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The purpose of this communication is to point out the connection between a 1D
quantum Hamiltonian involving the fourth Painlevé transcendent PIV, obtained in the
context of second-order supersymmetric quantum mechanics and third-order ladder
operators, with a hierarchy of families of quantum systems called k-step rational
extensions of the harmonic oscillator and related with multi-indexed Xm1,m2, ...,mk

Hermite exceptional orthogonal polynomials of type III. The connection between
these exactly solvable models is established at the level of the equivalence of the
Hamiltonians using rational solutions of the fourth Painlevé equation in terms of
generalized Hermite and Okamoto polynomials. We also relate the different lad-
der operators obtained by various combinations of supersymmetric constructions
involving Darboux-Crum and Krein-Adler supercharges, their zero modes and the
corresponding energies. These results will demonstrate and clarify the relation
observed for a particular case in previous papers. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4949470]

I. INTRODUCTION

The six Painlevé transcendents associated with their six corresponding Painlevé equations were
obtained by Painlevé and Gambier1 at the beginning of the 20th century and since then have been
the object of many works. They possess many properties, in particular, they have no movable
branch point.2 They appear in the study and classification of ordinary differential equations of the
form w ′′ = F(z, w,w ′), where F is rational in w ′ and w and analytic in the variable z. Generaliza-
tions to higher-order equations have been discussed by Chazy,3 Bureau,4 and Cosgrove,5,6 but the
classification and study is a much more difficult problem.

The six Painlevé transcendents also appear in various contexts as reductions by symmetry
of equations such as KdV, Boussinesq, and soliton, in the fields of statistical mechanics, general
relativity, quantum field theory, and optics, for instance.7 The Painlevé transcendents have attracted
a lot of interest from both applied and pure mathematics points of view. Their numerous properties,
such as their asymptotic, solutions, and irreducibility, have been the topic of several works.

One of these highly interesting objects is the fourth Painlevé transcendent w satisfying the
fourth Painlevé equation

w ′′ =
w ′2

2w
+

3
2
w3 + 4zw2 + 2(z2 − α)w + β

w
, (1.1)

a)Electronic address: i.marquette@uq.edu.au
b)Electronic address: cquesne@ulb.ac.be
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where α and β are complex parameters. The fourth Painlevé transcendent has been shown to be
irreducible, i.e., the general solution of the fourth Painlevé equation cannot be expressed in terms
of known elementary functions. However, it is known that this fourth Painlevé equation possesses
hierarchies of rational solutions for special values of the parameters α and β. It has been shown
there are three families of rational solutions of the form

w1(z; α1, β1) =
P1,n−1(z)

Q1,n(z)
,

w2(z; α2, β2) = −2z +
P2,n−1(z)

Q2,n(z)
,

w3(z; α3, β3) = −
2
3

z +
P3,n−1(z)

Q3,n(z)
,

(1.2)

where the polynomials Pi,n and Qi,n are of degree n. The associated values of the parameters αi and
βi (i = 1, 2, 3) are summarized in Table I. These three hierarchies of rational solutions of the fourth
Painlevé equation are known as the “− 1

z
,” “−2z,” and “− 2

3 z” hierarchies.
Very interestingly, the fourth Painlevé transcendent appears in the context of nonrelativistic

quantum systems and, more particularly, of second-order supersymmetric quantum mechanics and
third-order ladder operators.8–14 Andrianov, Cannata, Ioffe, and Nishnianidze8 have considered a set
of two Hamiltonians H1, H2, which are related at the same time by first- and second-order Darboux
transformations and can be expressed as

H1,2 = −
d2

dx2
+ x2 ∓ g′ + g2 + 2xg − 1, (1.3)

where g = w(x,α, β) (with −∞ < x < ∞) satisfies the fourth Painlevé equation (1.1) for arbitrary
parameters α and β. Note that, in Ref. 8, the parameters

a = α, b = −2β, ᾱ = a − 1 = α − 1, d = −1
4

b =
1
2
β (1.4)

are actually used and that we set there λ = 1 for simplicity’s sake. The Hamiltonians H1 and H2

admit several symmetries, which allow us to restrict the discussion to Hamiltonian H1 only. It
has been shown by the authors of Ref. 8 that for some ranges of α and β values, H1 may admit
one, two, or three infinite sequences of equidistant levels, or one infinite sequence of equidistant
levels with either one additional singlet or one additional doublet. This system is still the object of
works in regard of specific choices of parameters, non-Hermitian Hamiltonians, ladder operators,
and coherent states.15–17 Superintegrable generalizations of this model in two dimensions, which
possess higher-order integrals of motion and finitely generated polynomial algebras, have also been
obtained and studied algebraically.18–22

More recently, multi-step rational extensions of the harmonic oscillator were studied.23–31 The
corresponding Hamiltonians may be written as Refs. 31 and 32

H (2) = − d2

dx2
+ x2 − 2k − 2

d2

dx2
logW(Hm1,Hm2, . . . ,Hmk

), (1.5)

in terms of Wronskians of pseudo-Hermite polynomials Hmi
(x).23 Equation (1.5) corresponds

in fact to a hierarchy of families indexed by the parameter k, i.e., k = 1,2,3, . . .. A given fam-
ily of models corresponding to a given value k = l with l ∈ Z is a l-step extension that con-
tains l parameters m1, . . . ,ml satisfying some conditions. The wavefunctions of these models are

TABLE I. Three families of rational solutions and corresponding parameters.

