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It is shown that the Virasoro-Shapiro model contains Einstein's theory of gravity as a 

zero-slope limit. It is also shown that the conventional dual model contains the scalar 

electrodynamics as a zero-slope limit. The connection between the generating functionals 
for the scattering matrices of these dual models and the corresponding field theories is 

demonstrated. 

§ I. Introduction and summary 

It is widely believed that the slope parameter a m dual models has a 

fundamental meaning as a universal constant characterizing the unit of length. 

It is then of great interest to see what happens if one takes the limit a-40. 

This limit was first investigated by Scherk1l who showed that the conventional 

model reduces to the ¢3 Lagrangian theory in the limit with the ground-state 

mass and the quantity g 1..; a being fixed, where g is a dimensionless coupling 

constant of the model. This connection clarified in particular the correspondence2l 

between the usual F eynman diagrams and the duality diagrams. We believe that 

Scherk's work is an important step in understanding field theoretical foundations 

of dual models. 

On the· other hand, an essential feature of dual models is that the ghost 

states which appeared in the manifestly covariant factorization do decouple3l 

because of the built-in gauge invariance4 l provided the intercepts are taken 

appropriately. The intercepts are such that the physical spectra of the models 

contain a massless spin 1- or 2+ state ("photon" or "graviton "). The Virasoro 

conditions4l are the reminiscences of the usual subsidiary conditions in quantum 

el'ectrodynamics and quantum gravidynamics. In fact, in appropriate zero-slope 

limits fixing the "photon" or the "graviton" states, some matrix elements of the 

former conditions are equivalent to the latter conditions. 

It is also remarkable that the photon vertices which play a crucial role in 

generating the algebras5l of the spectra are derived through a generalized local­

gauge principle. 6l 

- For these reasons, it will be more interesting to investigate the zero-slope 

limit fixing the intercepts at appropriate values. In fact, Neveu and Scherk7l 

pointed out that in such a limit the conventional model with the Chan-Paton 

isospin factor yields a massless Yang-Mills field theory of tree approximation. 
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1908 T. Yoneya 

In view of the recent trends of gauge field theories such a systematic connection 
between a dual model and a gauge field would guide us to construct a more 
realistic dual theory of hadrons. 

Now, the main purpose of the present paper is to extend such a connection 
to the gravitational field which is also an important example of the gauge fields. 
We show that the Einstein theory of gravity is obtained from the "graviton "­
scalar amplitudes of the Virasoro-Shapiro model in the zero-slope limit with the 
quantity g va being fixed. we also discuss a similar connection between the 
scalar electrodynamics and the conventional model without internal symmetry by 
considering the zero-slope limit of the "photon" -scalar amplitudes with g being fixed. 

It is well known that in the S-matrix approach8> the photon and the graviton 
can be treated in a closely parallel way inspite of the nonlinearity of the graviton 
interactions. It turns out that this is also the case with the dual models. This 
becomes clear when we make a comparison of the generating functionals of the 
scattering matrices in the dual models and the corresponding field theories. We 
point out that if the lowest-order interaction terms of the latter theories are 
given, the dual model generating functionals are obtained from the field theoretical 
ones by reinterpreting the latters in terms of the string variables. 

The next two sections will be devoted to the discussion of the zero-slope 
limits. In the last section, we make the comparison for the generating functionals. 
Appendices, where the derivation of the generating functionals and a formulation 
of the dynamics of a closed string are given, are the preliminaries for the last 
section. 

§ 2. The theory of gravity as a zero-slope limit of the 
Virasoro-Shapiro model 

It was shown by Shapiro9> that Virasoro's four-point function/0> if its intercept 
equals two, can be generalized to a factorizable and ghost-free n-point fnuction. 
The Virasoro-Shapiro model thus contains a "graviton ", just as the conventional 
model contains a "photon". In this section, we shall show that this model may 
be conceived as an extension of the Einstein gravidynamic in the sense that 
the latter is obtained from the former in an appropriate zero-slope limit. We 
take the limit keeping the quantity g va=JC finite. Clearly, the only surviving 
pole terms are those of a massless symmetrical tensor state of rank two. It 
turns out that there are infinitely many interaction terms describing the limit. 
However, it is possible to determine the corresponding Lagrangian using a 
uniqueness theorem for the Einstein theory of gravity. This situation is very 
similar to in Ref. 11) where the Ellis-Osborn theorem12> was used to obtain the 
nonlinear iJ model as a zero-slope limit of the dual pion model. 

