ledn, Spain, from January 1948 to March 2009,
identifying significant variations of their frequency on
a monthly, seasonal and annual scale.

2. Analyse the trends observed from 1948 to 2009 in
winter precipitation in the city of Le6n.

3. Compute the relative contribution of each weather
type and the NAO to precipitation in Ledn, especially
during the winter months.

4. Derive a downscaling system for daily rainfall based
on a logistic regression model, using various parame-
ters elaborated from sea level pressure data.

This article is organized as follows: Section 2 defines
the study area; Section 3 details the data and methodology
used; Section 4 details the different results obtained in
this article, together with the discussion. Finally, Section
5 offers a summary of the conclusions, followed by the
acknowledgements and bibliographic references.
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Figure 1. Location of Le6n. Grid formed by 16 dots from which the values of sea level pressure are obtained. This figure is available in colour
online at wileyonlinelibrary.com/journal/joc

2. Study area

The city of Ledn is situated in the northwest of the Iberian
Peninsula (Figure 1), at 42° 36'N, 5° 35'W, on a fluvial
terrace at a point where the rivers Bernesga and Torio
converge, at an altitude of 838 meters above sea level.
The city is in the centre of the province of Ledn, in the
northwest of the Duero Basin, flanked to the north by the
Cantabrian Range and to the west by the Mountains of
Le6n, which isolate the city from the oceanic influence.
The precipitation in northwestern Iberia is character-
ized by a seasonal behaviour, mainly influenced by the
Atlantic Ocean but also by the Mediterranean Sea. Dur-
ing the summer, the dominant winds from the west are
displaced towards the north, allowing the Azores High to
extend its influence over the Iberian Peninsula. In autumn,
spring and winter, precipitation is mainly related to
baroclinic disturbances coming from the Atlantic (Garcia-
Herrera et al., 2005), while in summer, the scarce precip-
itation has a dominant convective and, therefore, more
local character (Serrano et al., 1999; Muifoz-Diaz and
Rodrigo, 2006). Leén has a Mediterranean climate with
regard to precipitation regime (rainy springs and autumns,
and dry summers), and a continental climate type with
regard to its temperature regime (with wide temperature
ranges, even on the same day, and with frequent frosts).
The north of Spain is warm in the summer due to the
Mediterranean influence (Andrés et al., 2000).

Copyright © 2011 Royal Meteorological Society

According to our database, from January 1948 to
March 2009, the mean annual precipitation in the city
of Ledn is 545.7 mm, distributed in a rainy season in the
months between October and May, two months with low
precipitation — June and September — and two months of
summer drought — July and August. The term ‘summer
drought’ is used from a bioclimatological perspective
(Rivas-Martinez, 2007), if the precipitation is less than
twice the temperature during at least two consecutive
months in the summer. These factors give Ledén a
Mediterranean climate.

3. Methodology
3.1.

We were provided with daily and monthly precipitation
data by the State Meteorological Agency (Agencia Estatal
de Meteorologia, AEMET). We have data on monthly
precipitation from January 1948 to December 1993
(representing a sample of 552 datasets on monthly
precipitation), and daily precipitation from January 1994
until March 2009 (representing 5569 datasets on daily
precipitation). Although at first the study was only
intended to deal with data from between 1948 and 2008, it
was extended up to March 2009 in order to complete this
last winter. All the precipitation data are taken from the
weather station at the airport of La Virgen del Camino,
at a distance of six kilometres from the city of Ledn.

Datasets

Int. J. Climatol. 32: 2181-2196 (2012)
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This station lies on flat, open terrain, and is not affected
by the recent urban expansion of the city. This is a
complete dataset, i.e. no intervention has been required
to reconstruct or complete it.

With regard to the daily sea level pressure data,
required to calculate the weather type, these were
obtained from the National Center for Atmospheric
Research (NCAR). Daily sea level pressure data are avail-
able for 16 grid points, from January 1948 to March 2009
(weather type data sample = 22373 days). In order to
calculate the values of the NAO index, data were also
obtained from the same source. A specific daily NAO
index was created, by subtracting the value of point 65°
North, 22.5° West (approximately 1° to the south and 1°
to the west of Reykjavik) from the pressure value for
point 37.5° North, 5° West (approximately 1° to the north
and 0.2° to the east of Gibraltar), as the index obtained
from these points is better adapted to our latitudes. It was
found that on a monthly scale, the values of the NAO
index calculated this way coincide with those calculated
from the exact definition of the NAO index (Jones et al.,
1997).

3.2. Weather types

In order to achieve our objective, we applied the proce-
dure described by Lamb (1972), further developed at a
later stage by Jenkinson and Collison (1977) and Jones
et al. (1993), and used to objectively define weather types
in the British Isles, from indices based on the direction
and vorticity of the geostrophic wind. This method was
subsequently adapted by Trigo and DaCamara (2000) to
study the rainfall regime in Portugal.

