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Abstract: In recent years, there has been increasing interest in the study of asym-

metrical fractional factorial designs. Various new optimality criteria have been

proposed from different principles for design construction and comparison, such as

generalized minimum aberration, minimum moment aberration, minimum projec-

tion uniformity and the χ2(D) (for design D) criteria. In this paper, these criteria

are reviewed and the χ2(D) criterion is generalized to the so-called minimum χ2

criterion. Connections among different criteria are investigated. These connections

provide strong statistical justification for each of them. Some general optimality

results are developed, which not only unify several results (including results for the

symmetrical case), but also are useful for constructing asymmetrical supersaturated

designs.

Key words and phrases: Generalized minimum aberration, minimum moment aber-

ration, orthogonal array, supersaturated design, uniformity.

1. Introduction

Fractional factorial designs (FFDs) are arguably the most widely used de-

signs in scientific investigations. Practical success is due to efficient use of ex-

perimental runs to study many factors simultaneously. A fundamental and prac-

tical question for FFDs is how to choose a “good” design from a set of candi-

dates. From different viewpoints, various optimality criteria have been proposed

for design construction and comparison. There have been extensive studies on

the criteria for symmetrical FFDs. Recently, there has been increasing inter-

est in the study of asymmetrical FFDs, and several new kinds of criteria have

been proposed for assessing them. Among those criteria, generalized minimum

aberration (GMA, Tang and Deng (1999), Ma and Fang (2001) and Xu and Wu

(2001)) considers the confounding situation between treatment effects under the

ANOVA decomposition; minimum moment aberration (MMA, Xu (2003)) inves-

tigates the relationship between runs, and offers tremendous savings in compu-

tation over GMA; χ2(D) (for design D, Yamada and Matsui (2002)) measures

two-factor non-orthogonality combinatorially; minimum projection uniformity



1286 MIN-QIAN LIU, KAI-TAI FANG AND FRED J. HICKERNELL

(MPU, Hickernell and Liu (2002)) considers the uniformity of low-dimensional

projections of a design. It should be noted that the GMA, MMA and χ2(D)

criteria are suitable mainly for qualitative factors. The MPU criterion is suitable

for both qualitative and quantitative factors, but here we only consider MPU

for the qualitative case. Refer to Cheng and Ye (2004) for criteria developed

especially for quantitative factors.

Each criterion mentioned above has its own merits. A natural question now

arises: what connections or equivalencies exist among those criteria? This article

aims to study the question for criteria for asymmetrical FFDs, and to provide

some optimality results. In Section 2, the existing criteria are described, the

χ2(D) criterion is generalized to the so-called minimum χ2 criterion, and con-

nections among the different criteria are investigated. The design criteria turn

out to be closely related to each other. These connections provide statistical jus-

tification for each of them from other viewpoints. Section 3 contains some general

optimality results. We develop several lower bounds, along with sufficient and

necessary conditions for optimality. Most of these results apply to balanced

designs, and they not only unify several results (including results for the sym-

metrical case), but also are useful for constructing asymmetrical supersaturated

designs. For ease of presentation, proofs are deferred to the appendix.

2. Design Criteria and Connections

Some facts and notation are as follows. An asymmetrical (or mixed-level)

design of n runs, m factors and levels q1, . . . , qm is denoted by D(n; q1, . . . , qm);

when some qj’s are equal, it is denoted by D(n; qr1

1 , . . . , qrl

l
) with

∑l
j=1 rj = m.

A design D(n; q1, . . . , qm) can be expressed as an n × m matrix D = (dij) with

dij from a set of qj symbols, say, {1, . . . , qj}. A D(n; q1, . . . , qm) is called an

orthogonal array of strength s, denoted by D(n; q1, . . . , qm; s), if in any s columns

all possible level-combinations appear equally often. A balanced design is an

orthogonal array of strength 1, which is also called a U-type design and denoted by

U(n; q1, . . . , qm) (Fang, Lin, Winker and Zhang (2000)). When
∑m

j=1(qj − 1) =

n−1, the design D(n; q1, . . . , qm) is called saturated. When
∑m

j=1(qj−1) > n−1,

orthogonality is not obtainable and the design is called supersaturated. Next, we

describe the criteria mentioned in the introduction, and we generalize the χ2(D)

criterion.