2 ·1 The uniqueness theorem 

This theorem asserts the uniqueness of the Einstein theory of gravity as a 
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Connection of Dual Models to Electrodynamics and Gravidynamics 1909 

Lagrangian theory of the massless symmetrical tensor field of second rank under 

several conditions. A very clear derivation of this theorem has been given by 

Wyss.13l The conditions can be stated as follows: (1) In the lowest-order 

approximation the source of the tensor field h,.. is the energy momentum tensor 

of the free matter field. (2) The equation of motion does not contain the 

space-time derivatives whose degrees are higher than two. (3) The Lagrangian 

is invariant under a certain gauge transformation which is in the lowest-order 

approximation given by h,..~h,.. + () ,.t;. + fJ.t; "' where t;" is an arbitrary vector 

function. 

The consistency requirement for the Lagrangian formulation under these 

conditions determines uniquely the Lagrangian in the second-order approximation. 

The second-order Lagrangian is sufficient to obtain a unique extension of the 

linear gauge group h,..~h,.. + fJ ,.t;. + fJ.t;,.. This extended gauge group is iso­

morphic to Einstein's general transformation group and can uniquely determine 

the higher-order terms of the Lagrangian under the above conditions. If one 

defines the metric tensor by g "" = YJ "" + "h,.., *l the Lagrangian is precisely the 

Einstein Lagrangian 

(2·1) 

where we only consider the complex scalar field as the matter field. 

Now we must translate these conditions in the language of scattering 

amplitudes. Condition (2) is satisfied if every irreducible vertex in the tree 

approximation is bilinear in momenta. We note that the Einstein Lagrangian 

leads to amplitudes with this property. Condition (3) is equivalent to vanishing 

of the amplitudes with the wave function f,.f. of an external graviton being re­

placed by f ,.k. + E.k,. where k,. is the four-momentum of the graviton. The first 

condition can be checked directly by examining the structure of an appropriate 

amplitude. 

2 · 2 "Gravition" amplitudes in the Virasoro-Shapiro model 

We consider the Virasoro-Shapiro amplitudes with several gravitons and 

matter particles as the external lines. We take the matter particle to be scalar. 

The mass (m) of the scalar particle can be fixed, independently of the value 

of the a, by introduction of the familiar fifth dimension. The fifth momenta of 

the gravitons are, of course, taken to be zero. Then, in addition to the massless­

tensor state, there remain poles corresponding to that scalar state in the zero­

slope limit. 

As can be easily checked, the limiting amplitudes can be described by means 

of a Lagrangian composed of a symmetrical tensor field and a scalar field 

*> Here 'YJ .. is the Minkowskian metric tensor given by (1, -1, -1, -1). 
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1910 T. Yoneya 

because of the bootstrap property of the amplitudes with respect to those poles 
for an arbitrary value of a. Indeed, this property ensures that the irreducible 
vertices of the limiting amplitudes do not depend on the number of the external 
lines. Thus we can apply the above theorem to our problem. 

Let us consider the process of n gravitons and two scalar particles. An 
operatorial expression for the corresponding amplitude is given below where the 
graviton vertex is derived by a method similar to one used in the conventional 
model in obtaining excited vertices.14l 

where 

V(E, k; z, z*) = : _!_zdf. Q (z) _!_z* dE. Q(z*) 
i dz i dz* 

X exp[ivak{Q(z) +Q(z*)} ]: , 

Q(z) =qo+iPo log z+ f: J 1 (a,.z"+a,.+z-"), 
n~l n 

with 

IP)) = exp[ivaP(qo+ (]o)] 10) ®10), 

PolO)= PolO) =a,.IO)=b,.IO) =0. 

(2·2) 

(2·3)*l 

(2·4) 

(2·5) 

(2·6) 

(2·7) 

(2·8) 

(2·9) 

(2-10) 

The differences from the conventional model are that the operators are extended 
to mutually commuting double sets and the range of the integrations covers the 
whole Gauss plane. 

2 · 3 The condition (2) 

The bilinearity is proved by showing that the power-series expansion**l of 
the dimensionless amplitude F,.a in the a begins with the :first power. Since 
T,. a is proportional to (!C" /a) F,. a, only this :first-power term contributes to the 

*J T denotes the ordered product with respect to -loglzl and C is an infinite constant for 
normalization. In this expression, the fifth dimension does not appear explicitly because the z­
variables of two scalar lines are taken to be 0 and oo. 