Family type Hierarchy αi βi m n

1 “− 1
z

” ±m −2(1+2n+m)2 m ∈ Z, m ≥ −2n n ∈ Z, n ≤ −1
2 “−2z” m −2(1+2n+m)2 m ∈ Z, m ≥ −n n ∈ Z, n ≥ 0
3 “− 2

3 z” m − 2
9 (1+6n−3m)2 m ∈ Z n ∈ Z
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related to multi-indexed Xm1,m2, ...,ml
Hermite exceptional orthogonal polynomials (EOP) of type

III. This hierarchy can be obtained via various supersymmetric constructions according to the
Darboux-Crum33 or Krein-Adler34,35 approach. These different constructions also make possible to
generate different sets of ladder operators and, consequently, different sets of integrals of motion for
their superintegrable generalizations in 2D.28–31

The purpose of this paper is to relate both Hamiltonians, i.e., H (2) for specific values of k

and H1 for hierarchies of rational solutions of the fourth Painlevé transcendent, and in addition to
relate the supercharges involved in their distinct supersymmetric schemes and the corresponding
ladder operators associated with some combinations of supercharges and different structures of zero
modes. The aim of this communication is also to fill in a gap in the literature and explicitly demon-
strate the connection that was observed and mentioned in recent papers in regard of a particular case
of H1 and the one-step rational extension H (2) for m1 = 2.19,20,28,29,36

The organization of the paper is as follows. In Sec. II, we recall some results on k-step rational
extensions of the harmonic oscillator H (2) and consider more explicitly one- and two-step rational
extensions. In Sec. III, we discuss the quantum systems H1,2 involving the fourth Painlevé tran-
scendent, the construction of ladder operators of Andrianov et al. for H1 and recall some known
results on the three hierarchies of rational solutions related to generalized Hermite and Okamoto
polynomials. In Sec. IV, we discuss for H1 the case of one singlet and one infinite chain and show
the connection with one-step rational extensions H (2). We compare the supercharges, the ladder
operators, the zero modes, and the corresponding energy spectra. In Sec. V, we connect the case of
three infinite sequences for H1 with the particular case m1 = 2 for one-step rational extensions via
generalized Okamoto polynomials. In Sec. VI, we relate the case of one doublet and one infinite
sequence of levels for H1 to the two-step rational extension case for H (2) and specific values of
parameters. In Sec. VII, we present some concluding remarks.

II. k -STEP RATIONAL EXTENSIONS OF THE HARMONIC OSCILLATOR

In nth-order supersymmetric quantum mechanics,37 one considers a pair of partner Hamilto-
nians H (i) = − d2

dx2 + V (i)(x), i = 1, 2, where V (2)(x) can be obtained from V (1)(x) in the form

V (2)(x) = V (1)(x) − 2
d2

dx2
logW(ϕ1, ϕ2, . . . , ϕn), (2.1)

by considering n different seed solutions ϕ1(x), ϕ2(x), . . . , ϕn(x) of the Schrödinger equation for
H (1). The two Hamiltonians H (1) and H (2) intertwine with two nth-order differential operatorsA and
A† as

AH (1) = H (2)A, A†H (2) = H (1)A†. (2.2)

HereA = A(n) · · · A(2)A(1),A† = A(1)†A(2)†A(n)†, and

A(i) =
d

dx
+W (i)(x), W (i)(x) = − d

dx
log ϕ(i)(x), i = 1,2, . . . ,n,

ϕ(1)(x) = ϕ1(x), ϕ(i)(x) =
W(ϕ1, ϕ2, . . . , ϕi)

W(ϕ1, ϕ2, . . . , ϕi−1)
, i = 2,3, . . . ,n.

(2.3)

In the present case, the starting Hamiltonian is that of the harmonic oscillator, i.e., V (1)(x) = x2,
−∞ < x < ∞.

In the state-adding case (or Darboux-Crum approach33), we choose n = k and take for ϕi(x)

non-normalizable eigenfunctions φmi
(x) of H (1) below the ground state, where

φm(x) = Hm(x)e
1
2 x

2
(2.4)

is expressed in terms of a mth-degree pseudo-Hermite polynomial Hm(x) = (−i)mHm(ix).23 As a
result, we get the potential of a k-step rational extension of the harmonic oscillator

V (2)(x) = x2 − 2k − 2
d2

dx2
logW(Hm1,Hm2, . . . ,Hmk

), (2.5)
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corresponding to Hamiltonian (1.5). Non-singularity of V (2)(x) can be achieved by taking m1 <

m2 < · · · < mk with mi even (respectively, odd) for i odd (respectively, even). Hamiltonian H (2) is
exactly solvable with wavefunctions related to Hermite EOP of type III. The intertwining operators
(also called supercharges) A and A† are then kth-order differential operators. As explicitly shown
in the k = 2 case,29 other orderings of m1, m2, . . . ,mk are possible and lead to other supercharge
operators.

Up to some additive constant, the same potential V (2)(x) can be constructed31 via the state-
deleting or Krein-Adler approach.34,35 In such a case, we choose n = mk + 1 − k and take for ϕi(x)

some well-selected bound-state wavefunctions of H (1). This results in another set of supercharges,
which are (mk + 1 − k)th-order differential operators.

As it will be detailed below, ladder operators for H (2) can be constructed by appropriately
combining supercharges.

Let us now present some explicit expressions for the potentials, spectra, wavefunctions, super-
charges, and ladder operators corresponding to the one- and two-step cases, which we plan to
consider in the present paper.