2.1. GMA, MMA and MPU criteria

Regular FFDs are often constructed to be of minimum aberration (Fries

and Hunter (1980)), since this criterion limits the adverse effects of aliasing.

Aberration has been generalized to nonregular FFDs (Tang and Deng (1999),

Ma and Fang (2001) and Xu and Wu (2001)). Especially, GMA due to Xu and
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Wu (2001) for the asymmetrical case covers all the other generalizations. Based

on the ANOVA decomposition model, for a D(n; q1, . . . , qm) design D, let Xj =

(xj
ik) be the matrix consisting of all j-factor contrast coefficients, for j = 0, . . . ,m.

If

Aj(D) =
1

n2

∑

k

∣

∣

∣

n
∑

i=1

xj
ik

∣

∣

∣

2
, (1)

the GMA criterion is to sequentially minimize Aj(D) for j = 1, . . . ,m.

For a design D = (dij), an integer t > 0 and some weights wk > 0, let

δij(D) =

m
∑

k=1

wkδ
(k)
ij , (2)

where δ
(k)
ij = 1 if dik = djk, and 0 otherwise. Thus δij(D) is the weighted

coincidence number between the ith and jth rows of D. Define the tth power

moment to be

Mt(D) =
[n(n − 1)

2

]−1 ∑

1≤i<j≤n

[δij(D)]t. (3)

The MMA criterion is to sequentially minimize Mt(D) for t = 1, . . . ,m. The

choice of wk = λqk is called a natural weight.

Now let us introduce the MPU criterion defined for asymmetrical FFDs and

qualitative factors, which is developed from the uniformity viewpoint. Interested

readers are referred to Hickernell and Liu (2002, Sec. 5) for a general definition

and some discussion about MPU. For a D(n; q1, . . . , qm) design D, define the

t-dimensional projection discrepancy D(t)(D;K) as the non-negative square root

of

D2
(t)(D;K) =

1

n2

n
∑

i,j=1

∑

1≤l1<···<lt≤m

t
∏

g=1

(

−1 + qlgδ
(lg)
ij

)

. (4)

The MPU criterion is to sequentially minimize D(t)(D;K) for t = 1, . . . ,m.

For symmetrical FFDs, the linear combination relationship between the

Ai(D)’s and the Mi(D)’s had been thoroughly presented in several papers, such

as Xu (2003, 2005). For asymmetrical designs, Hickernell and Liu (2002) proved

that MPU and GMA are equivalent, and Xu (2003) showed that GMA and MMA

are weakly equivalent.

Lemma 1. (i) For a D(n; q1, . . . , qm) design D, D2
(j)(D;K) = Aj(D), i.e., the

MPU is equivalent to the GMA defined by Xu and Wu (2001) (Hickernell and Liu

(2002, Theorem 2)).

(ii) For a D(n; q1, . . . , qm; s) design D, if wk = λqk for all k, then Mt(D) =

λt[n(n−1)−1t!At(D)+γt] for t = 1, . . . , s+1, where γt’s are constants depending

on n,m, t and the levels q1, . . . , qm (Xu (2003, Theorem 7)).
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Thus, by replacing At(D) in (ii) of this lemma with D2
(t)(D;K), the weak

equivalency between MPU and MMA follows directly, and provides a justification

for using MPU as an optimality criterion for choosing asymmetrical designs.

2.2. Minimum χ2 criterion

Supersaturated design (SSD) is an important nonregular FFD. Most studies

have focused on symmetrical SSDs. As for asymmetrical SSDs, Yamada and Mat-

sui (2002) used the χ2(D) as a measure of two-factor non-orthogonality. Here we

generalize it to assess the non-orthogonality among any t factors combinatorially.