**J In spite of the square root in the expressions (2·4) and (2·9), the power-series expansion 
in a is possible because a appears only in the form Va X (momentum) and the momentum variables 
always appear in pair in the non-operatorial expressions. This is not true for (3 · 2). 
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Connection of Dual Models to Electrodynamics and Gravidynamics 1911 

zero-slope limit. Therefore the total power in momenta of the zero-slope is two. 

This clearly means that every irrededucible vertex is bilinear in momenta since 

the power of the propagator is - 2. 

On setting a=O, the F,.0 becomes 

F,. Gla=O = ( -1)" Jrr d2~i«OIT IT : Zi dfi 0 Q (z.) z.* dfr Q (z.*) :I 0)) 0 (2 ·11) 
C i=l lz• I i=l dz1 dz.* 

If n is odd, this expression is zero, since the integrand vanishes identically. If 

n is even, we have 

F Gl - oc ( -1)" ( sd2u sd2v_1_)"f2 
" a-O C lu-vl4 . 

Although this is a divergent integral, it is really defined by analytic continuation. 

It is an easy exercise to show that the following identification should be made :*l 

where the coefficients a, b, ·· ·, f are linear functions of the Mandelstam variables. 

This completes the proof for the validity of condition (2). 

2 · 4 The proof of gauge in variance 

We prove that (2·3) vanishes, if one of the vertices, say V(f1, k1, z1, z1*), is 

replaced by: 1/i dk·Q(zi)/dz1 1/i df·Q(z1*)/dz1* exp[ivak{Q(z1)+Q(zl*)}]:. 

Using the relation 

. 1 dk · Q (z1) 1 df · Q (z1*) [. 1-k {Q ( ) + Q- ( *)} J. _ d W . - - exp z v a z1 z1 . - z1- , 
i dz1 i dz1* dz1 

(2 ·12) 

where 

W = W(f1, k1, z1, z1*) =-!: z1*df·Q (z1*) exp[ivak{Q(zl) + Q (z1*)}]:, (2 ·13) 
-Ia dz1* 

it is easy to see that under the above replacement Eq. (2 · 3) reduces to 

By the commutation relation 

[Q (e•+iO)' Q (e•+i0') J = - [Q (e•-iO)' Q (e•-iO') J = i"Tr'f/ (8- 8')' (2 ·15) 

where r;(8) =1(8>0), 0(8=0), -1(8<0), we can prove**l 

*J Note that our procedure is equivalent to taking the finite part of the integral. 

**l Use the techniques given in Ref. 14). 
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1912 T. Yoneya 

(2 ·16) 

Thus (2 ·14) vanishes. 

2 · 5 Second-order calculation of the graviton amplitude 

We show that condition (1) is satisfied by the zero-slope limit of (2 · 2), by 
exhibiting that to second order in tc it coincides with the amplitude obtained 
from the Einstein Lagrangian (2 ·1). Since in this order of approximation a 
vertex in which one off-the-mass shell graviton is attached to the scalar line 
appears, this is sufficient*l for our purpose. 

By lengthy calculations, we obtain the two-graviton amplitude in the Virasoro­
Shapiro model: 

T2°= (f1"f2Yr(~ 1 -1) (1 01 -21) 0 2 +2a(ft·P) (f2·P) (f1·f2)r 0 

+2a(fl·q)(f2·P)(ft·f2){r(~ ~ -~/)-r(i ~ ~)} 

+2a(ft·P)(f2·q)(fl·f2){r(~ ~ -.~/)-r(~ i ~ )} 

+ {a2(fl·P)2(f2·PY+a2(ft·qi Cf2·qY} r (~ 1 -1) 
0 2 

+2a2(fl·PY(f2·P) Cf2·q) {r(~ 1 
21) -r(i 

1 
~)} 0 0 

+2a2(ft·P) (f2·PYCf1·q) {r(~ 1 
21)-r(~ 1 

~)} 0 1 

+2a2(fl·qi(f2·P) (f2·q) {r(~ 1 
21) -r(~ 1 

~)} 0 1 

+2a2(ft·P) (f2·qiCf1·q) {r(~ 1 
21) -r(i 

1 
~)} 0 0 

+a2(ft·PY(f2·qYr(!1 ~ 2 1) +a 2 (ft·qi(f2·Pir(~ ! 1 2
1) 

+a2(ft·P) Cf2·q) (ft·q) (f2·P) {2r(~ ~ 2 1) +r(~ ! 1 2
1) 

+r(!1 ~ 2 1) -2r(~ ~ ~) -2r(~ ~ ~) +r(~ ~ ~)}. (2·17)**) 

*l It is known15l that if the anomalous interaction ~s included, one cannot introduce gravi­
tational interaction consistently even to this order of approximation under the conditions stated in 
subsection 2 ·1. 