A. One-step rational extensions

For k = 1, the potential V (2)(x) of Eq. (2.5), obtained in the state-adding approach, takes the
form28–30

V (2)(x) = x2 − 2

H ′′m1

Hm1

−
(H ′m1

Hm1

)2

+ 1

, (2.6)

where m1 is assumed even for non-singularity’s sake. The corresponding supercharges A and A†
reduce to

A =
d

dx
+W (x), A† = − d

dx
+W (x), W (x) = −x −

H ′m1

Hm1

, (2.7)

and the Hamiltonian H (2) can be written as

H (2) = AA† − 2m1 − 1, with V (2) = W 2 +W ′ − 2m1 − 1. (2.8)

The spectrum of H (2) is now given by

E
(2)
ν = 2ν + 1, ν = −m1 − 1,0,1,2, . . . (2.9)

and differs from that of the standard harmonic oscillator V (1)(x) by an extra level below the infinite
sequence of levels. The corresponding wavefunctions are expressed as

ψ
(2)
ν (x) ∝ e−

1
2 x

2

Hm1(x)
y
(m1)
n (x), n = m1 + ν + 1, (2.10)

where the nth-degree polynomials y (m1)
n (x), given by

y
m1
n (x) =


1 if ν = −m1 − 1,

−Hm1Hν+1 − 2m1Hm1−1Hν if ν = 0, 1, 2, . . . ,
(2.11)

belong to the Hermite EOP family of type III that can be denoted as Xm1.
On the other hand, by deleting the first m1 excited states of H (1), ψ1(x), ψ2(x), . . . ,ψm1(x),

where ψi(x) ∝ e−x
2/2Hi(x), we get the potential V̄ (2)(x) = V (2)(x) + 2m1 + 2 and another set of

supercharges Ā = Ā(m1) · · · Ā(2)Ā(1) and Ā† = Ā(1)†Ā(2)† · · · Ā(m1)†,31 where

Ā(i) =
d

dx
+ W̄ (i)(x), W̄ (i)(x) = x +

H ′
i−1

Hi−1
−
H ′

i

Hi

, i = 1,2, . . . ,m1. (2.12)

Two different classes of ladder operators are known for one-step rational extensions of the
harmonic oscillator. The first ones, corresponding to the standard way of building ladder operators
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in supersymmetric quantum mechanics, are obtained by combining the oscillator creation and anni-
hilation operators a† = −d/dx + x, a = d/dx + x with the supercharges A and A† of Eq. (2.7). They
are given by Refs. 28 and 30

b† = Aa†A†, b = AaA† (2.13)

and satisfy the relations [H (2),b†] = 2b†, [H (2),b] = −2b. They are third-order operators for any
(even) m1 value. The annihilation operator b has two zero modes ψ(2)

−m1−1(x) and ψ(2)
0 (x), while the

creation operator b† has one zero mode ψ(2)
−m1−1(x), so that the set of wavefunctions divides into a

singlet ψ(2)
−m1−1(x) and an infinite sequence {ψ

(2)
ν (x) | ν = 0,1,2, . . .}, corresponding to equidistant

levels.
The second class of ladder operators is obtained by combining the supercharges (2.7) and

(2.12) of the state-adding and state-deleting approaches. They are (m1 + 1)th-order operators given
by Refs. 30 and 31

c† = AĀ(1)†Ā(2)† · · · Ā(m1)†, c = Ā(m1) · · · Ā(2)Ā(1)A† (2.14)

and satisfying the relations [H (2),c†] = (2m1 + 2)c†, [H (2),c] = −(2m1 + 2)c. In Sec. V, we will
consider more specifically the m1 = 2 case, wherein the ladder operators c†, c are third-order oper-
ators. The annihilation operator c has then three zero modes ψ(2)

−3(x), ψ
(2)
1 (x), ψ(2)

2 (x), while the
creation operator c† has none. Hence, the set of wavefunctions divides into three infinite subsets
{ψ

(2)
i+3 j(x) | j = 0,1,2, . . .} with i = −3, 1, 2, corresponding to equidistant levels.

B. Two-step rational extensions

For k = 2, the potential V (2)(x), obtained in the state-adding case, reads29,31

V (2)(x) = x2 − 2

g′′µ

gµ
−

(

g′µ

gµ

)2

+ 2

, (2.15)

where gµ(x) ≡ W(Hm1,Hm2) is a µth-degree polynomial (with µ = m1 + m2 − 1) and we assume
that m1 is even, m2 is odd, and m1 < m2. The spectrum of H (2) is given by

E
(2)
ν = 2ν + 1, ν = −m2 − 1,−m1 − 1,0,1,2, . . . , (2.16)

so that there are two extra levels below the standard oscillator spectrum, the corresponding wave-
functions being

ψ
(2)
ν (x) ∝ e−

1
2 x

2

gµ(x)
y
(µ)
n (x), n = µ + ν + 2. (2.17)

The nth-degree polynomials y (µ)n (x), which read

y
(µ)
n (x) =



Hm1, if ν = −m2 − 1,

Hm2, if ν = −m1 − 1,

(m2 − m1)Hm1Hm2Hν+1

+2[m1(m2 + ν + 1)Hm1−1Hm2

−m2(m1 + ν + 1)Hm1Hm2−1]Hν, if ν = 0,1,2, . . . ,

(2.18)

belong to the Hermite EOP of type III denoted as Xm1,m2.
We will not discuss here the state-deleting approach because the combination of the corre-

sponding supercharges with those coming from the state-deleting approach always leads to ladder
operators of order higher than three, but we will instead consider two different ways of adding
the states with ν = −m1 − 1 and ν = −m2 − 1 below the standard oscillator spectrum. Adding first
the state with ν = −m1 − 1 leads to an intermediate Hamiltonian with a non-singular potential and
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supercharge operatorsA = A(2)A(1),A† = A(1)†A(2)† with

A(i) =
d

dx
+W (i)(x), W (1)(x) = −x −

H ′m1

Hm1

, W (2)(x) = −x +
H ′m1

Hm1

−
g′µ

gµ
. (2.19)