For any t columns of a D(n; q1, . . . , qm) design D, say (cl1 , . . . , clt), let n
(l1···lt)
α1···αt

be the number of runs in which (cl1 , . . . , clt) takes the level-combination (α1· · ·αt),

let

χ2(cl1 , . . . , clt) =

∑

α1,...,αt

(

n
(l1···lt)
α1···αt −

n
∏t

i=1
qli

)2

(

n
∏t

i=1
qli

) , (5)

where the summation is taken over all possible level-combinations, and then

define

χ2
t (D) =

∑

1≤l1<···<lt≤m

χ2(cl1 , . . . , clt). (6)

Note that χ2(cl1 , . . . , clt) is analogous to the χ2 statistic, and it is clear that

χ2
t (D) is a measure of t-dimensional non-orthogonality of the design. Under this

measure, an optimal design should minimize χ2
t (D) for t = 1, . . . ,m sequentially.

We call this criterion the minimum χ2 criterion.

Take t = 2 in (5), then the χ2
2(D) in (6) is just the χ2(D) defined by

Yamada and Matsui (2002). Recently, Fang, Lin and Liu (2003) proposed the

E(f
NOD

) criterion for choosing asymmetrical SSDs, defined as minimizing

E(f
NOD

) =
[m(m − 1)

2

]−1 ∑

1≤i<j≤m

χ2(ci, cj)n

qiqj

.

Note that the χ2(D) considers different weights for factors with different levels,

while E(f
NOD

) does not do so.

It has been shown that the χ2(D), E(f
NOD

) and M2(D) criteria are exten-

sions of existing criteria for symmetrical SSDs, see Fang, Lin and Liu (2003), Xu

(2003) and Li, Liu and Zhang (2004) for details.

2.3. Connections

Throughout this subsection, wk = λqk for all k in (2). First let us see some

basic properties of the χ2 statistic in (5) and χ2
t (D) in (6):
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a. χ2(cl1 , . . . , clt)=0 if and only if cl1 , . . . , clt have all possible level-combinations

appear equally often.

b. χ2(cl1 , . . . , clt)=(1/n)
∏t

i=1 qli

∑

α1,...,αt

(

n
(l1···lt)
α1···αt

)2
− n.

c. If χ2
t (D) = 0, then χ2

j(D) = 0 for j < t.

d. χ2
t (D) = 0 for some t ≥ 1 if and only if the strength of D is at least t.

From the above statements, we conjecture that the minimum χ2 criterion

should be closely related to MPU and GMA. In fact we get the following result.

Theorem 1. (i) For any D(n; q1, . . . , qm) design D,

χ2
t (D) =

1

n

n
∑

i,j=1

[

∑

1≤l1<···<lt≤m

t
∏

g=1

(

qlgδ
(lg)
ij

) ]

− n

(

m

t

)

for 1 ≤ t ≤ m.

(ii) Furthermore, if D is a D(n; q1, . . . , qm; s), D2
(s+1)(D;K) = As+1(D) =

χ2
s+1(D)/n.

This theorem provides another statistical justification for MPU/GMA from

the χ2 statistic point of view. We note that Tang (2001) proposed a criterion,

called the V -criterion, which is similar to the minimum χ2 criterion, and obtained

the equivalency between the V -criterion and GMA for 2-level FFDs. Our Theo-

rem 1 generalizes his result from 2-level FFDs to asymmetrical FFDs. Combining

Lemma 1 and Theorem 1, we have

Corollary 1. For any D(n; q1, . . . , qm; s) design D, all the values of D2
(j)(D;K),

Aj(D), χ2
j (D) and Mj(D) for j ≤ s are minimized, and

D2
(s+1)(D;K) = As+1(D) =

χ2
s+1(D)

n
=

n − 1

nλs+1(s + 1)!

[

Ms+1(D) − λs+1γs+1

]

.

