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It is suggested that if the structure function IJ W2 for deep inelastic electron- 

proton scattering behaves near threshold as 

’ 1,‘.,1 ’ for w vw2--, 
( ) 

o 
&E-h 1 

Q2 
then the elastic electromagnetic form factor of the proton, Fl, behaves for large 

momentum transfers as 

for Q2- ,OQ, 

Recent data on inelastic electron scattering show that the structure functions 

of the proton depend only on one variable w = 2Mv/Q2, i.e. on the ratio of the energy 

transfer to the proton, v = PO q/M > 0, to the invariant momentum transfer Q2= - q2> 0 

in the region of large Q2 and Mu >> M2, with o = ZMv/Q? finite. This is true in 

particular for the structure function v W2 which has been studied extensively at SLAC’ 

over a broad range of energy and momentum transfers in this kinematic region referred 

to as the Bjorken limit. This so-called scaling behavior of the structure function v W2 

supports Bjorken’s prediction. 
‘2 

A natural interpretation of this scaling behavior can be found in a picture 

of the proton as made up out of cpnstituents - called J’partonst’ by Feynman - that are 

instantaneously free during the sudden impulse bearing a high frequency v”from the 

scattered electron in the Bjorken limit. The associated physical picture is that the 

w dependence of v W2 probes the longitudinal momentum distribution of the charged 

partons as viewed in an infinite momentum frame of the initial proton3; specifically 

(Submitted to Physical Review Letters) 

*Work supported by the U. S. Atomic Energy Commission. 



- 2- 

v W2a$ x {Probability that a parton scattering the electron has a fraction 7 = $ of the 
I 

proton’s momentum E in the g+ m coordinate frame}. 

In this letter we will explore what can be inferred about ,the elastic electro- 

magnetic nucleon form factors, particularly for large Q2, from the parton model and 

its apparent successes with vW2. In particular, we will suggest a connection between 

the behavior of v W2 near w-l and the rate of decrease of the elastic form factors for 

Q2- 00. Our work is based on the canonical field theoretic formalism developed 

earlier4 for derivinff the parton model and the Bjorken limiting behavior from any 

reasonable - i. e. renormalizable in the usual sense - canonical field theory of strong 

interactions. A basic ingredient in this derivation of the parton model was the assump- 

tion that there exists an asymptotic region in which Q2 can be made greater than the 

components of momenta transverse to the direction of2 of all particles involved - 

i. e, of the constituents of the proton. 

To develop this approach and identify the partons we introduce the familiar 

unitary U matrix which undresses the Heisenberg fields and currents U(t) = 
t 

-&,d?.H+7) where H.+ T is the interaction Hamiltonian of the hadrons, so that ) 

\ 
e 

/ + 

for example z(x) = U-‘(t)j,(x) U(t) where Jcc(x) and j,(x) are the hadronic electro- 

magnetic current operators in the Heisenberg and interaction pictures respectively. 

Then if P > denotes the one proton eigenstate with momentum P, we have 

I (1) 

where Z’ denotes a sum over all states I m> @her than P>; Z2 is the standard wave function 

renormalization constant of the proton state as required to insure < P’ I P > = c UP’ I UP > = 

d3(g -9. The second form expresses the expansion in terms of a sum over numbers 

of constituents n (the 1rphysical’r pions, nucleous, and anti- nucleons in a conventional 
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pion-nucleon field theory; indices for other quantum numberss are suppressed). These , 

where all longitudinal momenta are along the E direction - i. e. 0 < vi c 1; A a is the charge 

on the ath constituent (viz. I*, P, F) in the particular state fP, and the spin average over 

constituents’states is assumed in writing (5). In particular we note that the behatior of fp 

when 77, = i -c 1 and all other T+, are within (‘l; 5) of zero determines the threshold. behavior 

of w& near w = 1. Recall that in approaching the threshold we must still satisfy the 

inequality I Q2@-1) I >> M2 in order to stay in the Bjorken limiting region as requfred4. 

For the elastic form factor of the proton we write 

, 

are the partons. The probabilities for different numbers, charges, momenta, etc. are 

specified by the matrix elements in (1). In particular we have seen that we must set 

Z2 = 0 so that the elastic form factor vanishes as Q2 -00; hence’ the single physical proton 

state is absent from UP>. 

For computing the inelastic and elastic structure functions we choose as a 

convenient infinite momentum frame for the proton 
3 

p& p+$$ 
( 

, 0, 0, P); d=(gh.$ 0) 

with 

i4,t 12= Q2 + O(l/P2) 
,v .._ 

In this frame. the longitudinal and transverse momenta of the constituents in the states 

’ 3 l ’ ’ kn+l 

> in (l) are defined by 

~~=qi~‘~~~;~‘~=O 

The momentum conserving delta function fixes 

As established in the analysis above Eq, (78) in Fwer II, the strugture 

functions Wl and VW2 in the Bjorken limit can be written as a sum of contributions from 

each term fP in (1) of the form 

(2) 

(3) 

(4) 

(5) 
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<P’IJlr~P>=<UP’lj~lUP> 

In order to compute the two scalar form factors Fl and F2 or GE and GM as customarily 

defined we need only work with the two good current- components p 7 0 or 3. Then 

according to the discussion in Paper II (see especially Eqs. (10) and following) to leading 

order in P--a, all constituent particles in fP will be <moving along the direction g (and 

along 2 in f,,) and the operator j, or j, will simply scatter one of the charged constitu- 

ents changing the magnitude but not the sign of its momentum projection along g or c. 