Starting instead by adding the state with ν = −m2 − 1 yields an intermediate Hamiltonian with a
singular potential (the final Hamiltonian being the same as before) and other supercharge operators
Ã = Ã(2)Ã(1), Ã† = Ã(1)†Ã(2)† with

Ã(i) =
d

dx
+ W̃ (i)(x), W̃ (1)(x) = −x −

H ′m2

Hm2

, W̃ (2)(x) = −x +
H ′m2

Hm2

−
g′µ

gµ
. (2.20)

As shown in Ref. 29, the two intermediate Hamiltonians intertwine with the (m2 − m1)th-order
operators Âm2−m1 · · · Â2Â1 and Â

†
1Â
†
2 · · · Â

†
m2−m1

, where

Âi =
d

dx
+ Ŵi(x), Ŵi(x) = x +

H ′
m1+i−1

Hm1+i−1
−
H ′

m1+i

Hm1+i

, i = 1,2, . . . ,m2 − m1. (2.21)

Combining the supercharges gives rise to (m2 − m1 + 2) th-order ladder operators

d† = A(2)Â
†
1Â
†
2 · · · Â

†
m2−m1

Ã(2)†, d = Ã(2)Âm2−m1 · · · Â2Â1A(2)†, (2.22)

satisfying the relations [H (2),d†] = 2(m2 − m1)d
†, [H (2),d] = −2(m2 − m1)d. In Sec. VI, we will

restrict ourselves to the m2 = m1 + 1 case, wherein the ladder operators d†, d are third-order oper-
ators. The annihilation operator d has then two zero modes ψ(2)

−m1−2(x), ψ
(2)
0 (x), while the creation

operator d† has a single zero mode ψ
(2)
−m1−1(x), so that the set of wavefunctions divides into a

doublet {ψ(2)
−m1−2(x),ψ

(2)
−m1−1(x)} and an infinite sequence {ψ

(2)
ν (x) | ν = 0,1,2, . . .}, corresponding to

equidistant levels.

III. HAMILTONIANS H1,2 WITH FOURTH PAINLEVE TRANSCENDENT

The two Hamiltonians H1 and H2, given by Eq. (1.3), are related by the following first-order
supercharges:8

q+ =
d

dx
+W3, q− = − d

dx
+W3, (3.1)

defined in terms of some superpotential W3(x), and they are assumed to satisfy the intertwining
relations

H1q+ = q+(H2 + 2), q−H1 = (H2 + 2)q−. (3.2)

As a consequence, we can write H1 = q+q−, H2 = q−q+ − 2, and, in particular,

H1 = −
d2

dx2
+W 2

3 +W ′
3. (3.3)

There is a second set of second-order supercharges, denoted by M+ and M−, and satisfying the
intertwining relations

H1M+ = M+H2, M−H1 = H2M−, (3.4)

so that the systems H1 and H2 are related by two supersymmetric quantum mechanical structures,
one with first-order supercharges and another one with second-order supercharges.

For the second-order supercharges M±, one may distinguish two cases: the reducible case, in
which the supercharges factorize into products of first-order operators with real superpotentials W1

and W2, and the irreducible one, in which they do not factorize in this way. The latter corresponds to
positive values of parameter d, while the former occurs whenever d ≤ 0. We will be concerned here
only with the reducible case, wherein

M+ =

(

d

dx
+W1

) (

d

dx
+W2

)

, M− =

(

− d

dx
+W2

) (

− d

dx
+W1

)

. (3.5)
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The three superpotentials W1, W2, and W3, involved in the construction described by Andrianov
et al.,8 can be written in terms of the function g, satisfying the fourth Painlevé equation, and its
derivative as

W1 = −
g

2
+
g′

2g
− c

2g
,

W2 = −
g

2
− g′

2g
+

c

2g
,

W3 = −g − x,

(3.6)

where c2 = −4d and, as a consequence, c may be either 2
√
−d or −2

√
−d.38

On combining Eqs. (3.2) and (3.4), it results that the third-order operators

a+ = q+M− =

(

d

dx
+W3

) (

− d

dx
+W2

) (

− d

dx
+W1

)

,

a− = M+q− =

(

d

dx
+W1

) (

d

dx
+W2

) (

− d

dx
+W3

)

,

(3.7)

fulfil the relations [H1,a
+] = 2a+, [H1,a

−] = −2a− and therefore behave as ladder operators for the
Hamiltonian H1 involving the fourth Painlevé transcendent.

The annihilation operator a− and the creation one a+ can both admit three possible zero modes,
denoted by (ψ(0)

0 , ψ(0)
+ , ψ(0)

− ) and (ψ1, ψ2, ψ3), respectively. They can be written as

ψ
(0)
0 (x) = e


x
W3(x

′)dx′,

ψ
(0)
+ (x) = [W2(x) −W3(x)]e

−

x
W2(x

′)dx′,

ψ
(0)
− (x) = {c + [W2(x) −W3(x)][W1(x) +W2(x)]}e−


x
W1(x

′)dx′,

(3.8)

and

ψ1(x) = e

x
W1(x

′)dx′,

ψ2(x) = [W1(x) +W2(x)]e

x
W2(x

′)dx′,

ψ3(x) = {E
(0)
+ + [W1(x) +W2(x)][W2(x) −W3(x)]}e−


x
W3(x

′)dx′,

(3.9)

with corresponding energies

E
(0)
0 = 0, E

(0)
− = ᾱ + 2 − 1

2 c, E
(0)
+ = ᾱ + 2 + 1

2 c, (3.10)

and

E1 = ᾱ − 1
2 c, E2 = ᾱ +

1
2 c, E3 = −2. (3.11)

All the relations considered so far in this section are only formal and in every special case
one must discuss the normalizability of wavefunctions, which will depend on the values taken by
the parameters. In particular, due to conflicting asymptotics, at most three of the six possible zero
modes of a− and a+, given in Eqs. (3.8) and (3.9), can be square integrable at the same time.