This result tells us that though the GMA, MMA, MPU, minimum χ2 crite-

ria are raised from distinct considerations, they are strongly connected to each

other: a D(n; q1, . . . , qm; s) design D minimizing one of D2
(s+1)(D;K), As+1(D),

χ2
s+1(D), Ms+1(D), minimizes all of them. This conclusion is important for con-

structing asymmetrical SSDs, where the goal is to minimize one of these values

for s = 1 in balanced designs.

Now, we have set up the connection between MMA and the minimum χ2

criterion, i.e., for any asymmetrical design D with strength s, Ms+1(D) and

χ2
s+1(D) can be minimized at the same time. But we are uncertain whether

Mj(D) and χ2
j(D), j > s + 1, can be minimized simultaneously. From their

definitions, we know that the power moments investigate the relationship between

runs (i.e., rows) of a design, while the χ2 statistics in (5) study the relationship
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between factors (i.e., columns). The following theorem shows the equivalency of

Mt(D) and a summation of χ2(cl1 , . . . , clt), regardless of the strength s.

Theorem 2. For any D(n; q1, . . . , qm) design D,

Mt(D) =
λt

n − 1

{

∑

1≤l1,...,lt≤m

χ2(cl1 , . . . , clt) + nmt −
(

m
∑

k=1

qk

)t}

.

Note that in this theorem, equality is valid for any asymmetrical design. This

theorem provides another statistical justification for MMA from the viewpoint

of minimizing non-orthogonality among design columns: an MMA design is a

design sequentially minimizing
∑

1≤l1,...,lt≤m χ2(cl1 , . . . , clt) for t = 1, . . . ,m.

3. Optimality Results

This section provides some optimality results for the various design criteria

mentioned in the above section. Our discussions focus on balanced asymmetri-

cal designs, i.e., U(n; q1, . . . , qm) designs. For such designs, our objective is to

minimize the components D2
(2)(D;K), A2(D), M2(D) or χ2(D). As they are

equivalent to each other, we study only the power moment measure, because of

its conceptual simplicity and usefulness in the theoretical development.

3.1. Some lower bounds

Majorization theory (Marshall and Olkin (1979)) is a suitable tool for study-

ing the properties of Mt(D) for t ≥ 2. Recent application of majorization to FFDs

includes Cheng and Mukerjee (1998) and Cheng, Steinberg and Sun (1999) on

estimation capacity, as well as Zhang, Fang, Li and Sudjianto (2005) on pairwise

coincidences for assessing symmetrical balanced FFDs.

Recall that for two distinct vectors x = (x1, . . . , xk) and y = (y1, . . . , yk) with

nonnegative components and the same sum of components (
∑k

i=1 xi =
∑k

i=1 yi),

x is said to be majorized by y if
∑r

i=1 x[i] ≥
∑r

i=1 y[i], for all 1 ≤ r ≤ k−1, where

x[1] ≤ x[2] ≤ · · · ≤ x[k] and y[1] ≤ y[2] ≤ · · · ≤ y[k] are the ordered components of

x and y respectively. A real-valued function f of x is said to be Schur-convex if

f(x) ≤ f(y) whenever x is majorized by y.

From the definition of the tth power moment, we know that it is a function

of the weighted coincidence numbers between distinct rows of the design. For a

U(n; q1, . . . , qm) design D and any given weights wk,

n
∑

j=1,j 6=i

δij(D) =

m
∑

k=1

wk(
n

qk

− 1), for i = 1, . . . , n. (7)
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It is easy to see that Mt(D) is a Schur-convex function of the vector

δ(D) = (δ12(D), . . . , δ1n(D), δ23(D), . . . , δ2n(D), . . . , δ(n−1)n(D)), (8)

for any t ≥ 2.