Furthermore we can separate the two form factors according to their spin dependence. 

In terms of the Pauli two-component spinors x.’ and x and in the P-coo frame (2) 

14F,(s2) x 
I 

prOor 

Taking the spin average as in (5) for v W2 we obtain 

Fl(q2) = (27r)3 c UP ’ I jh I UP > p=Oor3 

Introducing the expansion (1) gives then 

F,(q2) = 

n 

d2ki~d$ ’ 0 - 

(6) 

(7) 

Each T+ in the initial is the same as in the final wave function because no longitudinal 

momentum is introduced by q according to (2) and the rotation from the direction g to 

g = 2 + q alters the longitudinal projection of 77, only by corrective terms -l/P2 which 
ma 

we consistently neglect. This displacement of the transverse projections by - ?+afor 

each i is just an expression of this very rotation: momentum k transverse to P is 
-& 

identical to order l/P with k ‘Ir U- ni$ as reckoned relative to x. Only the constituent a 

has its momentum altered by 9( as a result of ‘the scattering by the current. 

To determine the asymptotic behavior of Fl(q2) we must consider the various 

possible ranges of vi that contribute to the overlap integral (7). 

(i) If (l-q,) does not take an extreme value within l/q of l- qa = 0, i. e. l- q, 
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lies in the region 0~ CC l- nac 1, then (l - ‘13 CJ, increases with q as qe*. The energy 

denominator associated with the scattered final state is, given by 

Thus there is at least one energy denominator of order Q2/P since a heavy state of 

(mass)2 of order Q2 is formed from an interaction creating a large transverse momen- 

tum squared proportional to Q2. In addition, due to the momentum mismatch between 

fp, and fp, at least one vertex matrix element in (1) will be suppressed by a trans- 

verse momentum cutoff g(Q2). In this case therefore we have6 

i. e. El(q2) decreases more rapidly than l/Q2. To say more than this we require 

detailed models of the cutoff. However, any association of the fall-off of g(Q2) with 

the observed transverse momentum distribution from high energy collision data7 will 

generally predict a too rapid decrease of Fi(q2) in (9). Furthermore, a variety of 

specific calculations in this region of parameters leads to a q independent ratio of 

F2(q2)/Fl(q2) and thus to a ratio GM(q2)/GE(q2) = 
Fl + /cF2 

2 = -$ in defiance 

Fl+&cF ’ 4M2 2 - 

of the “desiredfJ scaling law for the elastic form factors. A few examples of these 

calculations are illustrated in Figure 1. All these indications suggest to us that the 

contribution of primary importance.does not come from this region. 

(ii) Suppose then that the more important region is 0 < l- na 5 m/q where m is 

some characteristic mass, so that 
h 

-t- (1 - na) iin (7) remains bounded as q increases. 

According to {4), all the other k - 17 
-iA is1 

with i #a are also bounded. For all i we write 

Introducing this notation into (7) we see that Fl(q2) becomes a series of overlap integrals 

in each of which the transverse momenta are displaced by a bounded, finite amount g.. 
?;L 
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In this case the longitudinal (normalized) momenta ni are confined in a similar manner 

as discussed below (5): All but one ni are within l/q of zero whereas in (5) they are within 

( f 
1-L o of zero in the inelastic threshold region; and for na, 1 - 77, ‘? l/q here and N ‘I -i : 

( ) 
in (5). Since the transverse momentum overlap integrals will be generally finite and q 

independent, with numerical upper bounds according to a simple application of the ‘Schwartz 

inequality$, we look to the q integrals for the functional dependence on q. Here we see 

that (5) and (7) differ only by the appearance of the e(na- l/w) in (5) which removes one 

1 
of the’ dn integrals and thereby avoids one additional factor N 1-w 

( ) 
. Thus we conclude 

that the leading contribution of this region in (7) can be written 

Fl (s2) - (l/q)’ + ’ - 

if the leading term contributing to the inelastic scattering in (5) varies as 

( 1 

P 
vw2--& ’ -I-ts asi --.I. 

The diagrams in Figure 1 are examples dominated by this region of parameters. These 

examples also lead to a decreasing ratio for F2(q2)/Fl(q2) as q increases. Therefore it 

remains a possibility that the so-called scaling law for the elastic form factors is valid 

if indeed this is the dominant region of contribution 9 . 