In connection with rational extensions of the harmonic oscillator, we will be interested in
rational solutions of the fourth Painlevé equation, which we now proceed to briefly review.

A. Rational solutions of the fourth Painlevé equation

There exists three distinct families of rational solutions of the fourth Painlevé equation, the
different members of which can be generated via Bäcklund transformations.39–43
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Two of these families, namely, the so-called “−1/z” and “−2z” hierarchies, can be written in
terms of generalized Hermite polynomials Hm,n(z) as

w
(I)
m,n = w(z; α(I)

m,n, β
(I)
m,n) = −

d

dz
log

(

Hm,n+1

Hm,n

)

, (3.12)

w
(II)
m,n = w(z; α(II)

m,n, β
(II)
m,n) =

d

dz
log

(

Hm+1,n

Hm,n

)

, (3.13)

with corresponding parameters α(I)
m,n, β(I)m,n and α(II)

m,n, β(II)m,n given in Table II.
The third family, which is the so-called “− 2

3 z” hierarchy, can be written in terms of generalized
Okamoto polynomials Qm,n(z) as

w
(I)
m,n = w(z; α(I)

m,n, β
(I)
m,n) = −

2
3

z − d

dz
log

(

Qm,n+1

Qm,n

)

, (3.14)

w
(II)
m,n = w(z; α(II)

m,n, β
(II)
m,n) = −

2
3

z +
d

dz
log

(

Qm+1,n

Qm,n

)

, (3.15)

with corresponding parameters α(I)
m,n, β(I)m,n and α(II)

m,n, β(II)m,n given in Table III.
The generalized Hermite and Okamoto polynomials satisfy some recurrence relations, which

can be written using Hirota operator, and they also admit various representations in terms of deter-
minants.42 Some special cases are given by Hn,0 = H0,n = 1, Hn,1(z) = Hn(z), H1,n(z) = Hn(z), and
Q0,0 = Q1,0 = Q0,1 = 1, Q1,1(z) =

√
2z, Q2,0(z) = 2z2 + 3, Q0,2(z) = 2z2 − 3.

B. Generalized Hermite polynomials

For future purposes, we need to point out some identities relating generalized Hermite polyno-
mials with Wronskians of Hermite or pseudo-Hermite polynomials.

It is known43 that generalized Hermite polynomials can be expressed as Wronskians of standard
Hermite polynomials as

Hm,n(z) =W(Hm(z),Hm+1(z), . . . ,Hm+n−1(z)) ≡ W
(

{Hm+ j(z)}
n−1
j=0

)

, m,n ≥ 1, (3.16)

with Hm,0(z) = H0,n(z) = 1, so that they are (mn)th-degree polynomials.
On the other hand, it has been shown25 that Wronskians of Hermite and pseudo-Hermite

polynomials are connected by the relation

W(Hn1(z),Hn2(z), . . . ,Hnm(z))

∝ W(H1(z),H2(z), . . . , Ȟnm−nm−1(z), . . . , Ȟnm−n1(z), . . . ,Hnm(z)), (3.17)

where, on the right-hand side, Hnm−nm−1(z), . . . ,Hnm−n2(z), Hnm−n1(z) are excluded from the
Wronskian. On choosing ni = n + i − 1, i = 1,2, . . . ,m, in this equation, we can rewrite the general-
ized Hermite polynomials of Eq. (3.16) as Wronskians of pseudo-Hermite polynomials,

Hm,n(z) =W(Hn(z),Hn+1(z), . . . ,Hn+m−1(z)) =W
�
{Hn+i(z)}

m−1
i=0

�
, m,n ≥ 1. (3.18)

As special cases, we get H1,n(z) ∝ Hn(z) and H2,n(z) ∝ W(Hn(z),Hn+1(z)).

TABLE II. Parameters of solutions w(I)
m,n and w

(II)
m,n including both “−1/z” and “−2z” hierarchies.

w(i) α(i) β(i) m n

w
(I)
m,n −(m+2n+1) −2m2 m ∈ Z , m ≥ 0 n ∈ Z , n ≥ 0

w
(II)
m,n 2m+n+1 −2n2 m ∈ Z , m ≥ 0 n ∈ Z , n ≥ 0
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TABLE III. Parameters of solutions w(I)
m,n and w

(II)
m,n of the “− 2

3 z” hierarchy.

w(i) α(i) β(i) m n

w
(I)
m,n −2n−m − 2

9 (3m−1)2 m ∈ Z, m ≥ 0 n ∈ Z , n ≥ 0

w
(II)
m,n 2m+n − 2

9 (3n−1)2 m ∈ Z, m ≥ 0 n ∈ Z , n ≥ 0

IV. COMPARISON BETWEEN H1 AND ONE-STEP RATIONAL EXTENSIONS:

ONE INFINITE SEQUENCE AND A SINGLET

In this section, we will relate the one-step rational extensions, reviewed in Eqs. (2.6)–(2.11) of
Sec. II A, together with their standard ladder operators b†, b, defined in Eq. (2.13), with Hamiltonian
H1 of Eq. (1.3) for specific values of Painlevé IV parameters α, β (or, equivalently, for specific
values of ᾱ and

√
−d, as defined in (1.4)) and the ladder operators a+, a−, defined in Eq. (3.7). We

will also show that the patterns of zero modes, the zero modes themselves, and the energy spectra
coincide as well. To be able to carry out the comparison, we set m1 = n (n even) in Sec. II A.