Lemma 2. Let D and D∗ be two U(n; q1, . . . , qm) designs, δ(D) and δ(D∗)

be the respective vectors defined in (8). If δ(D∗) is majorized by δ(D), then

Mt(D
∗) ≤ Mt(D), for any t ≥ 2. In particular, if δ(D∗) is majorized by any

δ(D), then Mt(D
∗) is minimized, i.e., D∗ is an MMA design.

From this lemma and (7), we have the following result, also given by Xu

(2003, Theorem 6).

Lemma 3. For a U(n; q1, . . . , qm) design D and t ≥ 2, Mt(D) ≥ δt, and equality

holds if and only if δij(D) defined in (2) is a constant δ for all i < j, where

δ =
∑m

k=1 wk(n/qk − 1)/(n − 1).

Remark 1. From Corollary 1, by letting wk = λqk, lower bounds for D2
(2)(D),

A2(D) and χ2(D) can be obtained in a straightforward manner, and these bounds

are tight for the same condition as in Lemma 3. In particular, for χ2(D), its lower

bound obtained in this way is the same as that obtained by Yamada and Matsui

(2002), but they did not give sufficient and necessary conditions for achieving

the lower bound.

Remark 2. Lemma 3 provides a condition for which the lower bound can be

achieved. For some values of (n,m, q1, . . . , qm, w1, . . . , wk), this lower bound is

attainable. For example, when D is a saturated D(n; q1, . . . , qm; 2), and natural

weights wk = λqk for 1 ≤ k ≤ m are assumed, the lower bound is attained as

δ(D) = (λ(m − 1), . . . , λ(m − 1)) (Mukerjee and Wu (1995)). In cases where

some δij(D)’s for i < j can not equal δ =
∑m

k=1 wk(n/qk − 1)/(n − 1), the lower

bound can be improved.

For given m, qk and wk, let

∆ =
{

m
∑

k=1

wkδ
(k)
ij : δ

(k)
ij = 0, 1, for k = 1, . . . ,m

}

.

In ∆, let δL and δU be the two nearest values to δ =
∑m

k=1 wk(n/qk − 1)/(n −

1), satisfying δL ≤ δ < δU . It can be easily observed that if there exists a

U(n; q1, . . . , qm) design D∗ whose δij(D
∗) for i < j take values from δL and δU ,

then for any other U(n; q1, . . . , qm) design D, δ(D∗) is majorized by δ(D), i.e.,

D∗ is an MMA design. Condition (7) determines the numbers of times δL and

δU appear in δ(D∗). Explicitly, this result can be expressed as follows.



1292 MIN-QIAN LIU, KAI-TAI FANG AND FRED J. HICKERNELL

Theorem 3. Given wk for all k, then for a U(n; q1, . . . , qm) design D and t ≥ 2,

Mt(D) ≥
δU − δ

δU − δL

δt
L +

δ − δL

δU − δL

δt
U . (9)

Equality holds if and only if for any i, among the (n − 1) values of δ1i(D), . . .,

δ(i−1)i(D), δi(i+1)(D), . . . , δin(D), there are (n − 1)[(δU − δ)/(δU − δL)] with the

value δL and (n − 1)[(δ − δL)/(δU − δL)] with the value δU .

Remark 3. If equality holds in (9) for a certain t, then Mt(D) is minimized,

and all other Mi(D)’s for i ≥ 2 and i 6= t are uniquely determined by the values

of δ, δL and δU , thus the design D is an MMA design. Moreover, the lower bound

in this theorem includes the one in Lemma 3 as a special case when δL = δ.

Based on the connections developed in last section, we have

Corollary 2. Suppose wk = λqk for all k, then for a U(n; q1 · · · qm) design D,

M2(D) ≥ (δU + δL)δ − δUδL, and

D2
(2)(D;K) = A2(D) =

χ2(D)

n
≥

n − 1

2nλ2

{

(δU + δL)δ − δUδL − λ2γ2

}

.

The sufficient and necessary condition for the equalities to hold is the same as

that of Theorem 3, except for replacing wk by λqk when calculating δ, δL and δU .