The classification of weather types was carried out
objectively and grouped weather types according to 6
variables, calculated from daily sea level pressure at 16
points around the Iberian Peninsula (Figure 1). It was
actually the same grid used by Trigo and DaCamara
(2000). The six parameters used are: southerly flow
(SF), westerly flow (WF), total flow (F’), southerly shear
vorticity (ZS), westerly shear vorticity (ZW) and total
shear vorticity (Z). For a detailed explanation on the
calculation of these parameters and on the definition of
the different types of circulation, see Trigo and DaCamara
(2000). Paredes et al. (2006) also offer a good synthesis
of this weather type classification scheme.

These values were calculated on a daily basis from
January 1948 to March 2009. The method classifies the
synoptic situation for each day into one of the 26 possible
types of atmospheric circulation (Table I).

In our study, we have not regrouped the hybrid types
within the non-directional types, contrary to other authors
(Trigo and DaCamara, 2000; Lorenzo et al., 2008), as
the results obtained for the probability of precipitation
and average daily rainfall were very different in the non-
directional and the hybrid types; they were not considered
comparable and, therefore, the 26 original weather types
were maintained.

Copyright © 2011 Royal Meteorological Society
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Table 1. Classification of the 26 existing weather types.

WEATHER TYPES (26)

Directional types Non-directional types  Hybrid types

Northerly (N) Anticyclonic (A) AN CN
Southerly (S) Cyclonic (C) ANW CNW
Easterly (E) AW CwW
Westerly (W) ASW CSW

Northwesterly (NW) AS CS

Southwesterly (SW) ASE  CSE
Southeasterly (SE) AE CE
Northeasterly (NE) ANE CNE

3.3. Trend analysis

Linear and non-parametric models can be applied to carry
out the trend analysis, both for the frequency of the
weather types, monthly, seasonal and annual precipitation
and the NAO index. In this study, linear correlation and
the Mann-Kendall test have been used for analysing the
trends. These methods have been described by Sneyers
(1990) and del Rio et al. (2005).

On describing the Mann-Kendall test, Sneyers (1990)
indicates that both this method and parametric tests,
such as the normal linear regression, are highly efficient
tests and have the same asymptotic efficacy. The main
difference is that the Mann-Kendall test also makes it
possible to calculate the start of the trend. Nevertheless, in
this study, the linear model has also been used to identify
and characterize the trends.

Positive (negative) values indicate an upward (down-
ward) trend in the frequency of the weather types or in
the precipitation. Throughout the whole article, values of
the trends for a confidence level of 95 % («¢ = 0.05) will
be considered significant. The existence of a statistically
significant trend will be evaluated using the value of the
linear correlation coefficient » and the value u(¢) of the
Mann-Kendall test (the trend is statistically significant if
lu(t)| > 1.96).

3.4. Logistic regression model

The objective of this model is to provide a nowcast
in binary terms (yes/no) of the precipitation expected
on a given day in Leén. The analysis has been carried
out with daily pressure and precipitation data from
between January 1994 and March 2009. The sample
period consists of a total of 5569 days. The logistic
regression model attempts to relate a response variable
(in our case if it rained or not) in the best possible way
with a series of explanatory variables, which in our case
are SF, WF, F, ZS, ZW and the NAO index (the 2F and
Z parameters have been excluded because they do not
offer any additional information to F, ZS and ZW). The
response variable is discrete in nature, as it can only have
one of two values (yes/no), i.e. it is binary or dichotomic.
We will therefore codify our response variable with the
two possible values: 1 and 0. We will use value 1 for the

Int. J. Climatol. 32: 2181-2196 (2012)
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days on which precipitation was recorded, and use value
0 for the rest.

We will now turn to the mathematical description of
the model, based on Kleinbaum (1992).

Firstly, the function we will refer to as the logistic
function is defined as follows:

f@) = ()

1+e*¢
The range values of the function are between 0 and 1,
namely:
0=<f@@=1 2)
The values of the explanatory variables (which are
meteorological magnitudes) from a given day have been
included in the YES group or in the NO group after
classifying the risk situations. The explanatory variables
are combined forming the variable z. This variable is
the base to compute the function f(z), which may have
values between 0 and 1, making it possible to interpret the
values of the logistic function as a probability function.
As a result, the value of f(z) may be interpreted as the
risk of a certain event occurring, with this risk increasing
the closer the value of f(z) approaches to 1.
The value of z is a linear combination of the explana-
tory variables, whereby
z=a+ B Xy + BXo+ ...+ BuXn) (3)
where X; are each of the meteorological magnitudes
used as explanatory variables, « is the independent
term that provides the resulting model, and B; the
coefficients of each explanatory variable, also obtained by
the model, according to the data introduced that consists
of the explanatory variables and the response variable,
measured for the total number of days included in the
sample. In this case, n = 7. Having estimated these 7
coefficients and the independent term, we arrive at the
final expression

1

PO = e A %)

“

where P(x) is the probability of rain on a certain day.
This model has been evaluated using contingency
tables (Table II), also assessing other parameters of
interest, such as the False Alarm Ratio (FAR), which
represents the days on which precipitation was not
registered, despite the fact that it had been predicted by
the model, and the Frequency Of Misses (FOM), which
represents the days on which precipitation was registered,
but the model had not predicted rain (Table II). Of course,
the lower these two values, the more reliable the model.
However, in order to establish the goodness of a
dichotomous prediction, it is not enough to know the
number of mistakes that can distort the result to some
extent, as when the z and y of the matrix provide an
incorrect perspective of the forecast. In other words,
the FAR and FOM indices are not sufficient: it is also

Copyright © 2011 Royal Meteorological Society
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Table II. Contingency table for the logistic regression model,
and forecast goodness indices.

