
CONNECTION PROBLEMS FOR ASYMPTOTIC SERIES1 

BY WOLFGANG WASOW 

1. Connection problems and asymptotic power series. An analytic 
function is completely determined by the coefficients of its power 
series about one regular point, e.g. by 

(LD ƒ(*) = £**'. 
r-0 

The principle of analytic continuation makes it possible to calculate 
effectively the corresponding convergent power series about all points 
where a holomorphic continuation exists. However, the nature of the 
function near its singularities cannot be so readily deduced from the 
series (1.1). 

Often series expansions about such singular points do exist, and 
sometimes it is possible to calculate them explicitly from the coeffi-
cients of the convergent expansions about a regular point. These 
expansions may even be power series. Nevertheless, they differ from 
the familiar convergent Taylor series in several decisive respects. 
The most important new feature is that they represent the function ƒ 
only in an asymptotic sense. To explain this concept, let us assume, for 
simplicity, that the singularity occurs at z = oo. To say that the func-
tion ƒ is asymptotically represented by the series 23r^o crZ~r, in sym-
bols ƒ(z)~ 2^r°l0 £r*r'r, as z—> oo, means that, for all N, the error com-
mitted in replacing ƒ (z) by the sum of the first N terms of the power 
series is 0(z~N), as z—> oo. Such a series may well be divergent, in fact, 
it usually is. If so, another important feature enters the picture: 
A divergent asymptotic series for an analytic function at an isolated 
singularity never represents the function in a full deleted neighborhood, 
but only in certain sectors. 

There exists a substantial body of theory for the "connection 
problem" just described, namely the problem of finding asymptotic 
expansions about a singular point from a given convergent expansion 
for the same function about a regular point. I shall not say much 
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about this work, because I am more concerned with the converse 
"connection problem" of finding convergent expansions at regular 
points from a given asymptotic expansion at a singularity. 

Now, this latter problem is meaningless without some further 
restriction, because of another basic property of asymptotic expan-
sions: They never determine a function uniquely. For instance, the series 
0+0*zr1+0-zr2+ • • • is the asymptotic expansion, as z—»oo in the 
right half plane, of the function that is identically zero, as well as 
of er: 

The additional restriction imposed in this talk will be that the 
functions in question are solutions of a given linear homogeneous dif-
ferential equation. As the solutions of such an equation form a finite-
dimensional vector space, the ensuing simplifications are enormous, 
and the ideas and methods are largely different from the theory men-
tioned above. 

2. Local asymptotic solutions: Airy's equation. There exists a 
well-developed general theory that permits the asymptotic solution 
of linear analytic differential equations near their so-called irregular 
singularities (see, e.g. Wasow [1965]). Rather than to state general 
theorems, I shall illustrate this theory through what I consider the 
simplest nontrivial example, namely the equation 

(2.1) d*u/d# -zu = 09 

often called Airy*s equation. Its solutions form a two-dimensional 
vector space over the complex numbers. This is a consequence of the 
basic existence and uniqueness theorems. By simple comparison of 
coefficients one can calculate the ascending power series for any solu-
tion that is characterized by its value and its derivative at one given 
point. 

At z = oo the equation has an irregular singularity, and the general 
theory under discussion yields the following information : 

(i) There exists an expression of the form 

(2.2) z-v* exp(f z*i*) £ «r»"*, 

where the ar are certain constants, which satisfies Airy's equation in 
the formal sense, i.e. its insertion into the left member of Airy's equa-
tion, termwise differentiation and rearrangement of terms, produces 
a series all of whose terms are zero. The coefficients ar can be recur-
sively calculated. 

(ii) Corresponding to every sufficiently narrow sector S of the z-plane 
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there exist two linearly independent solutions ui(z), u2(z) that have the 
series (2.2) as asymptotic expansion, as z—»oo in S. The determination 
of zzl2 has to be taken different in the two series. 

The asymptotic relation is to be understood in the sense that 

u,(z)zl» exp(-fs3 /2) ~ ë (hi*-*»)', j = 1, 2. 

The information contained in this result is local in two respects: 
(i) I t pertains to the limiting behavior, as z—>oo. Nothing is said 

about the values at any finite point. 
(ii) Different sectors S may have different solutions Uj(z) (j=l, 2) 

associated with them. 
Accordingly, two types of connecting problems arise. 
(i) Central connecting problems. Find solutions with known expan-

sions both at infinity and at some finite point where the solution is 
holomorphic. 

(ii) Lateral connecting problems. For a solution with known asymp-
totic series, as z—> oo in one sector 5, find expansions valid as z—* oo in 
other sectors with the same vertex. 

I t is to be expected that these two problems are closely inter-
related. 

