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Abstract—Weareconcer ned with integr ating connectionist networksinto
ahidden Markovmodel (HMM) speech recognition system. Thisisachieved
through a statistical interpretation of connectionist networks as probabil-
ity estimators. We review the basis of HMM speech recognition and point
out the possible benefits of incorporating connectionist networks. |ssues
necessary to the construction of a connectionist HMM recognition system
are discussed, including choice of connectionist probability estimator. We
describe the performance of such a system, using a multi-layer perceptron
probability estimator, evaluated on the speaker-independent DARPA Re-
source Management database. In conclusion, we show that a connectionist
component improvesa state-of-the-art HMM system.

|. INTRODUCTION

Over the past few years, connectionist models have been widely
proposed as a potentially powerful approach to speech recogni-
tion (eg., [1,2,3]). However, while connectionist methods have
performed well in discrete utterance recognition addressed as a
static pattern recognition problem (e.g., [4]), architectures and
associated training algorithms have not yet been devel oped that
can adequately model the temporal structure of speech.

State-of-the-art continuous speech recognition systems are
statistical in nature, based on hidden Markov models (HMMys)
(eg., [5,6,7]). Within this statistical framework, connectionist
methods have been used to improve continuous speech recogni-
tion systems [8,9,10]. Such improvements have resulted from
an integration of the connectionist and statistical components,
based upon a statistical interpretation of the computations being
performed by connectionist networks.

This paper discusses such a connectionist—statistical speech
recognition system, developed at the International Computer
Science Ingtitute(ICSl), in collaborationwith SRI International .
We shall review the HMM approach to speech recognition and,
through a discussion of possible training criteria and proba-
bility estimators, describe how a probabilistic understanding
of connectionist networks enables the construction of a hybrid
connectionist—-HMM system. We shall discuss the performance
of this system evaluated on the DARPA Resource Management
database, a 991 word speaker-independent continuous speech
recognition task [11].

Il. STATISTICAL SPEECH RECOGNITION

A. Hidden Markov Models
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Hidden Markov modeling of speech assumes that speech isa
piecawise stationary process. That is, an utterance is modeled
as a succession of discrete stationary states, with instantaneous
transitionsbetween these states. A smple HMM isillustratedin
figure 1. Essentially, aHMM is a stochastic automaton, with a
stochastic output process attached to each state.! Thus we have
two concurrent stochastic processes. a Markov process model -
ing the temporal structure of speech; and a set of state output
processes modeling the stationary character of the speech signal.
Notethat awider class of models, hidden semi-Markov models,
includes a third stochastic process modeling state duration [12].
We shall not deal with modelsof thisclass, concerning ourselves
only with time-synchronous HMMs.
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Figure 1: A schematic of a two state, left-to-right hidden
Markov model (HMM). A hidden Markov mode! is a stochas-
tic automaton, consisting of a set of states and corresponding
transitions between states. HMMs are “hidden” because the
state of the model, q, is not observed; rather the output, x, of
a stochastic process attached to that state is observed. Thisis
described by a probability distribution p(x|q). The other set
of pertinent probabilities are the state transition probabilities,

P(ailay)-

Idedlly, there would be a unique HMM for each allowable
sentence in the language being modeled; thisis clearly unfea-
sible for any but the most trivial of languages. A hierarchical
modeling scheme is usually adopted. Each sentence is modeled
as a sequence of words. The number of total models required
is now much smaller—rather than one model per possible sen-

More generally, the stochastic process could be regarded as being attached to each
transition. If the processes attached to each transition exiting a particular state are tied
(i.e. congtrained to be equal), then thisis equivalent to that process being attached to the
state. In practice, state processes, rather than transition processes, are used in most speech
recognition systems.



tence, there is now one model per vocabulary word. However,
for large vocabularies, a very large training set would be re-
quired to learn models for each word: some words occur very
infrequently. Thus afurther decompositionis required into sub-
word units. Although there are good linguistic arguments for
choosing unitssuch as syllables or demi-syllables, the unit most
commonly used is the phone? and this is the unit used here.
There are around 60 basic phone HMMs (for English), and from
these word and sentence models may be constructed. For any
given sentence we may write down the corresponding HMM;
each state in that HMM is contributed by a constituent phone
HMM.

B. HMM Speech Recognition

The basic problem of speech recognitionisto be ableto tran-
scribe the sequence of words corresponding to a spoken utter-
ance. A genera approach to this problemis to output the most
probable sentence given the acoustic data. Thus we choose sen-
tence S (and, consequently, the associated sequence of HMMs),
for which the probability® P(S[X) is a maximum, where X is
a sequence of N acoustic data vectors, {x(1),x(2),...,x(t), ...
,x(N)}.* If we use hidden Markov models, then a sentence
is represented by a particular sequence of models, M, and the
probability we requireis P(M[X).

It is not obvious how to estimate P(M|X) directly (but see
section V. B); however we may re-express this probability using
Bayes rule

p(X[M)P(M)
p(X)

This separates the probability estimation process into two parts:
acoustic modeling, in which the data dependent probability
p(X|M)/p(X) is estimated; and language modeling in which
the prior probabilitiesof sentence models, P(IM), are estimated.
Thuswe are ableto treat acoustic modeling and language model -
ing independently, using the datadependent and prior probability
estimates.

If we use the criterion referred to as the maximum likeli-
hood criterion, then estimation of the acoustic mode reduces
to estimating p(X|M), as p(X) is assumed to be equal across
models. Calculation of this probability involves the sum of
the probabilities of all possible paths of length N through M.
In this case, training may be performed by the Baum-Welch
(or forward-backward) a gorithm [13,14,15]. Another criterion,
usualy referred to asthe Viterbi criterion, only considersthe best
path through M, leading to simplifications of the algorithmsin-
volved. Thiscriterion also generates, as aby-product of training
or recognition, theword (or. possibly, sub-word unit) ssgmenta-
tion. In this case, a sentence isthen represented by a particular
state sequence, Q3 = {q(1), ..., q(t), ..., a(N)}, where q(t) repre-
sents the particul ar state (out of the set of possible HMM states)

(1) PMIX) =

2A phone is an acoustic category, whereas a phoneme is a linguistic category. For
example, an utterance of the word “citizenship” may be phonemically transcribed as /s ih
tihzenshi p/, athough the/z/ may be voiced or unvoiced. A phone transcription would
represent an unvoiced /z/ as [s]. The distinction between phones and phonemes is often
confused in the speech recognitionliterature.

3We use P to represent a probability, and p to represent a probability density.