**l This result is already contained in a previous note of the present author."l The pre­
liminary results of this paper are given there. 
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Connection of Dual Models to Electrodynamics and Gravidynamics 1913 

where, with s= (P+qY, t= (p+k1Y and u= CP+k2Y, 

r(a b c)= g2 T(a-(a/2)(u-m2))T(b-(a/2)(t-m2))T(c-(a/2)s) (2 . 18) 
d ef 2 T(d+(a/2)(u-m 2))T(e+(a/2)(t-m2))T(f+(a/2)s) 

Taking the limit a~o and fixing JC finite, we see that T 2° reduces to 

+ (El·q) (E2·q) +2(El·P) (E2·q)} + (E1·E2)~{(E1·P) (E2·P) 
2 

+ (El·q) (E2·q) +2(El·P) (E2·q) +2(El·q) (E2·P)} 

- (E1·PYCE2·qY- (El·ql(E2·PY+2(El·P) (El·q) (E2·q) (E2·P)}] 

(2·19) 

This result exactly coincides with the one obtained from the Einstein Lagrangian 

expanded in h". to second order in JC on setting g".='fj".+JCh" •. 
This also implies that to second order in JC the spin-zero component of the 

symmetrical transversal tensor state does not couple on-the-mass shell in the 

zero-slope limit. We can also check this fact by directly calculating the corres­

ponding residue of the amplitude (2 ·17). Because of the Wyss theorem, the 

decoupling of the spin-zero component is valid to all orders in the zero-slope 

limit of (2 · 2). It should be noted, however, that for non-zero a the spin-zero 

component does couple even on-the-mass shell and is not a ghost in contrast 

with the pure-gravity theory. 

Now we have established that the three properties which are required in 
the application of the W yss theorem are indeed satisfied by the zero-slope limit 

of the Virasoro-Shapiro amplitude (2 · 2). We thus conclude that the Virasoro­

Shapiro model contains the Einstein gravidynamics as a zero-slope limit. 

§ 3. Scalar electrodynamics as a zero-slope limit of the 

conventional dual model without internal symmetry 

In this section we consider the amplitude corresponding to the process of 

two scalar partices and n dual photons in the conventional dual model and show 

that it reduces to the one of the ordinary scalar electrodynamics. 

The amplitude is given by 
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1914 T. Yoneya 

T E gn ( )(n-2)f22-nf2 "" F E (p · k k k ) n = a "'-' n ' q' f1 1, f2 2, ... ' fn n ' (3·1) *l 
(1,2, ... ,n) 

n 

X «PI II V(f;, k;, Z;) lq))' (3·2) 
i=l 

where 

V(E,k,z) =: {~zdE·Q(z) ,exp[iv'2akQ(z)J}}:, (3·3) 
z dz 

Q(z) =qo+iPo log z+n~ j ~ (cnzn+cn+z-n) (3·4) 

with 

[qo,Po] = -i, 

IP))=exp [iv'2apqo] 10)@10), (P2=q2=m2) 

PolO) =0, eniD) =0 

(3·5) 

(3·6) 

(3·7) 

(3·8) 

and the constant C is an infinite normalization factor. In the quark picture, the 
amplitude (3 · 2) reflects the situation that only one of the two constituent quarks 
of the scalar partice is charged. 