PREDICTED
F(z) > 0.5 F(z) <0.5
YES NO
Observed YES X Y
NO z w
PAR = o
FOM = 51
_ XW — Yy
ISS=aFwe+w
HSS = 20w — y2)
x+)+w)+FE+G+w
KSS Xw = Y2

BECESICESON

necessary to jointly analyse the four variables shown in
the contingency table (Table II). The forecast goodness
indices, which are usual in predictive models (Doswell
et al., 1990; Jacovides and Yonetani, 1990), are based
on the calculation of skill scores to validate the model.
For example, Sanchez et al. (1998) used this type of
discriminatory analysis in order to find the relationship
between a categorical variable and a series of interrelated
variables in their study on the probability of storms
in Le6n. In this study, three scores for validating the
prediction of thunderstorms were calculated (Table II):
the True Skill Statistic (TSS), described by Wilks (1995),
occasionally referred to as Q by Dobryshman (1972); the
Heidke Skill Score (HSS), defined by Panofsky and Brier
(1958), which is equivalent to the TSS when the values
of Y and Z are the same, and Kuipers Skill Score (KSS),
proposed by Wilks (1995), which obtains more realistic
results in the forecasting of unusual events, such as
storms. Manzato (2005) proposed a simple approximation
for some of these indices, such as HSS and KSS, known
as the odds ratio. The odds ratio is parameterized as
a function of the Probability of Detection (POD), and
leads to a parameterisation of all the theoretical Relative
Operating Characteristic (ROC) curves.

The details of the skill scores have been described by
Jolliffe and Stephenson (2003). Their main features are:
the definition of the TSS is the probability of a predicted
event occurring, minus the probability of an event not
occurring in an unexpected way; the Heidke Skill Score
(HSS) provides a guarantee to correct all the forecasts
that are not exclusively due to chance (Huntrieser et al.,
1997); the KSS index is better adapted to rare events,
such as storms or hailstorms.

Obviously, the higher these three values, the more
efficient the model obtained. This leads us to consider
that the probability of rain falling on a given day may
perhaps not be the best criterion; establishing 0.5 as
the probability threshold discriminating between rainfall
and no rainfall may not lead to the best values of the
skill scores. So, we did the opposite, identifying the best

Int. J. Climatol. 32: 2181-2196 (2012)
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threshold value of the probability, in order to maximize
the forecast goodness indices.

4. Results and discussion
4.1.

As mentioned above, a classification of daily weather
types was set up from January 1948 to March 2009, using
daily sea level pressure data from the National Center
for Atmospheric Research (NCAR). This classification
can be of great use for describing the climate of Ledn.
Table III summarizes this classification showing each
weather type with its average annual frequency, trend,
probability of rainfall (based on the percentage of days
with rainfall observed with each weather type) and the
precipitation measured on days with rainfall.

The average yearly frequency and the trend were
calculated using daily pressure data from January 1948 to
March 2009, while the probability of rainfall and average
precipitation for days with rainfall have been calculated
using data from January 1994 to March 2009.

The table shows that the anticyclonic weather type is
clearly dominant in terms of frequency, with an average
of more than 81 days per year. This coincides with
the result obtained by Lorenzo et al. (2008), in their
study on the relationship between weather types and
precipitation in Galicia, Spain. It should also be noted that
this frequency is increasing over the period considered,
as revealed by the trend. Table III clearly and concisely
shows the relative importance of each weather type, as
it not only depicts the average annual frequency of each
weather type, but also details the probability of rainfall
and the expected precipitation.

Here, the positive trends of the weather types A, ASE,
CSE, CN, SE, E and SW stand out. With the exception
of CN and SW types, the rest are very dry weather types.
However, we may see negative trends for the weather
types ANE, AN, CW, NE and W. The negative trends of
the weather types CW and W, together with the positive
trends of CSE, ASE, SE and E reflect a decrease in the
frequency of days with dominant winds from the west
(during which there is a high probability of rainfall), and
an increase in the days with predominant winds from the
east and southeast (very dry).

The highest daily precipitation was found in the CSW
weather type, with average precipitation on days with
rainfall of more than 9 mm. Rainfall averages of more
than 7 mm were also found for the weather types SW,
CW and CNW, and more than 6 mm with C, CS, CE
and W. In contrast, with the weather types A, ASE, AS,
AE, ANE, AN and ANW the expected rainfall is virtually
zero, as the probability of rainfall is less than 10%, or
the average precipitation on days with rainfall is less than
2 mm.