The previously mentioned nonuniqueness of asymptotic series is 
an annoying obstacle. The concept of a "subdominant" or "recessive" 
solution is a great help in this connection. I shall explain it through 
the example of Airy's equation. Consider some subsector S* of S in 
which Re(s3/2) does not vanish. In such a sector one of the two solu-
tions Uj(z) becomes exponentially unbounded, while the other tends 
exponentially to zero. As all solutions are linear combinations with 
constant coefficients of U\ and u2, it is clear that the exponentially 
decaying solution is uniquely characterized—to within a constant 
factor—by this property. This remark can be extended to much more 
general types of linear differential equations. Following a terminology 
proposed by Friedrichs [1955], I shall call a solution that decays at a 
faster rate than all other linearly independent ones "recessive" in the 
sector in question. The "largest" solutions are commonly called 
dominant. 

In the example of Airy's equation all connection problems can be 
solved by a procedure that is independent of the general theory and 
is, unfortunately, available for a very small class of very special equa-
tions only: All expansions can be derived from explicit integral repre-
sentations for particular solutions, in this case from the so-called 
Airy integral 
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(2.3) Ai(s) = — f exp(zt - t*/3)dt, 
2wiJ r 

where T is, e.g. the following path in the /-plane. 

FIGURE 1 

I shall now report, very briefly, the results that flow from an 
asymptotic analysis of Airy's integral, because they are simple 
illustrations of more general phenomena: 

By the three rays Cj, j = 1, 2, 3, of the figure below we divide the 
s-plane into three sectors Sy. 

FIGURE 2 

The direction angle of Cy is (2j + l)7r/3. Airy's equation possesses 
three particular solutions Wj(z) that are linked by the identity 

(2.4) wi(z) + w2(z) + ws(z) - 0. 

Their power series about 3 = 0 are known. As z—»<*>, each w3(z) has 
the asymptotic expansion (2.2) in the sector consisting of the whole 
plane cut along Cj. The determination of zzl2 is to be so that wj is 
recessive in S, (and hence dominant inside the other two sectors). 

The lateral connection problem for the solutions wj reduces in this 
example to the question as to their asymptotic expansions on the 
line Cj. This is answered by (2.4), since two of the three functions 
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have expansions of the form (2.2)—with appropriate determinations 
for the fractional powers—on Cy. Thus, all connection problems for 
Airy's equation are answered. 

These properties of Airy's equation are explained in many books, 
e.g. in Wasow [1965] and in E. T. Copson [1965]. The latter book 
also contains similar results for a number of classical special functions. 

At the beginning of this article, I mentioned a theory which, in 
certain cases, permits the calculation of asymptotic series near a 
singular point of an analytic function from known convergent power 
series for that function at a regular point. As these techniques, by 
themselves, have nothing to do with differential equations, I will not 
describe them here. The earlier results are well explained in W. B. 
Ford [1936]. For more recent work see, e.g. H. K. Hughes [1945]. 
With the help of these methods Turrittin [1950] has given an almost 
complete analysis of the connection problems for the equation 

dnu/dzn — zmu = 0. 

Certain systems of differential equations with linear coefficients have 
been globally analyzed by a similar method by Okubo [1963], [1965]. 

The approaches mentioned so far for the solution of connection 
problems might be called special function methods. When available, 
they yield the most complete and explicit information. Their ramifi-
cations fill many books on special analytic functions. 

3. Problems with a parameter: Uniform simplification. When con-
fronted with a complicated differential equation it is very natural 
to look for a simpler problem with the same essential characteristics 
that can be solved, and then to reduce the original problem to the 
simpler one by some perturbation argument. For instance, if the 
differential equation is of the form 

(3.1) d*u/dz* ~ (z+ h(z))u = 0 

where h(z) is "small" with respect to z, as z—»<*>, one might expect 
that its solutions should asymptotically behave essentially like those 
of Airy's equation (2.1). However, an analytic function h(z) cannot be 
bounded in the whole finite plane and be "smaller" than z at infinity 
without being a constant, hence such a perturbation approach can 
succeed, at best, only if certain regions of the z-plane are excluded. 
Olver has written several papers (e.g. Olver [1965]) in this spirit. 

There is another perturbation scheme, which is based on introduc-
ing a small parameter into the differential equation. It can be ex-
plained as follows: 
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Let a new variable t be defined by setting 

(3.2) z = <r% 

where € is a real or complex parameter and a > 0 . If t assumes all 
values in the disk | / | £t0, the old variable z ranges over the whole 
s-plane, as e—>0. With a = 2 /3 , which is here the most convenient 
choice, Airy's equation becomes 

(3.3) €*(d*u/W) - tu = 0. 

The asymptotic problem as to the behavior of the solutions of (3.3) 
in a bounded ^-domain, as €—»0, is thus exactly equivalent to the previ-
ous, parameterless problem, as z—»<*>, for Airy's equation and is 
therefore completely solved. 