4Thisprobability should actually bewritten as P(S|X., ©), where © representsthe model
parameters. For now, we shall ignore this conditioning on the model.

visited at time t, and we estimate p(X|QY'). Training using the
Viterbi criterion is sometimes known as the segmental k-means
algorithm[16].

Using the maximum likelihood criterion, recognition can be
carried out using a best-first search strategy via the stack de-
coding algorithm [17] or, equivalently, by an A* search [18].
Recognition may be performed using the Viterbi criterion, by
computing the state sequence, Q)', that maximizes the posterior
P(Q)'|X). The Viterbi agorithm essentially traces the minimum
cost (or maximum probability) path through a time-state lat-
tice [19] subject to the constraints imposed by the acoustic and
language models.

C. Acoustic Data Modeling

Density Estimation. The usuad HMM training approach is
to construct a density estimator that maximizes the likelihood
P(X M) (or P(X|QY) if the Viterbi criterion is used).

In the course of training an acoustic model, various assump-
tionsare usually made:

« Piecewisestationarity—wecan model speechusingaMarkov
chain;

 Theprior probability of amodel canbeseparately estimated—
a language modd including syntactic constraints about
word sequencesand phonological rulesabout sub-word unit
sequences, P(M), may be derived without reference to the
acoustic data (although some attempts have been made to
relax this assumption [20]);

« Observation independence—the current datavector, x(t), is
conditionally independent of previously emitted data vec-
torsXit = {x(2),...x(t—1)};

« First order Markov process—the current state of the pro-
cess, (t), depends only on the previous state, q(t — 1);

« State emission—the current data vector, x(t), is dependent
only on the current state of the process, q(t).

p(X|M) can be computed in terms of loca joint densities
p(x(t), qt)IX5~, Q1 M), of amodel M emitting adatavector
x(t) whilein state q(t), given the previous state sequence Q™*
and acoustic vector sequence X5 1:

@) PXIM) =~ p(as(t), X M)

p(as(t), X[M) =
(3 plr(t— 1), X5 M)p(gs(t), x (X5 gr(t — 1), M).

(Thisis the forward recurrence of the Baum-Welch algorithm.)
The above assumptions alow us to simplify the local density:

p(x(t), qt)X; QL M) =
(4) p(x(B)la(t), M) P(a(t)la(t — 1), M) .

The likelihood of a particular state emitting a particular data
vector, p(x(t)|g(t), M), is drawn from the state output or emis-
sion probability density function (pdf). The other probability,
P(q®)lg(t — 1), M), is referred to as the state transition proba-
bility.

Training an acoustic model by density estimation involves es-
timating the state transition probabilitiesand the pdf from which



the state output likelihoodsare drawn. A key design decisionin
acoustic modeling (given atraining criterion, such as maximum
likelihood density estimation) is the choice of functiona form
for the state output pdfs.

Most HMM speech recognition systemsuseaparametricform
of output pdf. Inthiscase aparticular functional formis chosen
for the set of pdfs to be estimated. Typica choices include
Laplacians, Gaussians and mixtures (linear combinations) of
these. The parameters of the pdf are then estimated so as to
optimally model the training data. If we are dedling with a
family of models within which the correct model fals, thisis
an optimal strategy. However, in the case of modeling speech
using HMMs, both the HMM assumptions and the output pdfs
used for the HMMss are not good models of speech. Inthiscase,
producing the best possiblemodel of each unit of speech (within
theHMM constraints) will not necessarily lead to the best speech
recognition performance.

An alternative approach isnon-parametric density estimation.
Although this does not address the problem of the HMM being
an incorrect model, it does attempt to use the data to choose the
family of output pdfs. In non-parametric density estimation, the
family of pdfsunder consideration changes as more datais seen.
An example is Parzen window estimation [21], a kernel-based
method. Inthistechnique, as new data pointsoccur, new kernels
corresponding to those data points are added to the estimator.
Thishas been used in HMM speech recognition by Soudopl atoff
[22].

Discriminative Training. Ultimately in speech recognition
we are not concerned with estimating the joint density of the
speech data and word sequence, but are interested in the pos-
terior probability of a word sequence given the acoustic data
More informally, we are not finally concerned with modeling
the speech signal, but with correctly choosing the sequence of
wordsthat was uttered.

We may trandate this concern to alocal levdl, if we assume
theViterbi criterion. Rather than constructing the set of pdfsthat
best describe the data (withinthe constrained family of functions
being optimized), we are interested in ensuring that the correct
HMM state is the most probable (according to the model) for
each frame.

This leads us to a discriminative training criterion. Discrimi-
nativetrai ning attemptsto model the class boundaries—learnthe
distinctions between classes—rather than construct as accurate
amodel as possiblefor each class. In practice thisresultsin an
algorithmthat minimizesthe likelihood of incorrect, competing
models and maximizes thelikelihood of the correct model. This
differs from maximum likelihood density estimation, in which
each data point is used to update the density mode of the class
towhich it has been assigned.® Thus, in discriminativetraining,
the parameters of a class pdf will be forced towards training
examples from that class (as in maximum likelihood training),
but will a so be pushed away from training examples from com-
peting classes.

There are many discriminative pattern recognition methods
in the literature including the method of Potential Functions

5Inthe case of “soft” density estimation, each data point is shared out amongst classes
(depending on the likelihood of generation by each class), so several class densities are
updated. But thereis no sense of discrimination.

[23], learning vector quantization (LV Q) [24] and themulti-layer
perceptron (MLP) (seee.g., [25]). Unlikethe other methods, the
MLPmay beused directly to computeclass-conditional posterior
probabilities (see section 111. B).

D. Prior Probabilities

The combination of phone models to form word models is
constrained by a phone-structured lexicon that details the al-
lowed pronunciations for each word or, more generally, by the
phonotactics of the language. Likewise the construction of sen-
tences from words is constrained by a language model, such as
astochastic grammar or (more simply) awordpair grammar that
listsall alowable pairs of words. In a statistical speech recog-
nition system, the language model assigns a prior probability
to each alowable sentence in the language. Using the allow-
able pronunciationsfor each word (which may be probabilistic),
prior probabilitiesare al so specified for each phone (and for each
state of each phone model). So the specification of the language
model, phone-structured lexicon and basic phone HMMs sets
the prior probabilities for sentences, words, phones and HMM
states.

These prior probabilities are encoded in the topology and as-
sociated transition probabilitiesof the hidden Markov word and
sentence models. It will be important later to distinguish these
prior probability estimates from the prior probability estimates
of the phone relative frequencies observed in the training data
We generally do not wish to use the latter since atypical speech
training database is much smaller than a typical textua corpus
from which the language model is derived; in any event we are
forced to use the latter since it isimplicit to the models used in
the recognition process.