Classification of weather types

4.2. Trends in weather type frequencies

The analysis included the trends for the main weather
types from 1948 to 2008. We selected the ‘anticyclonic’

Copyright © 2011 Royal Meteorological Society
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Table III. Objective classification of the frequency of different

weather types in Leén (January 1948—March 2009). The trend

is shown by the correlation coefficient (significant values for

o = 0.05 are marked with * ). The data on the probability of

rainfall and daily average rainfall are based on readings made
between January 1994 and March 2009.

1948-2009 1994-2009
Weather  Annual average  Trend  Probability Daily
types frequency of rainfall ~ Average
(days) (%) rainfall
(mm)

A 81.4 0.16 13.0 1.6
AS 2.3 0.00 2.9 4.5
ASE 2.6 0.17 2.3 0.3
AE 5.7 0.01 4.7 0.8
ANE 15.9 —-0.24 4.1 1.7
AN 15.8 —0.30* 15.1 1.7
ANW 12.6 0.02 38.7 1.7
AW 12.1 0.02 62.2 2.7
ASW 6.5 0.09 43.0 2.5
C 22.4 0.06 56.5 7.0
CS 2.0 0.06 51.6 6.0
CSE 2.3 0.13 26.9 1.2
CE 3.6 —0.03 19.0 6.5
CNE 5.4 —0.01 37.0 4.2
CN 3.7 0.14 62.2 3.5
CNW 2.2 0.06 89.3 7.1
Cw 2.7 —0.10 80.6 7.6
CSwW 2.8 0.08 89.1 9.0
S 6.1 —0.09 34.1 2.2
SE 73 0.11 6.7 3.0
E 18.7 0.17 6.6 2.3
NE 45.2 —0.20 11.0 34
N 31.3 0.00 34.2 3.9
NW 17.3 —0.09 57.7 2.8
W 21.8 —0.13 81.7 6.0
SW 15.8 0.11 70.5 7.4

(A), ‘cyclonic’ (C), ‘westerly’ (W) and ‘southwesterly’
(SW) weather types, as they are considered the 4 most
important weather types when defining the climate of
Leon: The first of these weather types is the most frequent
and, as will be seen in Section 4.3, the remaining three
are the main causes of the precipitation recorded in Ledn.
The aim of this analysis was to identify the causes of the
trends, and the possible consequences.

The ‘anticyclonic’ weather type (A) is very important,
as it has a clearly prevailing influence on the climate
in Ledén. This synoptic situation appears in Leén when
the Azores High is strengthened and shifted slightly
to the east of the Azores, with its front edge entering
the Iberian Peninsula. In winter, it also appears when
the Peninsula behaves as a source region of a very
cold air mass, which acts as a barrier against oceanic
fronts and low-pressure zones, leading to very stable
weather. Another situation that may occur is when the
European anticyclone encompasses the Iberian Peninsula.
This weather type is more frequent in the winter months

Int. J. Climatol. 32: 2181-2196 (2012)
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Figure 2. Frequency of selected weather types between the months of December and March (1948-2008). The thick lines represent the
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(with a frequency of 35%), with a very low probability of
precipitation during these days, of around 13%. It leads
to very stable weather conditions, causing radiation fog
and severe frost in winter.

The frequency of this synoptic situation has increased
significantly over the last few decades, especially in
winter (Figure 2), and it is now one of the causes
for the decrease in precipitation during the months
December to March. In all likelihood, the increase of
the NAO index over the last few decades has led to
the increase in the frequency of the anticyclonic weather
type. This is in agreement with other studies, for example:
Pozo-Vazquez et al. (2004) have detected an association
between NAO and solar radiation due to cloudless
(anticyclonic) weather; del Rio er al. (2005) found that
a high NAO index causes frequent anticyclones and dry
weather over wide areas of southern Europe; and Paredes
et al. (2006) observed that low-pressure systems have
become less frequent during the past four decades, when
positive NAO phases have been detected.

In contrast, a significant decrease has been noted in the
total frequencies of the three weather types responsible
for most of the precipitation, as discussed in Section
4.3. This decrease is most prominent in the winter
months (Figure 2). The three synoptic situations are
‘cyclonic’ (C), ‘westerly’ (W) and ‘southwesterly’ (SW)
and occur when the Azores High is weakened, allowing
the Icelandic Low to shift to lower latitudes facilitating
or allowing the arrival of associated fronts to the Iberian
Peninsula.

If we compare both curves in Figure 2, we can see
that the years with a high ‘anticyclonic’ frequency have
low values for the frequency of the three rainiest weather
types, and vice versa. On quantifying the relationship
between both frequencies, a significant correlation coef-
ficient has been found. This leads us to believe that the
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frequency of these weather types is controlled by another
variable, probably the NAO index.

4.3.

With the aim of studying the relationship between
weather types and precipitation in Leoén, these data were
analysed on a daily basis in order to obtain a classifica-
tion of the characteristics of the precipitation in the study
zone that could help us understand the local climatology
in greater detail. The amount of rainfall provided daily by
each weather type between 1994 and 2008 was calculated
to estimate the relative importance of each weather type.
The result was that the ‘cyclonic’ (C), ‘westerly’ (W) and
‘south-westerly’ (SW) types provide more precipitation
than the other 23 types taken together.