If n=2, (3·2) is given by 

l.p,E(p 'f k f k)=(E·f)T(1-a(t-m2))T(-1-as) 
4 2 ' q' 1> 1, 2, 2 1 2 ( ( 2) ) r -a t-m -as 

+ 2a { (f1·P) (f2·P) + (f2·q) (f1·q) T(1- a(t- m2) )T( -1- as) 
T( -a(t-m2) -as) 

+2 ( P) ( )T(1-a(t-m 2))T(-1-as) a f1 · f2 · q ----~-~-~---''------~ 
T(-1-a(t-m 2) -as) 

+2 ( )( P) T(2-a(t-m 2))T(-1-as) a f1·q f2· 
T(1-a(t-m 2) -as) ' 

(3·9) 

where s= (p+qY, t= (P+k1Y and u= CP+k2Y. In the limit a-40 with g being 
fixed, (3 · 9) reduces to 

l:_p2E =- 4(f1·P) (f2·q) 1 
2 t-m2 

which is graphically represented as 

*l Here (1, 2,-··, n) indicates any permutation of the external photons. 
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Connection of Dual Models to Electrodynamics and Gravidynamics 1915 

kt k, k, k, 

)----( + ~ 
i' q p q 

with obvious notations. In general, by the graph ~ 
p q 

we denote the zero-slope limit of (a)<n-2 )122-nf2FnE (P, q; f 1k1, • • ·, fnkn) after subt­

racting the scalar-pole (of mass m) contributions. We note that 

k, k, k. kt kt k. 

)=( + )=( = -2(f1' f2)= ~. (3·11) 
p q p q 

Thus, we obtain 

To proceed to the general case, we first note that 

12 n 

L; X=O 
(1, 2, ... , n) 

(3 ·12) 

(3 ·13) 

provided n>3. The reasons for this are that (1) on dimensional grounds*) 
there do not exist any contact terms in which n (>3) photons are directly 

attached to a scalar line; (2) the photon cannot couple internally because of its 
oddness under the twisting. Therefore the ingredients of the graphs that can 
survive in the zero-slope limit are the propagator (--), the one-photon vertex 

(_j__) and the two-photon part (~). 

We have then 

(3 ·14) 

Because of the property (3 ·11), this reduces to 

(
1.--n 1--- n 1--- n ) 

gn L; Jl::.L + t L; J:::lli::L + t L; !--V--!--V--1 + · · · · 
(1,2, ... ,n) 

(3 ·15) 

This result coincides with the Born term derived from the Lagrangian of the 
scalar electrodynamics 

(3 ·16) 

if one sets g=e. 

§ 4. Comparison of generating functionals 

Next we shall make a comparison between the two dual models and the 

*l Note that there does not exist any constant with inverse-mass dimension in the zero-slope 
limit. 
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1916 T. Yoneya 

corresponding Lagrangian field theories from a more formal standpoint. In 
particular we wish to know whether there exist in the dual models any traces 
of the Lagrangian. For this purpose, it is useful to study the generating func­
tionals of the scattering matrices which are very simply related to the Lagrangian. 

Let us define the generating functional S1i [¢] by 

m n * an 
X }]:fi(Xi)J;!/i (xi) iJ¢(x

1
) ···iJ¢(xn) Sf£[¢] Jq,-o' (4·1) 

where the initial state consists of a scalar particle in the state i (momentum q) 
and m .photons or gravitons, and the final state consists of a scalar particle in 
the state f (momentum p) and n- m photons or gravitons. The f(x) is the 
wave function for the photon or the graviton. 

We write the Lagrangian in the form 

(4·2) 

where ¢ denotes the photon or graviton field. Then the generating functional 
in the tree approximation is given by 

where 

82 
T[¢(x)] = 8¢*(x)8¢(x)..C(¢(x), ¢(x)), 

Jq) =exp [iqx0]l0), (PI= (OJ exp [iPxo] 

x(t) =xo-2iPot, 

[xo,Po] = -i, PolO) =0, 

and '"(x) IS defined by the integral equation 

(4·3) 

(4·4) 

(4·5) 

(4·6) 

(4·7) 

'"(x) =¢(x) + Jscx-y) iJ(..C('") -..Ctree('")) d4y. (4·8) 
' iJ'"(y) 

The N is a normalization factor. In (4·8), S(x-y) is the Green function 
corresponding to the free Lagrangian ..Ctree (F). For the derivation of ( 4 · 3) see 
Appendix A. 

The T[¢(x)] is given by 

T[A(x(t))] =e{P/, A"(x(t))} +e2A(x(t)l (4·9) 

in the electrodynamic case, and 

T[h (x (t))] = tcP"0h"" (x (t) )P.0 + _li_p"0h; (x(t)) P0" _l_m2JCh; (x(t)) + 0 (tc2) 

2 2 
(4·10) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

1
/6

/1
9
0
7
/1

8
6
4
7
5
9
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Connection of Dual Models to Electrodynamics and Gravidynamics 1917 

in the gravidynamic case, respectively. 