I1l. MLP PrROBABILITY ESTIMATION

A. Multi-layer Perceptrons

Multi-layer perceptrons (MLPs) are probably the best studied
class of neura networks. They have a layered feedforward
architecture with an input layer, zero or more hidden layers and
an output layer. Each layer is connected to the previous via a
weight matrix, and operates according to the relation

(5) = f(ZWiLj.L_lij_l) |

where - isthe output of unit i inlayer L, w;"~* is an element
of the weight matrix between layersL — 1 and L and f is the
transfer function of a unit, typically asigmoid:

(6) ) = o ——

Equation (5) can incorporate a bias for y- by assuming a unitin
layer L — 1 with afixed output of 1. The egquation may also be
modified to allow layer L to receive input from multiple lower
layers, via additional weight matrices.

MLPs are trained to associate an input vector with a desired
output vector. Both classification and regression may be per-
formed in the same framework. In the case of N-class classifi-
cation, a network with N outputs would be used, one for each



class. A *1-from-N’ training scheme would thus be used, where
the desired output vector would contain a one for the correct
class and zero for all other classes.

Training is accomplished viathe back-propagation algorithm
(eg., [26]), a steepest descent procedure. For large problems,
a stochastic approximation procedure is usually adopted (per
sample update, rather than batch update).

B. Posterior Probability Estimation

MLPs may be used to estimate probabilities. Severa au-
thors have discussed the behavior of feedforward networks in
terms of learning probability distributions (e.g., Hopfield [27]).
Bourlard and Wellekens [28,29] proved that a MLP trained to
perform classification isaclass-conditional posterior probability
estimator.b That is, after a‘1-from-N’ training, a MLP output
value, given an input x, will be an estimate of the posterior
probability, P(ci[x), of the corresponding class ¢; given the in-
put. This result holds for training with various error functions
(including relative entropy and mean square error). The output
units should be constrained to be non-negative and less than one
(e.g., using asigmoid transfer function).

Note that a sigmoid transfer function does not constrain the
sum (over all classes) of class-conditional posterior probabilities
to equa one. However, computational experiments have shown
that the sum of estimated posteriorsis usually extremely closeto
one, for test vectors drawn from a region of space well-sampled
by the training data [32,33]. However in some applications
(e.g., when combining or comparing the estimates from different
networks) it isdesirable to enforce a‘ sum-to-1' constraint. One
way of achieving thisisby adopting anormalizing output transfer
function such as the normalized exponentia or ‘ softmax’ [34],

exp(x;)
ZjDL e(p(X]L) ’

where xt isthe activation (pre-transfer function output) of unit
inlayer L.

In estimating posteriorsusing aMLP, we are using a discrim-
inative training criterion and not performing density estimation.
Assuming equal class priors, for simplicity, we have therel ation:

(7) f(x) =

p(x[ci)
p(x)

A posterior probability estimate tells us how probableit is that
a particular vector belongs to a particular class, but gives us
no information on how likely it is to observe that vector in the
first place. The full joint density estimate, on the other hand,
tellsus both how likely we are to observe a particular vector, as
well asits class membership probabilities. So, athougha MLP
does not provide afull probability moddl, if we areinterested in
discriminating between classes it may provide a “better” use of
parameters.

The theorem that shows that an MLP may be used as a poste-
rior probability estimator is valid only when a global minimum
of the error function is attained. In practice, thisis not attain-
able: indeed, using a cross-validation training schedule a local

(8) P(cilx) =

5This result was expanded by Gish [30], Hampshire and Pearlmutter [31] and Richard
and Lippmann [32], among others.

minimum is not reached as training is stopped early to avoid
overfitting (see section VI). Cross-vaidation is a sensible ap-
proach, however, since we do not wish to compute the density
for the training set, but estimate this density for an unseen test
set. Empirical results indicate that good posterior probability
estimates are achieved with this method [35].

C. Obtaining Likelihood Estimates

Applying atrained MLP to test data gives us estimates of the
conditional posterior probabilities of each class. These proba
bilities depend on the relative class frequencies, which may be
regarded as estimates of p(c;). However, as discussed earlier, we
want to use thelanguage model priorsat recognitiontime. Thus,
therelative class frequenciesarefactored out at recognitiontime,
to give (scaled) likelihood estimates rather than posterior prob-
ability estimates.”

It iseasy to convert posteriorsto scaled likelihoodsusing (8),
but with non-equal priors:

p(xici) _ P(cikx)
px)  P@)

Dividing each MLP output by itsrelevant frequency resultsin a
scaled likelihood estimate, suitable for use at recognition time.

()

D. HMM Probability Estimation

Using the above framework, we may use a MLP to estimate
HMM output probabilities. As an example, consider a system
with P single-state phone models. If aMLPistrained to classify
its inputs into 1 of P phone classes, then the ith output of the
MLP is as an estimate of P(ci|x). This may be used to esti-
mate the output probability of the single state of phone HMM ¢;.
This posterior probability estimate implicitly uses the relative
frequencies in the training set as phone priors, so we use (9) to
convert the posterior probability estimates to scaled likelihood
estimates. In general, the output probabilities of multiple-state
HMMs may be estimated using a MLP, with an output corre-
sponding to each independent state.

Estimating probabilitiesin thisway enablesusto make weaker
assumptions than standard HMM systems.

 AlthoughaMLPisaparametric mode, alarge network de-
fines an extremely flexible set of functions. In this manner
we do not make strong assumptions about the input statis-
tics. Hence, multiplesources of evidence may be combined
as theinput to aMLP. For example asingle MLP may be
trained using input data that mixes samples dravn from
several distributions, discrete or continuous.

By training discriminatively, and not constructing a com-
plete model of the joint density, we are making weaker
assumptions about the functional form of the output den-
Sity.

» Maximum likelihood estimation of HMM parameters re-
quires the assumption of conditional independence of ob-
servations. MLPs can mode correlations across an input
window of adjacent frames.

"This substitution is not forced upon us; there is no theoretical reason why a Viterbi
search cannot be carried out using posterior probabilities[29] (but, see section I1. D).



A further benefit of using MLPs comes from the regularity
of the resulting recognition computations, enabling an efficient
implementation using parallel hardware.