Figure 3 shows the clear predominance of the ‘anti-
cyclonic’ weather type (A) with regard to the rest. This
weather type represents nearly 23% of the days. The next
most frequent type is ‘northeasterly’ (NE), also a very dry
weather type. However, the sum of the frequencies of the
three rainiest weather types, ‘cyclonic’ (C), ‘westerly’
(W) and ‘southwesterly’ (SW), only represent 17.3% of
the total. Similar results were found by Lorenzo et al.
(2008).

Figure 3 also shows that there are 5 weather types
with a probability of rainfall of more than 70%: these
are CNW, CW, CSW, W and SW. Another 4 weather
types are shown with a probability of between 50 and
70%: AW, C, CN and NW. At the other end of the scale,
we find 9 weather types with less than 15% of days with
precipitation: A, AS, ASE, AE, ANE, AN, SE, E and NE,
most of which are characterized by having anticyclonic
features and/or easterly circulation. This figure shows
that most of the precipitation comes from weather types
associated with westerly winds from the Atlantic Ocean
(Garcia-Herrera ef al., 2005). On the other hand, on days

Weather types and precipitation
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Figure 3. Frequency and percentage of days with rainfall for each weather type between 1994 and 2008. This figure is available in colour online
at wileyonlinelibrary.com/journal/joc

with weather types accompanied by easterly winds (when
the air reaching Ledn is dry), practically no precipitation
is recorded.

As we can see in Figure 4, three weather types provide
most of the yearly precipitation, exactly 55.4%. These
weather types are ‘cyclonic’ (C), ‘westerly’ (W) and
‘southwesterly’ (SW). Similar results were obtained for
Galicia, Spain by Lorenzo et al. (2008). The weather
types N, NW and CSW also usually lead to precipitation,
although their relative importance when analysing the
local climate of Ledn is minor, as they only appear with
a very limited frequency.

By analysing only the winter months (from December
to March), the percentage of rainfall contributed by the
3 rainiest weather types (C, SW and W) rises to 64%
(Figure 4). In particular, an increase may be seen in
the precipitation recorded on days with the SW weather
type. These results coincide with those obtained by Trigo
and DaCamara (2000), who indicated in their study on
the rainfall regime in Portugal that the three rainiest
weather types are ‘cyclonic’ (C), ‘westerly’ (W) and
‘south-westerly’ (SW) (the same three that were found
for Le6n). The authors state that although they only
appear on 32% of the days during the winter months in
Portugal, they account for 62% of all winter precipitation,
a result that is very similar to the figure of 64% for winter
precipitation recorded in Ledn.

4.4. Evolution of the precipitation

The analysis of the evolution of annual precipitation
using linear and non parametric models showed a slight
decrease in the period between January 1948 and Decem-
ber 2008. This decrease is indicated by a correlation
coefficient of—0.14 (which does not represent a signif-
icant trend for o = 0.05). As an overall evaluation, it
may be said that since 1948, annual precipitation has
decreased by a yearly average of slightly more than

Copyright © 2011 Royal Meteorological Society

I mm per year. These values coincide with the trends
observed and predicted by Gonzdlez-Rouco et al. (2000),
who indicated that decreases of up to 10 mm per decade
could occur in some central and southern parts of the
Iberian Peninsula. Several studies on this upward trend
in annual precipitation in Spain have already been car-
ried out (Esteban-Parra et al., 1998; Mossmann, 2002;
Paredes et al., 2006; IPCC, 2007), with similar results.

If instead of a linear model, we apply a second
order polynomial model to the annual evolution of
precipitation, a convex curve is obtained in the period
from 1948 to 2008, which is statistically significant (o =
0.05) and has a maximum around 1969 (Figure 5). Before
this maximum (between 1948 and 1969) the volume of
rainfall was rising at a rate of 3 mm per year. Since
then, annual precipitation has decreased by an average of
2.4 mm per year, representing a more dramatic decrease
than that indicated in the literature mentioned above.

A more exhaustive analysis of annual precipitation
was carried out, comparing the following two periods:
1948-1969 and 1970-2008, separated by a change in
the trend, as mentioned above. The monthly evolution
of precipitation is shown in Figure 6. The comparison
of the two periods revealed significant decreases in
precipitation in the months of February, March and
November. In contrast, slight increases may be seen in
the months of May, July, August and October. In the
latter period (1970-2008), we see that precipitation has
tended towards being distributed in two maximums and
two minimums throughout the year. The first maximum
corresponds to the months from October to January, and
the second to the months of April and May, while the
minimums correspond to the months of February and
March, and from June to September.

The decrease in precipitation in the month of March
in these two periods is the most dramatic one. We
see a decrease of 46%, from an average of 60 mm in
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Figure 4. Percentage of annual and winter (December—March) precipitation for each weather type between 1994 and 2008. This figure is available
in colour online at wileyonlinelibrary.com/journal/joc

the months of March between 1948-1969, to 33 mm
between 1970 and 2008. Also noteworthy is the decrease
in precipitation in the month of November, from an
average of more than 70 mm to barely 54 mm, a decrease
of 24%. Del Rio et al. (2011) obtained similar results in
most of Spain.