On the other hand, the generating functionals for the dual amplitudes (2 · 2) 
and (3 ·1) .are respectively given by 

sfi[A] =N-1(<P/T exp[g f"" dt r 2 ~a df} PE(f}) {P"(t, (})' Ap(x(t, (}))}] Jq)) (4·11)*> 
-oo Jo 2na 

and 

f oo i2~a d(} 
S 1i[h] =N-1((p/Texp[!C dt -Pa(B)P+"(t, B)hp.(x(t, B))p_"(t, B)] Jq)), 

-oo o 2na 

where we have extensively used the notations of the string picture; 

X (t, (}) =xo- 2ipot + t ja (ane-n(t+iB)fa +an +en(t+iB)fa 
n=l n 

+ bne-n(t-iO)ja + bn + en(t-iO)fa)' 

' 1 1 1 . 8 
P(t, B) =-P+(t, (}) +-p_(t, (}) =-z-x(t, (}), 

2 2 2 at 

p_ (t, (})=Po-i t j n (bne-n(t-iO)fa _ bn +en(t-iB)fa. 
n=l a 

(4·12) *> 

( 4 ·13) 

( 4 ·14) 

( 4 ·15) 

( 4 ·16) 

The integration variables used in the previous sections are related to t and (} 
by z = exp [- (t +if}) I a]. The relation of the operators Cn used in (3 ·1) to an and 
bn is Cn =(an+ bn) I .J2. The zero-mode operators are reinterpreted as V2aq 0 ~ 
x 0, (1IV2a)Po~Poin (4·11) and Va(qo+lio)~xo, (1IV2a)(Po+Po)~Poin (4·12). 
The form factors PE(f}) and Pa(B) are defined by PE(f}) =2nao(f}) and Pa(B) =1, 
respectively. It is a familiar exercise to show that in ( 4 ·11) and ( 4 ·12) the 
on-the-mass shell physical states /cp) and /¢) satisfy the coordinate condition 

(4·17) 

For more details, see Appendix B. 

Now, let us compare (4·3) with (4·11) and (4·12). We can formulate 
their relation in the following way. If the Lagrangian is given, we can know 
F[W(x)] by (4·4). Let us expand F[W(x)] in ifi(x) and only retain the first 
term denoted by TC1> [¢ (x)]. Then, the dual~model generating functional is ob­
tained from the field-theory one ( 4 · 3) by replacing Po and x (t) by P+ (t, (}) or 
p_ (t, (}) and X (t, (}) respectively in the Fl1l [\fl], and by averaging it with respect 
to (} with a weight factor p ((}). The p ((}) should be determined so that the 
coordinate conditions ( 4 ·17) be satisfied. 

*> Since the external photon and graviton are on-the-mass shell and transversal, the normal 
ordering is not necessary. 
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1918 T. Yoneya 

For the electrodynamic case, the T'1l [¢] modified by the above prescriptions 

IS given by 

1 i2na 
- depE(e) {a+P/'(t, e)+ a_p_"'(t, e)' A"'(x(t, e))}. 
2na o 

The conventional dual model corresponds to the solution a+= a_= t and PE (e) = 

2naiJ(e). Similarly, the modified T'1l [¢] in the gravidynamic case is given by 

Since the external graviton is a pure spin-two particle, the second and the third 

terms in ( 4 ·10) do not contribute. The Virasoro-Shapiro model corresponds to 

the solution a++=a __ =O, a+_=a-+=i and Pa(e) =1. 
Thus, once the lowest-order interaction Lagrangian is given, the corresponding 

dual model can be obtained by the above re-interpretation without knowing more 

detailed properties of the original Lagrangian, which is obtained from the former 

by taking the zero-slope limit. This is not very surprising, for, in the gauge 

field theories, the knowledge of the lowest-order interaction enables us to derive 

more or less uniquely the higher-order contact terms and the self-interaction terms 

because of the requirement of gauge invariance. In the dual models, the role of 

the gauge-invariance requirement is played by the requirement of the coordinate 

conditions. The automatic appearence of the higher-order interaction terms in 

the zero-slope limit implies that for non-zero a the exchanges of the higher 

resonances replace the effects of such higher interactions. 
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Appendix A 

We derive the generating functional of field theory defined m § 4. If we 

first neglect the self-interaction of 1Jf, the s,i [¢] is given by 

S,i [¢] = (j[T* exp {is d4xq)* (x) T[¢ (x)] q) (x)} [i) 