E. Priors and Biases

We would like to have a statistical understanding of the pa-
rameters of aconnectionist network. If weuse asoftmax transfer
function at the output layer then:

exp(3"; wihid, + bias)

(11) x  exp(d _ wihid, + bias) ,
i
aso,
(12) P(cikx) o exp[log(p(xlc)) +1og(P(ci))] ,

where hid, isthe output of hidden unit j, w; is the weight from
hidden unit j to output uniti and bias isthe biasvauefor output
uniti. Itistempting to identify theweighted sum of hidden unit
outputs as the data part (and so the log likelihood, log(p(x|ci)))
and the bias as the prior part (the log prior, log(p(c))) of each
output unit. Our observations of the output biases of a trained
network doindeed show acorrelationwiththelog priors(relative
frequencies).

Note that a similar relationship holds in the case of sigmoid
output units. If the output of asigmoid is a posterior probability
then, following the above reasoning, we may identify the bias
withthelog odds of the prior, log[p(ci)/(1 — p(ci)], remembering
theinverse of the sigmoid function f(x) islog[f/(1 — f)].

However this relationship is too facile. Let us consider the
case of a Gaussian classifier. Asiswell known, we can write
down the corresponding linear discriminant function (see e.g.,
[36]) for a Gaussian classifier with equal covariances:

(13) gi(x) = wix +wip ,

where gi(x) is the discriminant function for classi and w isa
weli ght matrix expressibleinterms of themean (1) of classi and
the covariance (Z). Wi is the bias for classi. In this case we
have:

(14) wi =31y
and
(15) Wio = —p 2~y + log(P(G)) -

Here the bias isinfluenced by the class mean and covariance (a
dataterm) aswell asthelog prior term.

We may expect the output biases of a trained MLP to be
influenced by the acoustic data, as well as prior information.
Oneway we attempted to minimize theinfluence of the acoustic
dataon theoutput biaseswasto replace theusua sigmoid hidden
unit transfer function (1/1 + exp(—x)) with a tanh(x) function.
This has a (—1, +1) range (rather than (0, 1)); therefore in the
case of random input, the expected output would be 0. Hence,
it might be hoped that the biases would learn to encode the
class relative frequencies, rather than the acoustic data  Of

course, hidden unit outputs resulting from speech input are not
random and, as reported in [37], the network biases were not
good replacements for the priors at recognition time. However,
this postulated rel ationship was used to speed training time and
improve generalization (section VII. A).

IV. ALTERNATIVE CONNECTIONIST ESTIMATORS

MLPs are not the only connectionist probability estimators we
could use for thistask. In this section we consider radial basis
function (RBF) networksand the recurrent generalization of the
MLP. Both these classes of network are posterior probability
estimators, when trained appropriately. We also consider MLPs
used as predictors, which may be shown to estimate conditional
likelihoods.

A. Radial Basis Function Networks

RBF networks are a so feedforward networks. Their primary
difference from MLPs is that the hidden layer consists of units
with local or semi-loca transfer functions. They are often re-
ferred to as radia basis functions, since they may be radia in
nature and are assumed to form a high dimensional basisfor the
input data set.

The RBF network was originally introduced as a method
of function approximation [38,39]. A set of K approximating
functions fi(x, 6) is constructed from a set of J basis functions

q(x, 6),

J

fx.0) = > ag(x,0) 1<k<K.
=1

(16)

This defines a network with J RBFs (hidden units) and K linear
output units, with weightsa,. The form of the RBFsistypically
Gaussian, with the “weights’ 6 between the input and hidden
layer specifying the means and covariances of the RBFs.

When using RBF networks, the RBF layer is usudly trained
in an unsupervised manner (e.g., k-means clustering). The hid-
den units in such a network may be regarded as modeling the
input distribution, with no discriminative component. There are
several attractive reasons for using RBF networks:

« Training the RBF layer in an unsupervised manner is com-
putationally efficient.

« If linear output unitsare used, then the discriminativetrain-
ing of the output layer may be accomplished non-iteratively
using a matrix inversion [39,40].

» Since RBFs are local, they are suitable for time-varying
input distributions. RBFs that describe input data that no
longer occurs will not affect the fina classification. This
is not the case for MLPs where hidden units have global
effects within the input space.

» RBF networks have a structural isomorphism to tied mix-
ture density models, although the training criterionis often
different [41]. In both cases the outputs are weighted sums
of Gaussians, however in the tied mixture case, the net-
work is trained as a density estimator using the maximum
likelihood criteria; in the RBF case it is trained as a dis-
criminative posterior probability estimator.



There is no reason why the means and variances of the RBFs
cannot be trained discriminatively, using the back-propagation
algorithm. However, this sacrifices computationa efficiency at
training time. Furthermore, it seems that a full discriminative
training of non-local (sigmoid) hidden unitsislikely to be more
effectivethan training local hidden units, since the global hidden
unitsarein apositionto compute global “facts’ about theinput.

In the case of RBF networkswith sigmoid or softmax outputs,
we can show that the outputsare posterior probability estimates
since the essential conditionsare the same as for an MLP. Inthe
case of linear output units the outputs are not guaranteed to be
formally probabilities—they may benegativeor greater than one,
athough, it may be proved that the outputsof atrained 1-from-N
RBF network will sum to one [42]. In practice (eg., [43,44]),
outputslessthan zero or greater than one are not common. Such
outputsare usually reset by a post-network hard limiter between
zero and one.

Linear output RBF networks are an attractive probability es-
timator for computational reasons [43,44]; large RBF networks
may be trained on a substantia speech database using standard
workstations. Thisis not the case with MLPs. RBF networks
with a prior-weighted softmax (or prior-weighted linear nor-
malizing) output transfer function are also potentially attractive,
sinceinthiscasethereisarel ationship between the RBF network
weightsand the coefficientsof atied mixturedensity system[41].

RBF networks have been used successfully as probability es-
timators in HMM continuous speech recognition systems [43]
and isolated word recognition systems[44]. However, there has
been no evidencethat RBF networksoutperform ML Ps, provided
thereisadequate computational support totrainthedesired MLP.
In a series of experiments at ICSI using the DARPA speaker-
dependent Resource Management continuous speech database,
the RBF systems offered a considerably inferior performance
compared with our standard MLP systems (these MLP experi-
ments are discussed in [45,46], and are similar to the speaker-
independent experiments in section VII). Using single frame
perceptual linear prediction (PLP) coefficient inputs[47], a512
hidden unit MLP produced a phone classification rate of 59%, at
theframe level. Extensive experiments with RBF networks (us-
ing the various training schemes and output transfer functions
outlined above) produced a best classification score of 52%.
This network had 1000 RBFs and prior-weighted, normalized
exponentia output units. The RBFs were determined by a k-
means clustering process and training of the output weightswas
performed using back-propagation.