Considering the overall period (1948—-2008), the high-
est monthly decrease in precipitation also occurs in the
month of March, with a statistically significant negative
trend (r = —0.27). The decrease seen in this month has
been confirmed by numerous studies (Trigo and DaCa-
mara, 2000; Mossmann, 2002; del Rio et al., 2005). Sta-
tistically significant negative trends are found in central
parts of Spain (Mossmann et al., 2004). Paredes et al.
(2006) relate this to the increase in the NAO index in
this month over the last 4 decades.

On a seasonal scale, negative trends were found in
spring, summer and winter. Decreases in precipitation in
spring have also been found by authors such as Trigo and
DaCamara (2000), Hurrell et al. (1995) and Paredes et al.
(2006). During the summer months, negative trends in
precipitation have already been described by Hurrell ez al.
(1995) and by the IPCC (2007). In contrast, a slightly
positive, but non-significant, trend appears in autumn.
Positive trends in autumn precipitation in the Duero Basin
have been found by Ceballos er al. (2004).

The most prominent change in recent years is the
decrease in winter precipitation (December, January,
February and March). The decrease observed in recent
years in the frequency of these three weather types as a
result of the increase of the NAO index during these four
months results in a sharp decrease in winter precipitation
(Figure 7). This decline is significant, according to the
Mann-Kendall test, and reflects the fact that since 1948
winter precipitation has decreased by an average of
1.4 mm per year.

To study the changes in precipitation behaviour in the
whole period and compare it with the NAO index, a
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nonlinear model was checked. An order-2 model offers a
better fit than a linear model, and provides a statistically
significant convex curve. This curve reaches its maximum
in 1964. After that year it goes down steadily until 2008,
at an average rate of 1.8 mm per year (Figure 7).

This decrease in precipitation during the winter months
has been confirmed by Caramelo and Manso-Orgaz
(2007) for the Duero Basin, del Rio et al. (2005) for
Castile and Leoén, and by Loépez-Bustins ef al. (2008)
for central and western zones of the Iberian Penin-
sula. Rodrigo and Trigo (2007) and Lépez-Bustins et al.
(2008) confirm the link between the decrease in win-
ter precipitation in the Iberian Peninsula and changes in
atmospheric circulation.

4.5. Relationship between NAO, weather types
and winter precipitation

Prior to the selection of variables for the logistic regres-
sion model, a comprehensive correlation study is con-
ducted between the December and March NAO index
and rainiest weather types. The NAO index was cho-
sen as it is the mode that best defines the variability of
atmospheric circulation in the Atlantic zone of the North-
ern Hemisphere (Rodé et al., 1997; Trigo and Palutikof,
2001).

In the period between December and March, a con-
siderable increase may be seen in the trend of the NAO
index. The linear trend model shows that this increase
occurs with a significant correlation coefficient for the
months between December and March from 1948 to
2008. The Mann-Kendal test for this series illustrates that
the trend began around 1978.

In contrast, a nonlinear model of the trend (in this
case a third-order polynomial model) reveals that the
NAO behaves in a peculiar way: it decreases from 1948
until reaching a minimum around 1962; then it increases
and reaches the maximum around 1994, after which it
once again decreases (Figure 8). Here we should note
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Figure 5. Evolution of annual precipitation between 1948 and 2008. This figure is available in colour online at wileyonlinelibrary.com/journal/joc
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Figure 6. Monthly distribution of precipitation in the periods 1948—-1969 and 1970-2008. Error bars indicate the standard deviation. This figure
is available in colour online at wileyonlinelibrary.com/journal/joc

that the maximum winter precipitation is around 1964
(Figure 7), slightly later than the minimum in the NAO
index. Hurrell and van Loon (1997) detected a sharper
increase in the positive values of the winter NAO index
from the 1980s onwards.

The increase of the NAO index in the last few
decades has resulted in a decrease in the activity of the
winter low-pressure systems that affect Western Europe,
as observed by Trigo (2006). The main consequence
associated with the increase in the NAO index during
the months from December to March is the decrease in
winter precipitation, shown in Figure 7.

As may be seen in Figure 8, there is a significant
negative correlation (r = —0.6) between the precipitation
and the average NAO index in these 4 months in the
winters of 1948 and 2008. In order to see the close
relationship between these two variables more clearly,
Figure 8 shows the standardized value of the NAO index

Copyright © 2011 Royal Meteorological Society

with its sign reversed. It also shows the standardized
data for the precipitation volume recorded in Leén. In
order to obtain the standardized value, the average value
for the whole period has been subtracted from the value
for each winter, then dividing this result by the standard
deviation.

The most spectacular result found is shown in Figure 9.
This is an extremely strong correlation (r = 0.8) between
the winter frequency of the 3 rainiest weather types
(‘cyclonic’, ‘westerly’ and ‘southwesterly’) and the pre-
cipitation accumulated from December to March in the
period 1948-2008. As in Figure 8, the standardized data
are shown for the precipitation volume and the frequency
of the three weather types in the months from December
to March.