For one-step rational extensions, the Hamiltonian reads

H (2) = − d2

dx2
+ x2 − 2


H ′′n
Hn

−
(H ′n
Hn

)2

+ 1

, (4.1)

and its standard ladder operators take the form

b† =

(

d

dx
+W

) (

− d

dx
+ x

) (

− d

dx
+W

)

,

b =

(

d

dx
+W

) (

d

dx
+ x

) (

− d

dx
+W

)

,

W (x) = −x − H
′
n

Hn

.

(4.2)

As above-mentioned, for these ladder operators, the wavefunctions divide into one singlet state and
one infinite sequence of equidistant levels. The energies of the singlet and of the lowest state of the
infinite sequence are given by E

(2)
−n−1 = −2n − 1 and E

(2)
0 = 1, with corresponding wavefunctions

ψ
(2)
−n−1(x) ∝

e−
1
2 x

2

Hn

, ψ
(2)
0 (x) ∝ e−

1
2 x

2

Hn

(−2xHn − 2nHn−1), (4.3)

respectively.
Let us now compare with Hamiltonian H1 of Eq. (1.3), where we take for g the follow-

ing rational solution of Painlevé IV equation of type (3.13), connected with generalized Hermite
polynomials,

g(z) = wII
0.n(z) =

d

dz
log

(

H1,n

H0,n

)

=
d

dz
logHn =

H ′n
Hn

, (4.4)

with corresponding parameters α(II)
0,n = n + 1, β(II)0,n = −2n2, coming from Table II. Note that in the

notations of Ref. 8, the parameters now read ᾱ = n and
√
−d = n (see Eq. (1.4)). For the choices

z = x and c = 2
√
−d = 2n, the three superpotentials, defined in (3.6), become

W1 = W3 = −x − H
′
n

Hn

, W2 = x, (4.5)

where we have taken Eq. (A.3) into account. Hence, the superpotentials W1 and W3 are equivalent
to W , given in (4.2), and the ladder operators a+, a− of Eq. (3.7) coincide with b†, b of Eq. (4.2).
Furthermore, from Eqs. (2.8) and (3.3), we also obtain

H1 = H (2) + 2n + 1. (4.6)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.42.98

On: Fri, 30 Sep 2016 01:57:47



052101-10 I. Marquette and C. Quesne J. Math. Phys. 57, 052101 (2016)

Considering next the energies and wavefunctions of the zero modes, we get from Eqs. (3.10)
and (3.11), E

(0)
0 = 0, E

(0)
+ = 2n + 2, and E1 = 0, which are to be compared with E

(0)
0 = E

(2)
−n−1 +

2n + 1, E
(0)
+ = E

(2)
0 + 2n + 1, and E1 = E

(2)
−n−1 + 2n + 1, in agreement with Eq. (4.6). With superpo-

tentials (4.5), the corresponding wavefunctions ψ(0)
0 (x), ψ(0)

+ (x), and ψ1(x) become

ψ
(0)
0 (x) = ψ1(x) ∝ ψ(2)

−n−1(x) ∝
e−

1
2 x

2

Hn

, (4.7)

ψ
(0)
+ (x) ∝ ψ(2)

0 (x) ∝ e−
1
2 x

2

Hn

(−2xHn − 2nHn−1). (4.8)

In deriving Eq. (4.8), we employ (A.1) to write

W2 −W3 = 2x +
H ′n
Hn

=
2xHn + 2nHn−1

Hn

. (4.9)

We conclude that there is a complete equivalence between the three zero modes (two of the annihila-
tion operator and one of the creation operator) obtained in both approaches. In that of Ref. 8, such a
pattern of zero modes corresponds to case (d).

V. COMPARISON BETWEEN H1 AND ONE-STEP RATIONAL EXTENSIONS:

THREE INFINITE SEQUENCES

Let us now consider the same one-step rational extensions with a different set of ladder opera-
tors c†, c, defined in (2.14). As explained in Sec. II A, these ladder operators are of third order only
for m1 = 2. In such a special case, the Hamiltonian and its ladder operators read

H (2) = − d2

dx2
+ x2 +

8
2x2 + 1

− 16
(2x2 + 1)2

− 2 (5.1)

and

c† =

(

d

dx
+W

) (

− d

dx
+ W̄ (1)

) (

− d

dx
+ W̄ (2)

)

,

c =

(

d

dx
+ W̄ (2)

) (

d

dx
+ W̄ (1)

) (

− d

dx
+W

)

,

W (x) = −x − 4x

2x2 + 1
, W̄ (1)(x) = x − 1

x
, W̄ (2)(x) = x +

1
x
− 4x

2x2 + 1
,

(5.2)

respectively. The wavefunctions then divide into three infinite sequences. The energies of their
lowest states, which are zero modes of c, are given by E

(2)
−3 = −5, E

(2)
1 = 3, and E

(2)
2 = 5, with

corresponding wavefunctions

ψ
(2)
−3(x) ∝

e−
1
2 x

2

H2
, ψ

(2)
1 (x) ∝ e−

1
2 x

2

H2
(−H2H2 − 4H1H1),

ψ
(2)
2 (x) ∝ e−

1
2 x

2

H2
(−H2H3 − 4H1H2).