Experiments have also been performed in which the coeffi-
cients of atied mixture density HMM (SRI’s DECIPHER system
[7]) were used to initialize a RBF network, which was then dis-
criminatively trained using the scheme described in [41]. How-
ever, thisadditional training did not result in an improved perfor-
mance. We hypothesize that the initial state of the network, as
specified by the maximum likelihood trained tied-mixture sys-
tem, also corresponded (or nearly so) to aloca minimum of the
error surface of the discriminative objective function of the RBF
network.

B. Recurrent Networks
We may also use recurrent networks to estimate posterior

probabilities of HMM states. Robinson [48,10] has used such
networks to great effect in phone recognition and continuous
speech systems.

These recurrent networks are essentially multi-layer percep-
tronswith added recurrent connectionsbetween the hidden units.
These feedback connections are advantageous since they pro-
vide the network with a time-dependent state. A MLP may
be interpreted as a FIR filter with fixed window back in time.
A recurrent network, however, is an IR system with a poten-
tially infinite window back intime. Thisisdueto the network’s
internal feedback.

A recurrent network may be unfolded in time to give amulti-
layer network, with a separate layer for the hidden units at each
time. This unfolding enables training using a variant of the
back propagation agorithm, referred to as back propagation
through time [26,49,50]. Since the output layer at any time
may be regarded as the output of a deep feedforward network,
the probability estimation proofs for the MLP also hold (given
similar training conditions). Thuswe may use such networksto
estimate probabilities.

C. Predictive MLPs

MLPs may be used for regression. Given the previous p
samples or frames of speech we may train a MLP to predict
the next sample or frame. Althoughit is unlikely that a single
predictive MLP could be used practically as a genera model of
speech, itisapowerful way to model stationary dynamics. Thus,
we could embed predictive MLPsin aMarkov processto give a
piecewise stationary model of speech dynamics[51,52,53,54].

Theresultant model isa(nonlinear) autoregressive(AR) HMM,
in which state output pdfs depend on the prediction error of the
MLP Linear ARHMMs using Gaussian autoregressive densities
on each state are well studied [55,56]. An advantage of using
thistypeof model isthat it explicitly addresses observationinde-
pendence by modeling the observationsas an AR process. If the
AR process is constructed at the sample level, then we have an
elegant fusion of linear predictive analysis and hidden Markov
modeling, with no distinction between analysis and recognition.

Using MLPs as nonlinear predictors in an ARHMM results
in amore powerful, but more computationally expensive, model
than alinear ARHMM. The predictive MLPs are trained by the
usua gradient descent process embedded ina Viterbi [51,52,53]
or forward-backward [54] HMM training algorithm. These non-
linear ARHMMs have generally modeled at the feature vector
level, rather than at the sample level. Levin [51] used a single
predictive MLP, rather than a MLP for esch HMM state; how-
ever thisMLP had an extra set of “control” inputs, representing
HMM state.

Predictive MLPs do not have the discriminative character of
direct MLP probability estimators. Rather than estimating pos-
terior probabilities, of the form P(q;[x(t)), they estimate a condi-
tional likelihood, p(x(t)|q;, X}:,l)), which may beused to estimate
the global conditional likelihood p(X},;, Qb XY, QF) [57,58].

V. DISCRIMINATIVE HMMs

As discussed earlier, traditiond HMMs incorporate a complete
probabilistic model of the joint density, p(X,M). Thisis gen-



erally estimated using a prior language model P(M) and an
acoustic model p(X|M) optimized by a maximum likelihood
process. Thisjoint density is assumed proportional to the poste-
rior, P(M|X) and the normalizing denominator p(X) isignored.

All these probabilitiesshoul d be conditioned on the model pa-
rameters, © and the probability of the data should be expressed
as p(X|®). At recognition time thisis constant across all mod-
els. At training time the parameters of the models are being
adapted by the training algorithm, so p(X|®) is not constant
across models. We may rewrite this probability as:

(17) p(X©) = }_ p(XMi,G)P(M)

(18) = P(XIC,O)P(C) + > _ p(XI;, O)P(T;),

J

where C represents the correct mode! and I; an incorrect model.

If we take our acoustic model astheratio p(X|M, ©)/p(X|©),
rather than p(X|M, ©), we must maximize thisratio. This may
be carried out by discriminative training, which maximizes the
likelihood of the correct model, while simultaneoudly reducing
the likelihood of competing, incorrect models. We refer to an
HMM trained in this fashion as a discriminative HMM.

A. Frame-level Discrimination

In this paper, we deal mainly with discriminative training of
HMMsat theframelevel, rather thanthe model level. In practice
this means we are concerned with the estimation of the state
output probabilitiesp(x|q;). Asdiscussed earlier we may obtain
posterior probability estimates P(c;[x) using a MLP trained for
framewise phone classification. If we consider single output
distribution phone HMMs (i.e. single state HMMs or multiple
state HMMs which have a shared output distribution common
to all statesin the mode!), then the probability P(cjx) output by
the MLP may be identified with the posterior probability p(q;|x)
of astate g; in the phone HMM modeling ¢;. After dividing by
the relative frequencies (estimates of P(c;) and hence P(q};)) and
invoking Bayes' rulewe have adiscriminative acoustic model at
theframe level, i.e. an estimate of p(x|q;)/p(x).

In practice, rather than using asingle frame of acoustic input,
weuse2n+1 frames, which givenframesof |eft and right context.
The MLP estimates the not-so-loca probability P(qix(t — n), ...
x(1), ..., x(t+n)).

In this approach, the transition probabilities are not esti-
mated discriminatively. The maximum likelihood estimate may
be used, or some duration constraint may be encoded using
model states and constant transition probabilities. An aterna-
tive approach was the discriminative HMM, originally defined
by Bourlard and Wellekens [29]. Here the network estimates
the local posterior probabilities P(q(t)|g(t — 1), x(t)). This pos-
terior combines the modeling of the output probabilities (now
transition-specific, rather than state-specific) and the transition
probabilities.

It is clear that this approach leads to discriminative acoustic
models at the frame level only, which does not guarantee dis-
crimination at the word or sentence level. However, it isworth
noting that if the local probabilitiessum to one over all possible
states (which is of course the case for actual posterior probabil-
ities or if a softmax function is used at the output of the MLP,

and always approximately true in other cases—see section Il
B) then the global posteriors P(§X) are al so discriminant, sum-
ming to one over al possible sentences. (For a proof of this,
see [58].) The local probabilities may be estimated by a MLP,
with the addition of binary input units, representing the previ-
ous state (one for each possible previous state). At recognition
time, posterior probabilities p(q(t)|g(t — 1), x(t)) must be com-
puted for all possible transitions. Thus, severa forward passes
through the network are required for each frame, corresponding
to each possible g(t — 1). We have not yet performed significant
experiments using this scheme.