Now, we repeat with this new form of the equation the remark 
made before, that a "small" perturbation may be expected to change 
the asymptotic form of the solutions only slightly. A perturbed equa-
tion would now be of the form 

(3.4) *(d*u/W) - (< + €*(*, e))u = 0, 

where h(t, e) is holomorphic for 11\ Sh, 0^6^€ 0 , say. 
Differential equations that depend in a singular manner on a small 

parameter have been widely studied, not only because of their rela-
tion to parameterless problems but also because of their independent 
interest in pure and applied mathematics (e2 may be Planck's con-
stant or viscosity, for example). 

Our particular conjecture as to the equation (3.4) has been an-
swered in the affirmative in the most satisfactory form: the asymp-
totic theory of this differential equation can be completely reduced 
to that of equation (3.3) and, hence, to Airy's equation. This ap-
proach goes back to R. Langer (Langer [1931 ] and many subsequent 
papers). The nucleus of the technique will now be sketched in a con-
siderably generalized version (see Wasow [1965]). 

First, generality and better structural insight is gained if equation 
(3.3) is replaced by the equivalent two-by-two system of first order 
equations 

(3.5) e(dv/dt) = A0(t)v, 

where v is the vector 

\tdu/dt/ 
and 



i968] CONNECTION PROBLEMS FOR ASYMPTOTIC SERIES 837 

(3.6) Ao(t) « 

As the perturbed system we take 

(3.7) e(dw/dt) = A(t, e)w 

with 
00 

(3.8) A(f, e) = Z Mt)*r, | ' | £ <o, \ t\ % c, 

where all matrices Ar(t) are holomorphic in |/ | ^t0. Actually, the 
system (3.7) is more general than it appears, for a large class of dif-
ferential equations can be reduced to this form by preliminary reduc-
tions. 

When speaking of transforming one differential equation into 
another, one must keep in mind the obvious fact that, in a sense, every 
ordinary linear differential equation such as (3.7) can be changed into 
any other, 

(3.9) e(dw*/dt) = A*(f, *)w* 

by a transformation 

(3.10) w = P(t,e)w* 

with some matrix function P(t, e), since substitution of (3.10) into 
(3.7) leads to 

(3.11) e(dw*/dt) « [P~lAP - tP-\dP/dt)]w*y 

which reduces to (3.9) if 

(3.12) e(dP/dt) = AP - PA*. 

The last formula is a differential equation for P which possesses 
analytic solutions with respect to t whenever A and A* are analytic. 
As (3.12) is, in general, harder to solve than the original problem (3.7) 
and as this remark says nothing about the dependence on e, it is, at 
best, only the first step of the work to be done. 

More specific and much deeper is the following 

THEOREM. The system (3.7) can be reduced to (3.5) by a transforma-
tion w = P(t, t)v with a matrix P(tt e) that has the following properties. 

(i) Pity e) and P~l(t, e) are holomorphic f or \ t\ Sk, 0<eg€i. 
(ii) P(t, €)~Y,?~*Pr{t)efor \t\ Sh, as €->0 + . 

c:> 
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The method also yields a constructional and practicable scheme 
for the determination of the coefficients Pr(t). 

The long proof of this theorem falls naturally into three parts: 
1. Formal reduction. The coefficients Pr(t) are determined recur-

sively from the condition that the transformation w = ( XXo Pr(t)e)v 
is to perform the reduction "formally," i.e. in the ring of formal 
power series. 

2. Existence of analytic reductions in a sector. There exists a 
standard procedure for proving that a, formal power series solution of 
a differential equation is the asymptotic expansion of a true solutipn. 
Its description here would take much too long (see Wasow [1965, 
§§26 and 27]). In the present problem the method fails, if we wish to 
include the point £ = 0 into the interior of the region of validity. At 
best, and with considerable additional effort, the method yields the 
asymptotic character of the series ]T)r% Pr(t)er, as €—»0 + , in certain 
closed sectors of the t-plane with vertex at 2 = 0. 

The exceptional role of the point 2 = 0 is plausible if the special 
scalar case (3.4) of (3.7) is inspected. At 2 = 0 the coefficient of u tends 
itself to zero, as e—+0, which is likely to affect the asymptotic struc-
ture of the solution for small e. The point 2 = 0 is what is called a 
turning point for this asymptotic problem. We have to omit a precise 
definition of this concept. I t is clear, however, that the inclusion of 
2 = 0 is crucial for the connection problem if we remember that we 
were led to the problem with a parameter by the "compression" 
transformation z = e~2/32. Any simply connected region of the 2-plane 
which does not contain the origin has a pre-image in the s-plane that 
shrinks to the point at infinity, as €—>0. In fact, it can be said that this 
compression transformation shifts the connection problem pertaining 
to expansions at z = <*> into a new kind of connection problem per-
taining to the neighborhood of the turning point at 2 = 0. Here we can 
again distinguish two kinds of connection problems: central and 
lateral ones. The central connection problem is solved by the result 
for sectors, which I just mentioned. The system of sectors covers a 
full disk about 2 = 0, but the matrices P(2, e) so constructed may differ 
from sector to sector, even though they have the same asymptotic 
power series in their respective sectors. Thus, there remains still the 
lateral connection problem. 