(5.3)

Let us now take for the rational solution of Painlevé IV equation, involved in definition (1.3)
of Hamiltonian H1, one of those given in Eq. (3.15) and connected with generalized Okamoto
polynomials, namely,

g(z) = w
(II)
1,0(z) = −

2
3

z +
d

dz
log

(

Q2,0

Q1,0

)

= −2
3

z +
4z

2z2 + 3
= −2z(2z2 − 3)

3(2z2 + 3)
, (5.4)

with corresponding parameters α(II)
1,0 = 2, β(II)1,0 = −

2
9 , coming from Table III, or ᾱ = 1,

√
−d = 1

3 for
the choice of Ref. 8.
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On selecting this time c = −2
√
−d = − 2

3 , three superpotentials (3.6), written in terms of the
variable z, are given by

W1(z) =
1
3

z +
1
z
− 4z

2z2 + 3
, W2(z) =

1
3

z − 1
z
, W3(z) = −

1
3

z − 4z

2z2 + 3
. (5.5)

After an additional change of variable z =
√

3 x, they become

W1(z(x)) =
1
√

3

(

x +
1
x
− 4x

2x2 + 1

)

, W2(z(x)) =
1
√

3

(

x − 1
x

)

,

W3(z(x)) =
1
√

3

(

−x − 4x

2x2 + 1

)

,

(5.6)

or

W1(z(x)) =
1
√

3
W̄ (2)(x), W2(z(x)) =

1
√

3
W̄ (1)(x), W3(z(x)) =

1
√

3
W (x). (5.7)

The ladder operators a+, a− of Eq. (3.7), written in terms of the variable z =
√

3 x, therefore
coincide with c†/(3

√
3), c/(3

√
3), obtained from (5.2).

Furthermore, from Eq. (3.3) we now get

H1 = −
d2

dz2
+W 2

3 (z) +
dW3(z)

dz
=

1
3

(

− d

dx2
+W 2(x) +W ′(x)

)

, (5.8)

so that comparison with Eq. (2.8) yields

H1 =
1
3

�
H (2) + 5

�
. (5.9)

On the other hand, for the energies (3.10) of the zero modes of a−, we obtain E
(0)
0 = 0 = 1

3

�
E
(2)
−3 + 5

�
,

E
(0)
+ =

8
3 =

1
3

�
E
(2)
1 + 5

�
, and E

(0)
− =

10
3 =

1
3

�
E
(2)
2 + 5

�
, in agreement with those of c and with Eq. (5.9).

Finally, on considering the wavefunctions (3.8) of the zero modes, we note that the three
exponentials are easily calculated and that the multiplying factors reduce to

W2(z(x)) −W3(z(x)) =
1

2
√

3 xH2

(H2H2 + 4H1H1), (5.10)

and

− 2
3
+ [W2(z(x)) −W3(z(x))][W1(z(x)) +W2(z(x))] =

2x

3H 2
2

(H2H3 + 4H1H2), (5.11)

after some straightforward calculations using the explicit expressions of H1, H2, H3, H1, and H2.
This leads to

ψ
(0)
0 (z(x)) ∝ ψ(2)

−3(x), ψ
(0)
+ (z(x)) ∝ ψ(2)

1 (x), ψ
(0)
− (z(x)) ∝ ψ(2)

2 (x), (5.12)

where the right-hand sides are given in Eq. (5.3). This completes the comparison between both
approaches and the proof of their equivalence. In Ref. 8, the pattern of zero modes observed here
corresponds to case (a).

VI. COMPARISON BETWEEN H1 AND TWO-STEP RATIONAL EXTENSIONS:

ONE INFINITE SEQUENCE AND A DOUBLET

In this section, we will relate the two-step rational extensions, considered in Sec. II B, together
with their ladder operators d†, d, defined in (2.22), with Hamiltonian H1 of Eq. (1.3) and its lad-
der operators a+, a−, defined in (3.7). As above-mentioned, d† and d are third-order operators if
we restrict ourselves to the case where m2 = m1 + 1. To carry out the comparison between both
approaches, let us reset m1 = n and m2 = n + 1 (with n assumed even).
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In these notations, the Hamiltonian for two-step rational extensions and its ladder operators
read

H (2) = − d2

dx2
+ x2 − 2


g′′2n
g2n
−

(

g′2n
g2n

)2

+ 2

, g2n(x) =W(Hn,Hn+1), (6.1)

and

d† =

(

d

dx
+W (2)

) (

− d

dx
+ Ŵ1

) (

− d

dx
+ W̃ (2)

)

,

d =

(

d

dx
+ W̃ (2)

) (

d

dx
+ Ŵ1

) (

− d

dx
+W (2)

)

,

W (2)(x) = −x +
H ′n
Hn

−
g′2n
g2n

,

Ŵ1(x) = x +
H ′n
Hn

−
H ′

n+1

Hn+1
,

W̃ (2)(x) = −x +
H ′

n+1

Hn+1
−
g′2n
g2n

,

(6.2)

respectively. The annihilation operator d has two zero modes, which are the lowest states of the
doublet and of the infinite sequence, while the creation operator d† has one zero mode, which is the
highest state of the doublet. The corresponding energies and wavefunctions are given by

E
(2)
−n−2 = −2n − 3, E

(2)
0 = 1, E

(2)
−n−1 = −2n − 1, (6.3)

and

ψ
(2)
−n−2(x) ∝

e−
1
2 x

2

g2n
Hn,

ψ
(2)
0 (x) ∝ e−

1
2 x

2

g2n
{HnHn+1H1 + 2[n(n + 2)Hn−1Hn+1 − (n + 1)2H 2

n]},

ψ
(2)
−n−1(x) ∝

e−
1
2 x

2

g2n
Hn+1,

(6.4)

respectively.
For the rational solution of Painlevé IV equation entering definition (1.3) of H1, let us choose

one of the functions (3.13) connected with generalized Hermite polynomials,

g(z) = w
(II)
1,n(z) =

d

dz
log

(

H2,n

H1,n

)