B. Global Discrimination

There have been two basic approaches suggested for the opti-
mization of adiscriminative HMM at amodel (or global) level.
One involves a direct computation of the posterior probability
of a model given the acoustic data; the second is the Viterbi
approximation to this.

Bahl et a. [59] presented a training scheme for continuous
HMMs in which the mutua information between the acoustic
evidence and the word sequence was maximized. This approach
used a discriminative objective function, locally maximized by
gradient ascent. Morerecently, Bridleintroduced the* a phanet”
representation [60] of HMMs, in which the computation of the
HMM “forward” probabilitiesaj; = P(XY, q(t) =) is performed
by the forward dynamics of arecurrent network. Alphanets may
be discriminatively trained by minimizing arel ative entropy ob-
jective function. This function incorporates the negative log of
the posterior probability of the correct model given the acoustic
evidence P(M[X, ©), rather than the local posterior of a state
given one frame of acoustic evidence. This posterior istheratio
of the likelihood of the correct model to the sum of the likeli-
hoods of al models. The numerator of thisratio is the quantity
computed by the forward-backward algorithm in training mode
(when the word sequence is constrained to be the correct word
sequence, so only time-warping variations are considered). The
denominator involves a sum over al possible models: thisis
equivalent to the sum computed if the forward-backward algo-
rithmwereto berun at recognition time (with theonly constraints
over the word sequence provided by the language model). Di-
rect computation of thisquantity for continuousspeech would be
prohibitivefor bothtraining and recognition. A simpler quantity
to compute isjust the sum over al possible phoneme sequences
(unconstrained by language model). This is not desirable as
it assumes uniform priors, rather than those specified by the
language model.

Initial work in using global optimization methodsfor continu-
ous speech recognition has been performed by Bridle[61], Niles
[62] and Bengio [63]. Bridle and Bengio used this approach
to optimize the input parameters via some (linear or nonlinear)
transform, training the parameters of the HMM by a maximum
likelihood process.

The Viterbi approximation to this is analogous to segmental
k-means training and has been referred to as embedded training
[64] or connectionist Viterbi training [65]. Inthismethod aframe
level optimization isinterleaved with a Viterbi re-alignment. It
should benoted that thetransition probabilitiesarestill optimized
by amaximum likelihood criterion (or the Viterbi approximation



toit). It may be proved that performing a Viterbi segmentation
using posterior local probabilities will also result in a global
optimization[29]. Thereis, however, amismatch between model
and acoustic data priors, as discussed earlier.

V1. A CONNECTIONIST-HMM
CONTINUOUS SPEECH RECOGNITION SYSTEM

The previously described components may be put together to
form a hybrid connectionist—HMM continuous speech recogni-
tion system (figure 2).

TRAINING Targets
Estimated
Speech Front End Features MLP Phone Labels
RECOGNITION
Estimated
MLP
Speech Front End Features Phone
Probabilities
Viterbi
Alignment (HMM)
Word
Sequence

Figure 2: A schematic of the training and recognition pro-
cesses. At both training and recognition times, the speech is
processed by a front end (e.g., a mel cepstral or a PLP trans-
form) that extracts a concise description of the speech every
frame (typicdlly every 10 ms). Using alignments produced by a
previously trained recognizer (or bootstrapping on time-aligned
labdled data, such as the TIMIT database), a MLP is traned
to phonetically classify frames of data The aignment/training
process may be iterated to provide an “embedded training” pro-
cess. For recognition a trained MLP is used to estimate phone
probabilities in a Viterbi dynamic programming search. This
search uses the constraints of allowed word pronunciations and
thelanguage model to producethe most probable string of words
(according to the model ).

The front end consists of sampling the time-amplitude wave-
form, followed by an analysis process designed to giveaconcise
representation of the speech signal. Thisisusually aframe based
analysisin which awindow of speech (typicaly 20 mswide) is
analyzed by some kind of spectral analysis and the window is
advanced at discrete intervals (typically 10 ms). The resulting
speech signal isthen characterized by a series of feature vectors
at 10 msintervals. This method of analysis embeds piecewise
stationarity, since it assumes that the speech signal may be rep-
resented by a sequence of discrete spectral “ snapshots’.

Inthispaper we are concerned with building statistical models

of the speech signal in thefeature vector domain. We use aset of
basic HMMs, corresponding to phones. These are concatenated
or built into networks, to form words and sentences, according
to the lexicon and language model.

When training atraditional HMM system, the topologiesand
output pdfs of the HMMs are chosen and initialized and their
parameters estimated. In our connectionist HMM system, we
follow the same basic approach. We choose the topologies of
the HMMs and we choose a MLP (with a given architecture)
to be our output pdf estimator. In the case where we have a
single pdf per phone (i.e. p(x[g) = p(x|c) for al states g; of
phone ¢;), the MLP may be viewed as being trained to perform
phonetic discrimination. We initiaize the models and perform
a Viterbi alignment (using a bootstrap recognizer), producing a
time-aligned state segmentation, subject to the language model.
From the state segmentation we can, of course, obtain phoneand
word segmentations. The state segmentation is used to produce
the training targets for the MLP. The MLP targets implicitly
contain information about the model. The MLP isthen trained
using the back-propagation algorithm. In this Viterbi training
scheme, the temporal and static parts of the training problem
are separated, in contrast to the forward-backward agorithm.
The process may be iterated, alternating between training the
MLP and re-estimating thetransition probabilities, an embedded
training process.

The usual time-synchronous Viterbi decoding algorithm is
used for recognition. For each frame of speech, avector of HMM
stateconditional posterior probabilities(p(qijx) for dl statesq;) is
produced by the MLP. These are converted to scaled likelihoods
by dividing by the relative state frequencies of thetraining data
In combination with the transition probabilities, we may use
the Viterbi algorithm to compute the HMM state sequence most
likely to have produced the speech signal, given the lexical and
language model constraints. Anadditional parameter used inthe
recognition is the word transition probability, which is usually
set by hand using a validation set. This parameter penalizes
(lowers the probability) of word transitions, thus reducing the
tendency to favor short words over longer ones.®

M odeling Context. Thusfar, wehaveonly considered context-
independent® phonemodeling using ML Ps. However, traditional
HMM systems have experienced a much improved performance
by modeling phonesin context [67,6,7].