= ?~Vn S d 4x1· · · S d 4xn(f[q)* (xl)[O)T[¢ (xl)].J (x1, X2)T[¢ (x2)l· ·.J (Xn-1, Xn) 

X T[¢ (xn)] (O[q) (xn) [i), (A ·1) 

where .J(x1,x2) =(0[Tq)(x1)q)(x2)[0). On using the integral representation 
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Connection of Dual Models to Electrodynamics and Gravidynamics 1919 

L1(x1, x2) = -i Sooods(x1Je-•H'Jx2), 

where H 0=D+m2, (A·1) becomes 

Sf,[¢]= j)o OJ f"asj) (PIT[¢(x(s1 + ··· +s,._1))]T[¢(x(s2+ ··· +s,._1))] 

X··· xT[¢(x(O))] Jq), (A·2) 

where T[¢(x(s))] =e'H'r[¢(x)]e-•H', (PI= (OJ exp[ipx0]. 

By the translational invariance of the integrand with respect to s, 

. 1 "" (n-1 l"" ) SL sf,[¢] =hm- I; II ds1 ds,. 
L-->oo 2L n=O J=1 o -L 

X (PIT[?ff(x(s1 + ··· +s,.)) ]T[¢(x(s2··· +s,.))] ···T[¢(x(s,.)) ]Jq) 

=N-1 (pJT exp { J_""""dtT[¢(x(t))]} Jq), 

where N is an infinite constant for normalization. The effect of the self-interac­
tion is taken into account, in the tree approximation, by replacing ¢ (x) by the 
sum of all the connected ¢-tree graphs with one external ¢-line, which we denote 
by Jl'(x). The Jl'(x) satisfies17l 

Jl'(x) =¢(x) + fscx-y) a(.L(Jl') -.Lfree(fl')) d4y 
f)Jl'(y) ' 

where S (x- y) is the Green function for the free field. Thus, the complete 
generating functional is given by ( 4 · 3) in the tree approximation. 

Appendix B 

We consider a relativistic closed string. The action18l is given by 

S = - _1_ far f2na aej( ax (r, (})' ax (r, (}) )2- ( ax(r, (}))2( ax (r, (}))2, (B ·1) 
4na Jo or f)(} ar f)(} 

where x,.(r, (}) =x,.(r, (}+2na) represents the space-time coordinate of the world 
tube at a parametrized point (r, (}). The Euler equation is 

(B·2) 

in the presence of the coordinate conditions ax/ar. ax/a(}= 0 and (ax/arl + 
(axja(}i=O. The quantization is done by postulating the canonical commutation 
relation [x,.(r, e) ,P.(r, (}')] = -in,.iJ({}-{}') where p(r, (}) = (4na)-1 (8/8r)x(r, e). 
Then we have [x0, Po]=- i, [a,., am+]= [b,., bm +] =- (J,.m with the expansion*l 

x(r' (}) = Xo + 2Por + f:; ja (a,.e-'"<<+O)fa +a,.+ e'"<"+O)fa + b,.e-'"<<-O)fa + b,. + e'"<<-O)fa). 
n=l n 

*> In the text, -r is taken to be pure imaginary. 
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1920 T. Yoneya 

The coordinate conditions are interpreted as the subsidiary conditions on physical 
states 

(B·3) 

where p+ =Halar+ alfHJ)x and p_ =Halar-ala8)x. Since we can identify the 
operators a.,. and b,. with those of the Virasoro-Shapiro model, (B · 3) is satisfied. 
Note that the usual generators of the conformal transformation are given by 
L.,. ± = (27ra)-1 !li d(}e''"9fa> : P± (r, 8Y: . The same conditions are satisfied also in 
the conventional model. In fact, the operators of the conventional model c.,. are 
related to a.,. and b,. by c,. = (a,.+ b,.) I ./2. Any ,state in the conventional model 
is vacuum with respect to the operators d,.= (a,.- b.,.) I ./2. Thus, for arbitrary 
physical states lq;) and 1¢), 

<q;l: P(r+8)8 : l¢)=m\q;l¢), (B·4) 

<q;l: Q(r-8Y: 1¢)=0, (B·5) 

where P(r+8)=HP+(r,8)+P-(r,8)) and Q(r-8)=HP+(r, -{})-p_(r,8)). 
(B · 4) and (B · 5) are equivalent to the conditions (B · 3). 
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