This corollary, along with Remark 3, tells us that when the lower bound of

M2(D) is achieved by a design D, then D is an MMA design. It is also optimal

according to D2
(2)(D;K), A2(D) and χ2(D). Recently, Li, Liu and Zhang (2004)

obtained a lower bound for χ2(D) that is a special case of the lower bound

given in the corollary. Note that the optimality results developed here also unify

the results obtained, e.g. by Liu and Hickernell (2002), Fang, Ge, Liu and Qin

(2003, 2004b), Xu (2003), etc., for symmetrical FFDs.

3.2. Optimal designs

We should notice that most of the designs achieving those lower bounds

provided in Corollary 2 are SSDs. As for the construction of asymmetrical

SSDs, Yamada and Matsui (2002) and Yamada and Lin (2002) proposed two

methods for constructing 2- and 3-level SSDs through computer searches. How-

ever their resulting designs cannot always achieve the lower bound of χ2(D).

Fang, Lin and Liu (2003) proposed a method for constructing E(f
NOD

)-optimal

asymmetrical SSDs, called the fractions of saturated orthogonal arrays (FSOA)

method, which is an extension of Lin’s (1993) half fraction of a Hadamard ma-

trix method. Recently, Li, Liu and Zhang (2004) extended the FSOA method to
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the construction of χ2(D)-optimal asymmetrical SSDs and studied the proper-

ties of the resulting designs. The designs constructed from their method are also

optimal according to MMA, D2
(2)(D) and A2(D).

Another paper concerning the construction of asymmetrical SSDs is

Fang, Ge, Liu and Qin (2004a). In that paper, they set up an important bridge

between SSDs and uniformly resolvable designs, a kind of combinatorial design,

and obtained several new infinite classes of E(f
NOD

)-optimal SSDs. From Fang,

Ge, Liu and Qin’s (2004a) concluding remarks, we know that all their designs are

of one coincidence position between any two distinct rows. Also we can see that

most of their designs are of the form D(n; p1, qm−1). For D(n; p1, qm−1) designs,

we have the following result.

Theorem 4. Let D be a D(n; p1, qm−1) design, where p ≤ q and n/p + (m −

1)n/q − m = n − 1. If there exists exactly one coincidence position between any

two distinct rows of D, then D is an MMA design with natural weights, and it is

also optimal according to D2
(2)(D), A2(D) and χ2(D).

From this theorem, we can easily draw the conclusion that the E(f
NOD

)-

optimal D(n; p1, qm−1) designs with p ≤ q due to Fang, Ge, Liu and Qin (2004a)

are still optimal according to χ2(D), D2
(2)(D), A2(D) and MMA.

The column juxtaposition method can also be used to construct asymmetrical

SSDs. Li, Liu and Zhang (2004) applied it to construct χ2(D) optimal and MMA

designs, where they assumed wk = λqk for all k. Obviously, the resulting designs

are also D2
(2)(D) and A2(D) optimal.

Corollary 3. Let Dt, for 1 ≤ t ≤ l, be balanced designs with the same number of

runs. Given the weights wk for all k, if the weighted coincidence numbers δij(Dt)

for i < j are constant for each design Dt, then D = (D1, . . . , Dl) is an MMA

design. In particular, if the natural weights wk = λqk for all k are assumed, D

is also optimal according to D2
(2)(D), A2(D) and χ2(D).

Based on this corollary, many optimal SSDs can be constructed, not only

from saturated orthogonal arrays of strength 2, but also from SSDs with the given

property as shown in the corollary, such as the designs due to Liu and Zhang

(2000), Fang, Lin and Ma (2000), Fang, Ge and Liu (2002, 2004) and Fang, Ge,

Liu and Qin (2003, 2004b).