Consider a set of N phone classes ¢ = {¢,...,cy} and D
context classes » = {d, ...,dp }. A naive approach to estimating
context-dependent probabilities using a MLP would reguire a
network containing D x N outputs. This approach scales badly,
asitwould resultin extremely large networksfor anything other
than a trivial set of context classes. The traditional context-
dependent HMM approach al so suffersfrom the need to estimate
an excessive number of parameters.

However, without any simplifying assumptions, we may es-
timate context-dependent posterior probabilities using networks
that are not substantialy larger than our context-independent

8Thisisaresult of the observationindependenceassumption, causing an under-estimate
of the joint observation density [66].

SA context-independent phonemode! isonewhich modelsaphonein whatever contextit
may occur. Context-dependent phone models, however, model phonesin specific phonetic
contexts, to take account of the acoustic effect of context. Thus there may be several
different modelsfor a single phone, depending on the surrounding context.



MLPs. The method uses a network decomposition [68], based
on the definition of conditional probability:
(19) p(ci. dix) = p(cikx)p(dici, x)
The first term on the right hand side is estimated by our usual
context-independent MLP. The second term is the estimate of
the posterior probability of the context class, given theinput and
the phone class. This second term may also be estimated using
an MLP with the usua speech input, plus a dependence on the
phone class.

This dependence on the phone class may be represented in
two basic ways:

1. By an extra set of 1-from-N binary inputs, one for each
possible phone class;

2. By having a replicated network (mapping from input data
to context class) for each possible phone class.

The first approach has been investigated in [46,69]. This
method of network decomposition may be viewed as trading
space for time during recognition. At recognition time, proba-
bilitiesmust becomputed for all phonesinall contexts(assuming
thereis no pruning). This means that for each frame of data,
the second network must be run multiple times for al possible
phone classes. Fortunately, with a possible constraint on repre-
sentability, we may increase computational efficiency by having
a direct connection from the binary units to the output units,
bypassing the hidden units.

We may compute a table of the binary units' effect on the
output, with these vectors being added on directly before the
output transfer function. Thus the bulk of computation is only
performed once per frame.

A variant of the second approach [70,71] uses an equivalent

decomposition:
(20) p(ci, dilx) = p(dilx)p(Gldi.x) .
The second network maps acoustic data to the phone classin a
particular context. Inthiscasewe haveonenetwork for each pos-
siblecontext. The number of parametersisreduced by constrain-
ing the set of networksto share a hidden layer. Furthermore, the
hidden-to-output transformation of the context-dependent net-
worksmay be initialized with the context-independent weights.
Cross-validation training may then beused to ensurethat context-
dependent trai ning does not decrease performance. Thisleadsto
a smoothing of the context-independent and context-dependent
parameters.

VI1l. EXPERIMENTS

A. Methods

Most of our experimentshavebeen performed usingthe DARPA
Resource Management (RM) speaker-independent continuous
speech database [11]. Thisisavery well studied database with
avocabulary of 991 words. The standard training set contains
3990 sentencesfrom 109 speakers. Evaluationisperformed over
varioustest sets, typically containing 300 sentences from 10-12
new speakers.

The difficulty of a speech recognition task is strongly affected
by the branching factor, or perplexity, which is the geometric
mean of the number of words that can follow any other word.
When no grammar is used, the RM task has a perplexity of
991—any word can follow any other. With a simple word-
pair grammar listing allowable pairs of words, the perplexity is
reduced to about 60. Notethat the perplexity of thedeterministic
source grammar used to generate sentences for the RM task was
about 6.

The front end used in these experiments was a mel cepstral*°
analysis, producing 12 coefficients, plus energy for each 10ms
frame of speech. Inadditionto these 13 coefficients, we estimate
their temporal derivatives[72], giving 26 coefficients per frame.

We chose the basic subword unit to be the phone. Each
phonewas represented as atwo or three statel eft-to-right HMM.
However, the 2 or 3 state output pdfs in each model were tied.
Thus each phone model contained a single output distribution,
with the multiple states acting as a duration model. The output
pdfswere estimated using aMLP with N outputs corresponding
to N phones. This MLP, when trained as a phonetic classifier,
output class conditional posterior probabilities.

These probability estimateswereintegratedinto SRI’ ssystem,
DECIPHER [7]. It includes multiple probabilisticword pronunci-
ations, cross-word phonological models, multiple densities per
phone, and context-dependent phone models. The basic DecI-
PHER system uses tied Gaussian mixture state output pdfs.

Initial work used a context-independent form of DECIPHER.
Thiswas the complete DECIPHER system, except that there were
69 context-independent phone models, rather than over 3000
context-dependent models. In this work we replaced the tied
mixture pdfs by a MLP. Additionally, we aso worked with the
context-dependent DECIPHER system. In this case the context-
dependent tied mixture pdfs were augmented by the context-
independent MLP pdfs.

The context-dependent DECIPHER system was used to boot-
strap our models. Our initia training targets were obtained by
using the tied mixture DECIPHER segmentation, and we retai ned
the estimated transition probabilities.

B. Architectures and Training

The networkstrained to perform these estimationswere large.
In addition to the current frame (26 inputs), 4 frames of |eft
and right context were appended, giving atotal of 234 inputs.
We usually used networks with about 1000 hidden units and 69
output classes, giving atotal of over 300,000 weights. Train-
ing a network with this many weightsis not trivial.** We used
a cross-vaidation training procedure combined with stochastic
gradient descent (per-pattern update). Cross-validation training
isessential for good generalization and preventing over-training,
especialy when using large networks. In our training schedule,
we cross-validate by testing phonetic classification on an inde-

19The mel cepstrum is the Fourier transform of the logarithm of a mel spectrum. This
spectrum, usually computed using DFTS, is equivalent to an unequally spaced filter bank
that approximatesthe “ critical bands’ of human hearing. The cepstrumis usually truncated
(higher order terms set to zero) to smooth the representation, essentially removing closely
spaced variationsfrom the log spectrum.

1 Computation was doneusing the RAP [ 73], aring array processor, that was configured
with from four to twenty TMS320C30 DSPs. This provided matrix-vector operations that
were 2 ordersof magnitudefaster than the Sparc 2 workstationsordinarily used for program
development. Training still took 1-2 daysusing a 16 processor system.



pendent test set after each epoch 2. When the classification
performance on the validation set first fails to improve by a
certain amount (typically 0.5%) the gradient descent step-size
is reduced, typicaly by a factor of 2. After each succeeding
epoch the step size is further reduced, until once again thereis
no improvement on the validation set. Training isthen halted.