3. The lateral connection problem. All the sectors in which the 
central connection problem has been solved, as mentioned, have the 
origin in common. Thus, several fundamental matrix solutions for 
equation (3.7) are now known at that point, where they are all, in 
fact, asymptotically equal. One might think that it should be easy to 
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find, from this information, the linear relation with constant coeffi-
cients that must exist between any two of these solution matrices 
and, hence, to prove their asymptotic equivalence throughout. Actu-
ally, the necessary arguments are not quite obvious. I t turns out 
that a solution matrix P(ty e) of equation (3.12) must be chosen in a 
very specific way among all those that locally have the asymptotic 
expansion XXo Pr(t)e in some sector if it is to serve for all sectors 
and, hence, for the theorem stated above. Incidentally, this section 
of Wasow [1965] contains an error, and I have only recently suc-
ceeded in giving a correct proof. 

Asymptotic problems with a small parameter that can be reduced 
to Airy's equation are, of course, only a small subclass of systems of 
differential equations that one would like to simplify so completely 
to some problem with known asymptotic solutions. The literature 
using these or related methods has, indeed, grown to impressive size 
in the last thirty years. Substantial formal simplification in the ring 
of formal power series have been given for almost all types of second 
order systems of the form eh(dy/df)~A(t, e)y (h>0t an integer) 
particularly by R. Hanson and D. Russell [1967] and by Hanson 
[1968]. For higher order systems there are formal reductions by 
Wasow [1963], Hanson [1966], Kiyek [1967], Okubo [1961], and 
others. 

Analytic solution of the central connection problem has been pos-
sible only for a much smaller subclass of these equations. The main 
tool is an existence theorem of Sibuya [1962] which guarantees an-
alytic simplification when a formal reduction is available, provided 
certain conditions are satisfied. One of these, namely that the coeffi-
cients have to be polynomials in /, has been removed by Wasow 
[1966b], [1967]. See also Wasow [1966b] and Lee [1967]. 

The third part of the analysis, i.e. the solution of the lateral con-
nection problem, has been carried out for only very few types of 
equations, in which solutions of the simplified equation are easily 
expressible in terms of Bessel or parabolic cylinder functions. 

I t is very tempting to formulate the following general 
CONJECTURE. "Let A (£, *), B(t, e) be matrices holomorphic in 11\ S to, 

0 < e ^ € 0 , and possessing uniform asymptotic power series 
00 00 

A(t, «) ~ E Mthr, B(t, <•) ~ £ Br(t)S. 

Whenever there exists a matrix power series P = XXo Pr(t)er with 
coefficients holomorphic in | / | ^ / 0 and de tPoW^O, such that 
e(dP/dt) =A(t, €)P—PB(t, e) in the formal sense, then there exists a 
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matrix P(t, e) holomorphic in |/ | £ht 0<e^€i, such that P(t, e) 
~2£o-P(*)* r a s €—>0+, uniformly in | / | ^h and that the trans-
formation y~P(t, e)w takes the differential equation €(dy/dt) 
= A{t, e)y into e(dw/dt)=*B(t, e)w.» 

In the light of very recent unpublished work of Sibuya and Roy 
Lee it is unlikely that this sweeping statement is true. The situation 
can be described as follows: the formal series X)r°l0 Ar(t)e

r and 
]Cr°lo Br(f)tr define two infinite families <I>A, </>B of holomorphic func-
tions, all of which have these two series as asymptotic expansions, 
respectively, for €—»0 + , uniformly in a full neighborhood of / = 0. 
To every particular choice of two matrices <l£#it, J§E0£, there do 
exist matrices P(t, e) with the desired properties in a sufficiently nar-
row sector of the /-plane. However, for any given Â(E<I>A only certain 
particular matrices B*(E<I>B will have the property that the corre-
sponding P(/, e) has the formal expansion as asymptotic representa-
tions in a full neighborhood of £ = 0. The question, then, is to charac-
terize these matrices B* in a usable, effective manner. 

4. Problems with a parameter: Stretching and matching. When the 
uniform simplification method just described fails, or when it leads 
to an equation which, though simpler, is still not easily solved, one 
may try what is often called the "stretching and matching" method. 
Here is a simple instance of that technique: 

Consider the differential equation 

(4.1) *(fflu/dP) - D2 + €*(/, t)]u - 0. 