The two results confirm the close relationship existing
between the winter precipitation recorded at the city of
Leo6n, the NAO index and the rainiest weather types.
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The results also validate the importance of the ‘cyclonic’
(O), ‘westerly’ (W) and ‘southwesterly’ (SW) weather
types when studying the climate of Le6n, as most of the
annual precipitation in the city, especially in the winter
months, appears on days with one of these three synoptic
situations. These results coincide with those obtained by
Lorenzo et al. (2008), who conclude that the ‘cyclonic’,
‘western’ and ‘south-western’ weather types (equivalent
to the three described in our study), are responsible for
most of the rainfall recorded throughout the year in
Galicia, Spain.

In terms of weather forecasting, we can say that if
we were able to forecast the value of the NAO index
for a winter some months in advance, then we would

Copyright © 2011 Royal Meteorological Society

be able to obtain an accurate estimate of the amount of
precipitation that would be recorded in that winter. The
high correlation coefficients between the NAO index, the
frequency of the three rainiest weather types and winter
precipitation suggests an interesting way of forecasting
rainfall, if it were possible to estimate the evolution
of the weather types or, as mentioned above, the NAO
index. However, the medium-term forecasting of weather
types involves considerable problems, so the predictive
capacity described would be necessarily limited. There is
always the possibility of finding a way of forecasting the
NAO index using other intermediate variables, such as
the sea surface temperature. Several authors have already
published studies on this relationship (Zorita et al., 1992;
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Czaja and Frankignoul, 2001; Bojariu and Gimeno, 2003;
Gémiz-Fortis et al., 2004; Losada et al., 2007). In any
case, this question will be the subject of future research.

4.6. Logistic regression model

The method is presented as an improvement with respect
to a direct downscaling from the NAO Index. The binary
logistic regression model described in the last part of
the Methodology section was applied. The parameters
used to obtain the classification in weather types (i.e.
SF, WF, ZS, ZW, F) and the NAO index were used
to obtain an estimate of daily precipitation in Ledn.
The dependent variable is the presence or absence of
precipitation, which by being categorical can only have
two values: 1 or 0. A further series of tests were carried
out using a precipitation volume of more than 0.5, 1 or
2 mm as the categorical variable, although worse results
were obtained.

Firstly, all the days between January 1994 and March
2009 were analysed (a sample of 5569 days). The values
of « and B; in Equation (3) were computed, and the
corresponding logistic function was constructed. If the
value of the logistic function f(z) for a given day was
higher than 0.5, the model estimated that rainfall was
recorded on that day. The goodness of the fit is not
excellent: the results obtained show values for TSS, HSS
and KSS lower than 0.6.

The same study was carried out again, restricting the
sample to the months of December, January, February
and March (a sample of 1909 days). The logistic function
determines whether the model estimates that rainfall has
been recorded or not on a given day.

The logistic function can take into account the presence
of rain in Ledn for specific values of z. What value of z
would best serve as the threshold for precipitation risk?
Figure 10 shows the behaviour of the logistic function
more clearly. It shows the observed frequency, in number
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of days, for each range of values of z, grouped in intervals
of 0.2, distinguishing between days with rain and days
without rain. In this figure, we may see how around
a certain value of z (approximately between —0.4 and
—0.5), the frequency of days with rain becomes higher
than the frequency of days without rain. In fact, the aim is
not to find a coincidence in the frequencies, but rather that
the number of days with rain to the left of the threshold
value of z and the number of days without rain to the
right of this threshold (which are the prediction values)
be as small as possible.

Although the limit is frequently set at f(z) = 0.5,
in this study we have done the opposite: Huntrieser
et al. (1997) used the values of TSS to determine the
optimum orientation of their different storm predictors,
and similarly, in this study, we have looked for the
threshold value of f(z) so that the skill scores have their
maximum value. This value was calculated, and the result
was f(z) = 0.39. This value corresponds to a value of
z = —0.45. The results shown in Table IV were obtained
with these variables. By setting the limit of f(z) as 0.39,
we obtained values for TSS = 0.64 and HSS = 0.6,
clearly improving the values obtained with f(z) = 0.5
(TSS = 0.58; HSS = 0.56).

On analysing these results, more attention has been
paid to the values of TSS, as this is the most reliable
index (followed by HSS), as indicated by Sohn and Park
(2008) in their study on the forecast of heavy snowfall.
Haklander and Van Delden (2003) found that in the
case of forecasting storms in Holland, higher values are
obtained using HSS than TSS. Dasgupta and De (2007)
used a binary logistic regression model similar to our
own in order to obtain short-term forecasts for convective
rainfall. Using the method of backward selection and
forward selection, the method provides better results
when the probability of the threshold is reduced to 0.35,
instead of the usual figure of 0.5. This result is similar to
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Table IV. Results obtained from the logistic regression model,
with a threshold of F(z) > 0.39 to consider a forecast for

rainfall.
PREDICTED
F(z) > 0.39 F(z) <0.39

YES NO

Observed YES 529 175

NO 186 1019
TSS 0.64
HSS 0.60
KSS 0.59
FAR 0.26
FOM 0.25

that obtained in our study, in which we set the threshold
at 0.39.