Following the discussion in section |11, we have found empir-
ically that the output biases of a trained network may approxi-
mate the log odds of the priors (for a sigmoid transfer function)
or the log of the priors (for a softmax transfer function). We
have found that training is speeded (by over 25%) and gener-
alization improved by initializing the output biases to the log
odds (or log) of the relative frequencies of the corresponding
classes. Another training improvement was to use random (with
replacement) pattern presentation. These two methods together
improved the speed of training by a factor of 2 (training time
of 10 epochs through the training set reduced to 5) and also
improved generalization.

C. Reaults

Our experimentswere performed using an MLP with sigmoid
outputs, trained on the RM training set. Training the 300,000
weight network required around 5 passes through the training
database of 1.5 million training patterns. Around 225,000 pat-
ternswere used for cross-validation (acombination of the Febru-
ary 89 and October 89 RM speaker-independent test sets).

We used two classes of test sentences for evaluation. A 600
sentence development set (the February 1989 and October 1989
RM spesaker-independent test sets), the same as the network
cross-validation set, was used to tune the HMM recognition
parameters, such as the word transition probability. Final word
recognition results were obtained using unseen test sets of 300
sentences. Three such sets were used here, the February 1991
and the two September 1992 RM speaker-independent test sets.
No tuning of parameters was performed using these sets.

A context-independent form of the DECIPHER system was used
as a baseline. It was trained using the maximum likelihood
forward-backward procedure, and gave a word error of 11.0%
on the February 1991 test set, using the RM word-pair grammar
(perplexity 60). When the usual HMM output probability esti-
meators were replaced with a MLP trained to classify its input
acoustic vectors into one of 69 classes (and outputting posterior
probability estimates) the word recognition error improved to
5.8%. This network was trained from context-dependent align-
ments, which may give a slight advantage to the MLP. A similar
experiment using context-independent alignments resulted in a
slight degradation in performance (to 6.1%) but still showed a
large improvement over the baseline. In alater experiment, we
further reduced the error to about 5% by re-aligning the data
using the ML P for probability estimation and then retraining the
MLP with the new alignment.

In arelated experiment, the MLP probability estimates were

smoothed together with probabilitiesfromthefull context-dependent

DECIPHER tied-mixture system. Two heuristics were tried for

2 An epoch correspondsto atraining iteration over theentire training set. Notethat when
using random pattern selection, training doesnot involveaseries of completepassesthrough
the completetraining set. We regard an epoch as training on P randomly chosen patterns,
when there are P patternsin the training set.
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combining the MLP and tied mixture estimates of the state out-
put probabilities. In thefirst weighted logs of the MLP and tied
mixture likelihood estimations were used:

Pmlp(qj x)

(21) log(P(xlay)) = A110g ( P(qy)

) + A2 10g(Pum(xI0f))

where Pryp denotes the MLP estimate of a probability and Py
the tied mixture estimate. A single set of Aswas used over all
the states: they were optimized for minimum recognition error
over the 300 sentence devel opment set.

In the second heurigtic, the log of a weighted average of the
state output probabilities estimated by the MLP and the tied
Gaussian mixtures was used:

(22)
Pmip(qjlx)P,
109P(xi) = 1og (13 AP0 i)
P(q;)

In this approximation, the probability of the data P(x) was re-
quired to ensure that the two likelihood estimates are scaled
similarly. This cannot be obtained from the MLP, and was ap-
proximated by summing over the state conditional tied Gaussian
likelihoods:

(23) Pim(x) = Z Pun(xI0)P(qh).-

The best results on the development set were obtained using
the first method, which was adopted when evaluating over the
threetest sets. Thisreduced the error significantly in both cases.
These results are summarized in tables | and Il and graphed
in figure 3 for the February 1991 test set using the wordpair
grammar.

% error
Test Set || CI-MLP | CD-HMM | MIX
Feb 91 5.8 3.8 3.2
Sep 92a 10.9 10.1 7.7
Sep 92b 9.5 7.0 57

Tablel: Resultsusingthethreetest setswith the per plexity 60
wordpair grammar. CI-MLPisthe context-independent ML P-
HMM hybrid system, CD-HMM is the full context-dependent
DECIPHER system and the MIX system is a simpleinterpolation
between the CD-HMM and the CI-MLP

% error
Test Set || CI-MLP | CD-HMM | MIX
Feb 91 24.7 19.3 15.9
Sep 92a 315 29.2 254
Sep 92b 30.9 26.6 215

Tablell: Resultsusing thethree test sets using no grammar
(perplexity 991).

Therelationship between the number of parametersand recog-
nition performance is graphed in figure 4.
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Figure 3: Results using the February 1991 test set, using
the perplexity 60 wordpair grammar. This aso includes the
performance of the context-independent tied mixture HMM (ClI-
HMM) system.
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Figure 4: Recognition error versus number of parameters,
for the February 1991 test set, using thewordpair grammar.
A MLP with the same number of parameters as the CI-HMM
(500 hidden units) achieves about 8.0% recognition error (not
shown on this graph).

VI1Il. CONCLUSION

In this paper we have reviewed the basis of statistical (HMM)
speech recognition methods, paying attention to the assumptions
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embedded in standard techniques. In particular, we have consid-
ered density estimation methods compared with discriminative
methods. Using the result that feedforward networks may dis-
criminatively estimate probabilities, we have constructed a con-
nectionist HMM speech recognition system. Experimentsonthe
DARPA speaker-independent Resource Management task have
demonstrated that these connectionist methods improved a state
of theart HMM speech recognition system:

» Comparing like with like, a discriminatively trained con-
nectionist context-independent system performed consid-
erably better than the corresponding maximum likelihood
tied mixture system.

» The context-independent MLP-HMM hybrid system had
a word accuracy of from 0.8% to 2.5% lower than the
context-dependent HMM However the latter system has 50
times the number of models and 35 times the number of
parameters compared with the MLP system.

« Interpolating MLP context-independent probabilities with
tied mixture context-dependent probabilities produced an
increase in word accuracy.

These results arise from weakening two underlying HMM as-
sumptions:

» Model correctness—BY estimating only theclass-conditional
posterior probability, we have not attempted to optimize an
inappropriate model of the joint density. This discrimina
tive approach seems to be a better use of parameters for a
recognition task.

» Observation independence—The acoustic context was in-
creased by presenting a multi-frame input to the network.
Thus the probabilities estimated were conditioned on a se-
guence of data vectors, rather than a single data vector,
weakening the observation independence assumption.

Furthermore, we are finding the connectionist HMM framework
a good one in which to explore issues such as robust front
ends, speaker adaptation, consistency modeling and context-
dependent phone modeling.
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