By the inverse of the process which produced a small parameter in 
the first term of Airy's equation, one can remove the small parameter 
from the first term in (4.1) by an appropriate "stretching" trans-
formation / = ea2. It turns out that for a = 1/2 one gets, indeed, 

d*u/d* - [z2 + h(e*9,€)]u = 0, 

an equation which depends analytically on the parameter c1/2 and 
possesses, therefore, fundamental systems of solutions holomorphic 
with respect to €1/2 at e = 0, in any bounded ^-domain. Such a domain 
corresponds to a domain in the /-plane that shrinks to a point, as 
e—*0. Thus, in the /-plane, stretching gives results only in an "in-
finitesimal" neighborhood of J = 0. The classical asymptotic theory, 
on the other hand, supplies us with asymptotic expansions for an-
other fundamental system, valid in certain regions in which \t\ è k> 0. 
Hence, for small €, these two regions are separated by a zone in which 
their validity is doubtful. We have here another version of the cen-
tral connection problem. Its solution by the method under discussion 
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requires two arguments: First, a proof that, at least in some possibly 
weaker asymptotic sense, the two types of expansions are valid repre-
sentations in larger regions that do overlap for all €. Second, one needs 
a technique for finding the coefficients of the linear relations that 
must connect these "inner" and "outer" expansions. The first task 
has been tackled in papers by Nishimoto [1965], [1965b], [1966], 
which are based on two articles by Wasow [1961 ], [1962]. The actual 
connecting process has been studied more by physicists and engineers 
than in the mathematical literature. 

If one goes beyond the example just given and its most natural 
generalizations, even the very first step of the stretching-matching 
method becomes a problem: What stretching factors should one use? 
This question has been answered in great generality by Iwano and 
Sibuya [1963] and by Iwano [1963]. I t turns out that in equations 
with more complicated turning points at £ = 0 one has to perform 
more than one stretching of the form z — te"", each with a different 
value of a. Each transformation leads to a differential equation that 
can be asymptotically solved in a certain "zone," and the various 
fundamental systems of solutions in the several zones have to be 
"matched" in a manner not yet quite elucidated by anybody. 

In this context, still another complicating phenomenon, which I 
shall call "secondary turning points" has to be considered. Let me 
illustrate it with the simplest example, the equation 

(4.2) *{Pu/dP) - (*8 - e)u « 0. 

One indicated stretching here is 

(4.3) i » se1'8. 

I t changes the differential equation (4.2) into 

(4.4) éf\d2u/dz2) - (*8 - \)u = 0 

which has three turning points of the Airy type at the three cube 
roots of unity. These correspond to t = êlz exp(2wki/3), &=0, 1, 2, 
and thus coalesce at 2 = 0, as €—>0. 

If the procedure of Iwano and Sibuya is applied, a second stretch-
ing has to be performed, namely 

(4.5) t = %€ll2
$ 

which produces the differential equation 

(4.6) d*u/dx2 + (1 - tll2%*)u » 0, 

soluble by standard power series in e1/2. 
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Thus, even for the trivial looking differential equation (4.2), no 
completely adequate asymptotic analysis appears to be available. 
A matching procedure based on the Iwano-Sibuya theory would 
involve formulas connecting at least nine, probably more, funda-
mental systems, each known through asymptotic expansions in some 
region of the (t, e)-space. 

For many problems—including equation (4.2)—this approach is 
probably not the simplest possible. 

5. Problems with a parameter: More general asymptotic series. 
One underlying reason for our difficulties is our insistence, so far, 
that the series involved be simple power series. This is an unwar-
ranted restriction. Any series expansion for a function such that the 
error involved in terminating after the iVth term is small, in the sense 
of the order of magnitude, compared to the last term retained, can be 
called an asymptotic expansion, and most of the properties of asymp-
totic power series carry over to such more general types of series. 

In a sense, we have already used more general series: If in a series 
2 r % cr(t)ey the variable / is replaced by 2e1/3, as in (4.3), the result-

ing series ]Cr°Lo cr(zellz)er is no longer a power series. 
Many connecting problems can be solved or, better, obviated by a 

skillful choice of more general asymptotic series. 
Interesting results in this direction have been obtained, among 

others, by G. Stengle [1961 ], [1964]. Let me give a thumbnail sketch 
of his method specialized to equations of the form 

(5.1) #(d*u/iP) + g(t, e)u « 0, 

where g(0, 0) = 0 , so that t — 0 is a turning point. We assume that / 
and e are real and g is in C00 for 11\ :g J0, 0 g e g e 0 . The transformation 

du/dt / 1 r * \ 
(5.2) w == e j or u = expl— I w{r)dr J 

takes (5.1) into the Riccati equation 

(5.3) e(dw/dt) + w2 + g(t, e) = 0. 

This transformation, in the same context, has long been favored by 
physicists. Now, Stengle temporarily ignores the dependence of g 
on e, or, in other words, he considers the two-parameter equation 

(5.4) e(dw/dt) + w2- g(t, a) = 0. 