=
d

dz
log

(

g2n

Hn

)

=
g′2n
g2n
− H

′
n

Hn

, (6.5)

where, in the second step, use is made of Eq. (3.18). From Table II, we obtain for the corresponding
parameters α(II)

1,n = n + 3 and β
(II)
1,n = −2n2. In the notations of Ref. 8, these become ᾱ = n + 2 and√

−d = n. For the choices z = x and c = 2
√
−d = 2n, the three superpotentials of Eq. (3.6) read

W1(x) = −
g

2
+
g′

2g
− n

g
, W2(x) = −

g

2
− g′

2g
+

n

g
, W3(x) = −x − g, (6.6)

with g given in (6.5).
Comparison between the two sets of superpotentials given in (6.2) and (6.6) immediately leads

to the relations

W3(x) = W (2)(x) = −x − g, W1(x) +W2(x) = Ŵ1(x) + W̃ (2)(x) = −g. (6.7)

To show the equivalence of (W1,W2,W3) and (W̃ (2),Ŵ1,W
(2)), it remains to prove that W1 = W̃ (2) or,

equivalently, 2gW1 − 2gW̃ (2) = 0. Inserting Eq. (6.5) and its derivative in the left-hand side of this
relation transforms the latter into

2gW1 − 2gW̃ (2) =
g′′2n
g2n
+ 2x

g′2n
g2n
− H

′′
n

Hn

− 2x
H ′n
Hn

− 2
H ′

n+1

Hn+1

g′2n
g2n
+ 2
H ′n
Hn

H ′
n+1

Hn+1
− 2n. (6.8)
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On using the recursion and differential equations satisfied by Hn and g2n and listed in Appendix, it
is then straightforward to prove the vanishing of Eq. (6.8) right-hand side. We therefore conclude
that the ladder operators a+, a− of Eq. (3.7) coincide with d†, d of Eq. (6.2).

Furthermore, combining Eqs. (1.3) and (6.5) yields

H1 = −
d2

dx2
+ x2 −

g′′2n
g2n
+ 2

(

g′2n
g2n

)2

+ 2x
g′2n
g2n
+
H ′′n
Hn

− 2x
H ′n
Hn

− 2
g′2n
g2n

H ′n
Hn

− 1, (6.9)

from which we get

H1 = H (2) + 2n + 3 (6.10)

after using Eq. (6.1) and the relations given in Appendix again. On the other hand, from Eqs. (3.10)
and (3.11), we obtain E

(0)
0 = 0 = E

(2)
−n−2 + 2n + 3, E

(0)
+ = 2n + 4 = E

(2)
0 + 2n + 3, E1 = 2 = E

(2)
−n−1 +

2n + 3, in agreement with Eqs. (6.3) and (6.10).
It remains to check that the wavefunctions ψ(0)

0 (x), ψ(0)
+ (x), and ψ1(x), defined in Eqs. (3.8) and

(3.9), reduce to those previously obtained in (6.4). The exponentials contained in (3.8) and (3.9) are
easily calculated. This directly yields the relations

ψ
(0)
0 (x) ∝ ψ(2)

−n−2(x), ψ1(x) ∝ ψ(2)
−n−1(x). (6.11)

Furthermore, exp
�
−
 x

W2(x
′)dx ′

�
= e−

1
2 x

2Hn+1/Hn. On the other hand, we can write

W2 −W3 = Ŵ1 −W (2) = 2x +
g′2n
g2n
−
H ′

n+1

Hn+1
= 2

Hn

Hn+1g2n
[H 2

n+1 − (n + 1)g2n]

= 2
Hn

Hn+1g2n
{2xHnHn+1 + 2[n(n + 2)Hn−1Hn+1 − (n + 1)2H 2

n]} (6.12)

by using the relations of the Appendix. Hence,

ψ
(0)
+ (x) ∝ ψ(2)

0 (x), (6.13)

which completes the proof of equivalence of both approaches that of Ref. 8 corresponding this time
to case (e).

VII. CONCLUSION

In this paper, we discussed the connection between one- and two-step rational extensions
H (2) of the harmonic oscillator and quantum systems H1 involving rational solutions of the fourth
Painlevé equation related to generalized Hermite and Okamoto polynomials. Since the wavefunc-
tions of k-step rational extensions involve Hermite EOP of type III, the present study points out a
nontrivial link among various special functions and orthogonal polynomials.

For three different cases exhibiting three different patterns of zero modes, the connection
was established at the level of the Hamiltonians, supercharges, ladder operators, zero modes, and
corresponding spectra.

In recent years, k-step extensions of the singular harmonic oscillator have been
studied,24,25,27,44–48 as well as some of their superintegrable generalizations.28,31 On the other hand,
some 1D quantum Hamiltonians12 and 2D superintegrable ones49 involving the fifth Painlevé tran-
scendent have been considered. Establishing the connection between both approaches would be a
very interesting topic for future investigation, although this is a much harder problem than that
solved in the present paper, because the special solutions of the fifth Painlevé equation50 and their
asymptotic are more complicated.
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APPENDIX: SOME IDENTITIES SATISFIED BYHn AND g2n

We provide here a list of identities29 used to demonstrate various elements of the equivalence

H ′n = 2nHn−1, (A.1)

H ′n + 2xHn = Hn+1, (A.2)

H ′′n + 2xH ′n − 2nHn = 0, (A.3)

g′2n + 2xg2n = 2HnHn+1, (A.4)

g′′2n + 2xg′2n = 4H ′nHn+1. (A.5)
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