(iii) Finally we must consider the region in between (i) and (ii) - i. e. the 

region m/q I n < c < 1. Generally we expect that this region can be ignored by 

choosing a sufficiently small value of c if region (i) dominates, and by a proper choice 

of m if region (ii) dominates. Beyond this, we have not been able to derive any general 

statements. To proceed further we resort to ffempirical mathematicsl’ - i. e. specific 

calculations of types of diagrams in Figure 1 and others. All these show that this region 

never dominates and can always be incorporated in the manner described above. In 

fact, the overlap integral (7) decreases as one increases the range of the n integration 

beyond the limit of region (ii) and toward region (i). This results essentially from the 

growing energy denominators (8) since the 9nassesf’ increase with Q. 

On the basis of the above discussion we infer - i. e. we conjecture - that the 

(10) 

01) 
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connection described by (10) and (11) is generally valid. Their physical connection is that 

1’ 
near threshold v W2 measures the probability that all but a fraction N 1”; of the proton’s 

( 1 

momentum is concentrated on one charged parton in the g-- a frame as indicated in (5). 

Similarly the dominant contribution to F1 (q2) for asymptotically large q measures the 

probability that all but a fraction -l/q of the proton’s momentum is concentrated on one 

charged parton. In this case the other partons emit&ed before the scattering by the 

virtual photon can rejoin with the scattered.one without introducing a large transverse 

momentum mismatch mq at the vertex, as occurred in (9). The probability that UP > 
c 

dissociates into only the physical proton P > - i. e.. into one parton - has been set 

to zero by choosing Z2 = 0 as required’ in order to insure that F(q2) vanishes as q-00. 

This has often been discnssed”in the literature as the bootstrap or composite particle 

condition. In our present application it is interesting to note that the two requirements 

that both the nucleon and the pion wave function renormalization constants vanish so 

that their electromagnetic form factors will do likewise as q-r= present two constraints 

on the two parameters in the calculation, the pion nucleon coupling constant g2/4r, which 

nominally = 15, and the cutoff momentum klnax, which is characteristically = 400 MeV 

as observed in high energy secondary particle production events. Although lowest order 

perturbation calculations are notoriously dangerous frameworks on which to base specu- 

lations it is intriguing to note that to order g2/ 4n the conditions 
11 

Z2 = Z3 = 0 fix the 

values g2/4r=17and k2Amax = 0.2 GeV2. 

How well this connection in (10) and (11) can be tested experimentally is not 

certain at present. The elastic form factors, assuming that they have already reached 

their asymptotic behavior by q2 N 25 GeV2, come close” to p + 1 = 4 in (lo). However 

should the data lie just on the verge of becoming asymptotic it is also possible that 
13 

p + 1 = 6. The curvature of v W2 near w = 1; extrapolated from points with L Q2(o-1) I >>l, 

is just beginning to be determined. 
14 

On the basis of our earlier analysis we suggested15 

that interactions with the part of electromagnetic current due to boson currents should 

dominate over that part due to charged fermions near the threshold region. If this is true 

we would expect p to be an even power. 
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At this time the problem of determining p in (11) by comparison with experiment 

is the following. Since Q2 5 10 Ge v2 is a mstrictioneon existing data’ and Q2(w- 1) > > 1 

is a requirement for onr theoretical model we must consider a range of values 1.2 5 w <, 1.5. 

Thus our resulting numerical fit is greatly affected depending on whether we write 
P 

VW2 - (0 - l)p which is its limiting threshold form, or v W2 N -L l- L 
W ( 1 

which is the 
w 

E natural form emerging from (5). Clearly we can make no quantitative statement when 

the difference between these forms controls. the fit. As written Eq. (11) is consistent 

with present‘data if we fix p = 3 from Eq. (10). Experiments at higher Q2 and smaller 

(w - 1) values, both for the deep inelastic scattering and annihilation processes, will be 

required before the two forms (10) and (11) bootime strong mutual constraints on the theory. 

According to our model an odd integral value for p, such as p = 3, is necessary 

if the nucleon current (or generally a spin l/ 2 current) contr’ibution is dominant. If this 

is the case it also follows that the ratio of longitudinal to transverse cross sections is 

MwI w small - i.e. - - - 
VW 2 2 

, or in the notation of Ref. 1, R - 0. The present data are’ 

consistent with R 5 0.2 near threshold indicating that this and not even integral p is the 

case. 

This region near threshold is of considerable interest not only for testing the 

connection given by (10) and (ll). The field theoretical formalism on which the present 

discussion is based shows that this is also the region in which the constituents are far 

off their mass shells - i.e. they are very virtual. It is here then that one is indeed 

probing very small space-time intervals by the study of deep inelastic scattering. 
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FIGURE CAPTION 

Fig. 1 - Typical graphs contributing to elastic form factors as computed for Q2 - - with 

y5 coupling of pions (dashed lines) to nucleons (solid lines) 
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