I t can be formally satisfied by a power series of the form 
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(5.5) w = X) «V(*, a)er. 

Insertion of (5.5) into (5.4) and comparison of coefficients yields the 
recursion formulas 

(5.6) wo = gl'\ 

(5.7) wr+i = - —- <—^ + X W y f , 
ZW0 V ÖÏ i+j=*r+l; i,j>0 J 

and, hence, two formal series corresponding to the two determina-
tions of g112. Of course, cr must now again be replaced by €. The series 
are meaningless at the zeros of g. Nevertheless, they turn out to be 
useful in regions of the (/, e)-plane that contain points with t^O. 
I t is true that at 2 = 0 the coefficients wr(0, e) become unbounded, 
as €—»0, but the growth is more than counterbalanced by the small 
factor er, provided certain conditions are satisfied. Essentially, these 
conditions amount to the requirement that no secondary turning 
points lie on the /-axis. 

Stengle proves that under his assumptions the series (5.5) are, 
uniformly on | / | g/0 , asymptotic representations of a fundamental 
system of two solutions of equation (5.3). The corresponding series 
for a fundamental system of (5.1) then are an almost immediate con-
sequence of (5.2). 

If one prefers to operate with the usual power series expansions, 
one can regain them from this uniform representation in \t\ Sk by 
reexpansion of each term with respect to whichever "stretched" 
variable is indicated in the region in which one is interested, followed 
by a rearrangement of the series. 

6. Return to parameterless problems. I t is true that in the recent 
literature much attention has been paid to asymptotic problems for 
differential equations depending in a singular manner on a parameter, 
but there have also been significant advances for the older problem 
of expansions as z—» oo. 

Here is a fruitful idea due to Hsieh and Sibuya [1966]: 
Let 

(6.1) P(z) = zm + axz™"1 + • • • + Om-tf + am. 

The classical theory gives us a solution of the differential equation 

(6.2) d2u/dz2 - P(z)u = 0 

that has the form 
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(6.3) u = «o(») = û0(z)eQQM 

Qo(z) is a polynomial in z1/2, and û0(z) has (except for a simple factor) 
an asymptotic expansion in powers of 2"~1/2, valid in the sector 
I arg z\ <37r / (w+2) . The determination of z112 is to be such that the 
solution u0(z) is recessive in the middle third of that sector. By simple 
symmetry arguments this result produces rn + 1 additional asymp-
totically known solutions #1, • • • , um+i so that Uj has a known asymp-
totic expansion in the sector 

I arg (z + (2j/(m + 2))TT) | S 3w/(m + 2) 

and is recessive in the middle third. 
To these facts, Sibuya and Hsieh add an important new element: 

They prove that the solutions Uj are entire functions of the coefficients 
0i, #2, • • • , dm of P(z). Hence, there must exist an expansion 

(6.4) uo(z, a i , • • • , am) = X) tJ>pi,p2t~-,Pn(z)aia2 ' • ' a » n ' 
Pl*'",Pn 

By formal insertion of this series into the differential equation (6.2) 
and comparison of coefficients, one finds for each l^VlV2>^Vn{z) an 
auxiliary differential equation of second order that can be solved in 
terms of Bessel functions. The correct boundary condition at each 
step can be derived from the required behavior of u0 at infinity, which 
is known from the asymptotic formula (6.3). Thus, the central con-
nection problem is completely solved. 

In addition to such truly parameterless problems, there exist many 
papers which can be best understood by introducing a parameter, 
even though the authors do not do it explicitly in their notation. 
This is particularly true of the literature close to applications in 
physics, such as the papers by Olver [1965 ] and N. and P. Fröman 
[1965]. 

The work of the Frömans centers about differential equations 

(6.5) d2u/dt*+f(t)u = 0, 

when ƒ(t) is "large." Instead of committing themselves as to the pre-
cise meaning of that epithet they aim at strict inequalities for the 
solutions that remain meaningful under fairly mild conditions, but 
which are of interest only if certain quantities in them are much 
larger than the others. 

They begin their analysis with the well known transformation 

(6.6) u « / - 1 / 4 (0* , z = f fi*(?)dr 
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which takes (6.5) into 

(6.7) dh/dz* + (1 + p(z))v « 0, 

where 

(6.8) p(z) - t"AM<r/dp) [fliA®]-

In many cases p{z) will be "small" as a consequence of ƒ(t) being 
"large." Observe that the relation between t and z is a kind of gen-
eralized stretching transformation: If f(t) is large for moderate values 
of /, then z, the new independent variable, will be large. 

Thus, in some approximate sense the solutions of (6.7) can be ex-
pected to be close to those of d2v/dz2+v=0. This motivates the next 
step which is to replace (6.7) by an equivalent 2 by 2 system, and to 
diagonalize the leading term by a linear transformation with constant 
coefficients. The leading part of the resulting system has the funda-
mental solution matrix 

This suggests writing the solution of the system in the form 

rv* on 
(6.10) [o ^ J T O . 