Finally, do the values of the skill scores from our
study represent a good result or not? It is difficult
to establish comparisons with other models, especially
when they involve different aspects: they either use
other variables as predictors, or try to predict phenomena
that are registered with different frequencies. This study
cannot be compared with the usual forecasting models
included in the literature on phenomena with more
defined characteristics, such as those associated with
strong convective activity (storms, hailstorms, etc.). We
may mention the study by Zhang and Casey (2000) on
the categorical forecasting of winter precipitation, who
obtained TSS values between 0.1 and 0.15, with a 11.1%
probability departure.

Summing up, the authors consider that the best result
of this paper is the design of a binary downscaling model
for NAO and weather types in relation with precipitation.
The next task will be to enlarge the study zone to a
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sufficiently homogeneous area, and even attempt to set
up a forecast model for hydrological applications.

5. Conclusions

The main aim of this article was to obtain the daily clas-
sification of weather types for the city of Le6n from
January 1948 until March 2009, based on the classifi-
cation of weather types developed by Lamb (1972) and
improved and adapted for Iberia by Trigo and DaCamara
(2000). A secondary aim was the design of a binary
downscaling model for precipitation occurrence. After
observing the trends in the frequency of the different
weather types, the analysis focused on identifying the
relationship between the increase observed in the NAO
index and the decrease in precipitation in the study zone
over the last few decades. The study focused on the win-
ter months (December—March), since the influence of the
NAO index on precipitation is stronger.

The most significant results obtained in this study are
the following:

e The ‘anticyclonic’ weather type (A) has a clearly
prevailing influence on the climate in Ledn, with
an average frequency between 1948 and 2008 of
81.4 days per year (22.3% of the total).

e The increase in the NAO index over the past few
decades is linked to the winter frequency of the
‘pure anticyclone’ weather type (A), which has grown
significantly between 1948 and 2008. On the other
hand, the increase in NAO is related to the decrease in
the frequency of other weather types — ‘cyclonic’ (C),
‘westerly” (W) and ‘southwesterly’ (SW) — resulting
in a decrease in winter precipitation in the city of
Ledn. This is because the positive phase of the NAO
is associated with an enhanced Azores anticyclone,
preventing the entry of storms from the Atlantic Ocean.

Int. J. Climatol. 32: 2181-2196 (2012)
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e On the basis of data from January 1994 to December
2008, just three weather types (C, SW and W) account
for 55.4% of the annual precipitation. In this same
period, there are five weather types with a percentage
of days with rainfall higher than 70% (SW, W, CW,
CSW and CNW).

e A linear analysis of the evolution of precipitation from
1948 until 2008 shows a non-significant downward
trend in annual precipitation, with an average decrease
of 1.1 mm/year if we consider the whole period. An
order-2 model revealed that the annual precipitation
reached its maximum in 1969, after which there is
a continuous decrease by approximately 2.4 mm per
year.

e Comparing the periods 1948—1969 and 1970-2008,
we see important decreases in precipitation in the
months of February, March and November. On the
other hand, only slight increases have been found in
the months of May, July, August and October. The
decrease in the month of March is the most dramatic
one, plunging from an average of 60 mm in the period
1948-1969, to just 33 mm between 1970 and 2008.

e Focusing on the winter months (from December to
March), a statistically significant increase has been
found in the NAO index (r = 0.3). Owing to the
high negative correlation between the NAO index and
precipitation during the winter period (r = —0.6), there
is a major decrease in precipitation (r = —0.2).

e We found the most striking result on identifying the
relationship between the frequency of the 3 rainiest
weather types and the precipitation between December
and March (1948-2008). The resulting correlation
coefficient is 0.8.

e Using the logistic regression model for the daily
occurrence of precipitation, acceptable results were
obtained (TSS = 0.64). These results are particularly
noteworthy, as only sea level pressure data were used
for this model.

In the light of these results, we conclude that the
increase of the NAO index observed in the past few
decades, which is more acute between December and
March, causes a decrease in the frequency of the three
weather types responsible for most of the precipitation.
As a result, there is a statistically significant decrease
in winter precipitation. This proves that the NAO is the
phenomenon that controls winter precipitation in the west
of the Iberian Peninsula on a large scale, as suggested by
Hurrel and van Loon (1997).

The decrease of cyclonic activity over the past few
decades in Western Europe (Trigo, 2006), and the increas-
ing frequency of high pressures in atmospheric circulation
patterns (Stefanicki e al., 1998) may explain the decrease
in winter precipitation in the Iberian Peninsula.

This paper has shown that by using exclusively pres-
sure data to study precipitation, acceptable results are
obtained for daily downscaling, although these models
are more precise if they are based on a monthly basis.

Copyright © 2011 Royal Meteorological Society
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