For the new unknown matrix F one thus obtains the differential 
equation 

dF i r i *-*n 
(6.11) "—*(*) \F, 

dz 2 rKJl-e2i* - 1 J 
which is the starting point of the subsequent work. Observe that even 
though p(z) may be "small" in the applications, the exponentials 
e±2i* c a n b e very large for large z in the complex plane. 

Nevertheless, the Neumann series, i.e. the series obtained for the 
solution F by systematic Picard iteration, converges whenever p(z) 
is holomorphic. The main difference between the classical asymptotic 
theory and the approach of the Frömans (and of Olver) is that the 
latter use this Neumann series for explicit appraisals of the solution 
and not only as a tool for existence proofs. By means of a very de-
tailed analysis of the series, they arrive at a set of useful inequalities 
that enable them to solve lateral connection problems of considerable 
complexity, even in domains that contain several zeros of/, i.e. singu-
larities of p. Those points correspond precisely to the turning points 
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of the theory with a small parameter. This fact can be brought out 
more clearly if the problem is reformulated in a slightly different form 
by setting 

ƒ(') - e-W). 

7. Connection problems with several turning points. Physicists 
often run into problems where a differential equation with a param-
eter possesses a whole string of turning points, and the connecting 
problem consists in continuing asymptotic evaluations for a particular 
solution past, if not through, all these turning points. The methods of 
the Frömans and of Olver might be used to cope with such problems. 
Recently, more systematic attacks have been undertaken by Fed-
oryuk (Evgrafov and Fedoryuk [1966]) and by Sibuya [1967]. 

I t should surprise nobody, after what I have said, that all work on 
such connecting problems is exceedingly involved and almost im-
possible even to sketch in a few sentences. I shall try, nevertheless, 
to give some idea of the work of Fedoryuk. The differential equation 
under consideration is again 

(7.1) e*(d2u/dt2) - P(t)u = 0, 

where P(t) is an entire function subject to certain conditions too com-
plicated to enumerate. All these conditions are trivially satisfied when 
P(t) is a polynomial. In this brief account I shall restrict myself to 
the polynomial case. 

(a) The topology of the Stokes curves. On the basis of well-known 
aspects of the asymptotic theory (e.g. formulas (5.2), (5.5) and (5.6), 
or else formulas (6.6), (6.10)), it is plausible that the functions 

exp 

must figure prominently in every global asymptotic analysis of the 
solutions. If we limit e to positive values, the level lines Re £(£o» t) 
= const, of the algebraic integral 

£(*o,0= f Pll2(r)dr 

take on a special importance. This family of curves does not depend 
on the initial value to, the choice of path in the complex r-plane or the 
determination of the square root in the definition of £(£<>, t). Of par-
ticular interest are those curves of the form Re £ = const, which pass 
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through the branch points of £(J0, t), i.e. through the zeros of P(t). 
The zeros of P(t) are commonly called turning points of the differen-
tial equation, and the curves Re £ = const, that contain turning points 
are often referred to as the Stokes curves of the problem. Evgrafov and 
Fedoryuk [1966] give an analysis of the graphs (they are even trees) 
formed by the system of Stokes curves for such differential equations. 
These curves divide the 2-plane into a finite number of simply con-
nected unbounded regions. Let us call them Stokes regions, for want 
of a better name. The Figures 3 and 4, below, show two examples of 
such systems of curves. The multivalued function £(/) maps the t-
plane into a fairly complicated Riemann surface. Its analysis can be 
circumvented by concentrating on the images of the Stokes regions 
under some branch of £(/0, t). As each Stokes curve is mapped onto a 
straight segment or ray parallel to the imaginary £-axis, these images 
are vertical strips that may, in particular, be half planes. If a branch 
of %(to, t) is continued analytically through an appropriate number of 
adjacent Stokes regions, the image of the union of these Stokes re-
gions, and of those Stokes curves that separate two such regions, con-
sists of the whole plane with some vertical straight cuts removed. 

FIGURE 3. Turning points and Stokes curves for P(t) =/3 —1. 
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FIGURE 4. Turning points and Stokes curves for P(t) •• (t2—a2)(t2—b2). 

Such a union of Stokes regions is called a canonical region by Fed-
oryuk. Illustrations of some of these mappings are given in Figures 5 
and 6. 

(/3) Elementary fundamental systems of solutions. There exist two 
standard types of asymptotic expansions for solutions of the differen-
tial equation (7.1): one that deals with the passage to the limit as 
s—» oo, and one concerned with the behavior as e—»0. By extending 
an approach due to G. D. Birkhoff [1933], Fedoryuk succeeds in 
combining these two results by proving, roughly stated, the following 
result: Let Rbe a canonical region and let £ (to, t) be a branch of the func-
tion fi0P

1,2(r)dT that is holomorphic in R. Then the differential equa-
tion (7.1) has a fundamental system of solutions u(t), v(t), such that 

u(t, e) = i>-^(Oexp((l/e)£(*o, /))[l + /»(*, *)], 

( 7 ' 2 ) v(f, e) - P-i/*(Oexp(-(l/e)£(/o, t))[l + ,(/, «)], 

where fx(tt e), v(t} e) are 0(e), as e—»0+ and 0(1) as t—»<» in R. This 
is true uniformly f or 0 < e g €o and for t in a subset of R obtained by 
removing neighborhoods of the turning points and of the bounding 
Stokes curves. 

Observe that, in spite of its strength in many respects, this theorem 
does not solve the central connecting problems with respect to €, since 
the neighborhoods of the turning points have to be omitted. 

The fundamental system u(t), v(t) so obtained depends on R, the 
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FIGURE 5. Image in the {-plane of the canonical region D^JD%\JD^JD% 
torP(t)-fi-l. 
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FIGURE 6. Image in the {-plane of the canonical region DiKJD6 for P{t) ==/3—1. 
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choice of to, the branch of £(/0, t) and on the determination of the 
branch of P~llA(t). A precise characterisation of solutions can be 
given as follows: for a given canonical region R let to be a turning 
point on the boundary of R, let I be a particular Stokes arc issuing 
from to into the interior of R (such Stokes arcs always exist). Choose 
the branch of £(/0, /) so that Im %(t0} t) increases along I in the direction 
away from to. Instead of describing directly a particular branch of 
P~ll4(t) we replace u, v by cu, cv, where c==e~ia, 

a = lim argP-^OO. 

Then cu, cv remain the same if the branch of P~"1/4(/) is changed. The 
particular solutions so described are called elementary fundamental 
systems by Evgrafov and Fedoryuk and designated by the symbol 
(R, to, /). They are uniquely determined because each solution is 
recessive with respect to the passage to the limit as t—* <*> in certain 
directions in R. 

(7) The connecting matrices. Let us use the abbreviation w(R, to, I) 
for the vector 

(i) 
formed by the unique fundamental system uf v which corresponds, 
as explained above, to a canonical region R, a turning point to and a 
Stokes arc I. Any two elementary fundamental systems are connected 
by a linear relation 

w(R<t, /02, h) = Û2iw(#i, fa, h) 

where Q21 is a nonsingular two-by-two matrix with constant coeffi-
cients that may—and generally will—depend on e. These so-called 
transition matrices form a finite group that can be generated from a 
smaller number of elementary transition matrices for which the canon-
ical regions Ri, R2 overlap or are identical. 

The calculation of the elementary transition matrices offers genu-
ine difficulties only when the two canonical regions are not identical. 
The central problem appears to be the transition from w(R\, to, h) to 
w(R2, to, &). Fedoryuk succeeds in deriving satisfactory asymptotic 
formulas for the corresponding elementary transition matrices when 
to is a simple turning point, i.e. a simple zero of P(t). 

The Figures 3, 5, and 6 exhibit an illustration of these concepts 
when P(t) = tz — 1 : With a notation that should be clear from Figure 3 
we can set 
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£x = ZW A U ZW D,\J lu \J ln \J /36, 

R2= D4\J Db\J h5, 

t0 = CO, 

h = hh h == ht* 

Then the passage from w(Ri, co, hi) to w(i?2, co, Z45) is one of the ele-
mentary transitions, since the turning point is the same and the 
canonical regions have the Stokes region P 4 in common. See Evgrafov 
and Fedoryuk [1966] for the—rather involved—details. 

(ô) Eigenvalue problems. Having solved the elementary connection 
problems, Fedoryuk has at his disposal the tools for an answer to 
some of the eigenvalue problems that are at the root of the physicists' 
interest in such mathematical theories. 

Consider, e.g., the case that 

2k 

F(t) = I I (* - ai)> aJ < am> 
y-i 

and that one wants to solve the real eigenvalue problem 

d*u/dt* - \2P(t)u = 0, u G Z s ( - oo, » ) . 

For large real values of the parameter X the solutions of the differen-
tial equation can be approximately evaluated by their asymptotic 
expansions. The solution that is recessive, as t—»+ <*>, will in general 
not be recessive as t—>-~ «>. The asymptotic form of this solution for 
large negative values of t can be found by continuing along the real 
axis and around the turning points. This amounts to the multiplica-
tion of the several corresponding elementary transition matrices. 
The condition that the solution be recessive for /—»— oo, as well, ex-
presses itself then as an equation for an entry of the product of the 
transition matrices. This equation can be solved approximately for 
large X. In this manner asymptotic expansions for large eigenvalues 
can be calculated. 
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