Besides those above methods, the construction of asymmetrical SSDs still

needs to be investigated further.
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Appendix

Proof of Theorem 1. It is easy to verify that for any D(n; q1, . . . , qm) design
D,

∑

α1,...,αt

(

n
(l1···lt)
α1···αt

)2
=

n
∑

i,j=1

t
∏

g=1

δ
(lg)
ij . (10)

So from the result (b) in Subsection 2.3,

χ2
t (D) =

1

n

∑

1≤l1<···<lt≤m

[

t
∏

g=1

qlg

∑

α1,...,αt

(

n
(l1···lt)
α1···αt

)2 ]

− n

(

m

t

)

=
1

n

∑

1≤l1<···<lt≤m

[

n
∑

i,j=1

t
∏

g=1

(

qlgδ
(lg)
ij

) ]

− n

(

m

t

)

, (11)

hence the expression for χ2
t (D) follows. As for D2

(t)(D;K), note that

t
∏

g=1

(

−1 + qlgδ
(lg)
ij

)

= (−1)t +
t−1
∑

h=1

[

(−1)t−h
∑

1≤t1<···<th≤t

h
∏

g=1

(

qltg
δ
(ltg )

ij

) ]

+
t

∏

g=1

qlgδ
(lg)
ij (12)

and, for any D(n; q1, . . . , qm; s) design D,

n
∑

i,j=1

h
∏

g=1

(

qltg
δ
(ltg )

ij

)

= n2 for 1 ≤ h ≤ s, and any different ltg ’s. (13)

Thus from (4) we can express D2
(t)(D;K) in terms of (12), then by exchanging

the order of summations in the expression and using (13), we get

D2
(s+1)(D;K) =

(

m

s + 1

)

[

(−1)s+1 +
s

∑

h=1

(−1)s+1−h

(

s + 1

h

)

]

+
1

n2

∑

1≤l1<···<ls+1≤m

n
∑

i,j=1

s+1
∏

g=1

(

qlgδ
(lg)
ij

)

= −

(

m

s + 1

)

+
1

n2

∑

1≤l1<···<ls+1≤m

n
∑

i,j=1

s+1
∏

g=1

(

qlgδ
(lg)
ij

)

.
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Combing with (11) and Lemma 1, the proof is completed.

Proof of Theorem 2. For a D(n; q1, . . . , qm) design D, δii(D)/λ =
∑m

k=1 qk,

and thus

n(n − 1)Mt(D)

λt
=

n
∑

i,j=1

[

δij(D)

λ

]t

− n
(

m
∑

k=1

qk

)t

=

n
∑

i,j=1

[

m
∑

l=1

qlδ
(l)
ij

]t

− n
(

m
∑

k=1

qk

)t

=

n
∑

i,j=1

[

∑

1≤l1,...,lt≤m

t
∏

k=1

(

qlkδ
(lk)
ij

) ]

− n
(

m
∑

k=1

qk

)t

=
∑

1≤l1,...,lt≤m

[

n
∑

i,j=1

t
∏

k=1

(

qlkδ
(lk)
ij

) ]

− n
(

m
∑

k=1

qk

)t

.

Hence from (10),

(n − 1)Mt(D)

λt
=

∑

1≤l1,...,lt≤m

[ 1

n

t
∏

g=1

qlg

∑

α1,...,αt

(

n
(l1···lt)
α1···αt

)2 ]

−
(

m
∑

k=1

qk

)t

=
∑

1≤l1,...,lt≤m

[ 1

n

t
∏

g=1

qlg

∑

α1,...,αt

(

n
(l1···lt)
α1···αt

)2
−n

]

+nmt−
(

m
∑

k=1

qk

)t

.

Then the equality in the theorem follows from the result (b) in Subsection 2.3.

Proof of Theorem 4. For parameters n,m, p, q satisfying p ≤ q and n/p +

(m− 1)n/q −m = n− 1, and the natural weights, it can be easily observed that

λp ≤ δ =
(λp)(n/p − 1) + (m − 1)(λq)(n/q − 1)

n − 1
≤ λq,

and the two nearest values δL and δU in Corollary 2 can only be λp and λq.

For the D(n; p1, qm−1) design with exactly one coincidence position between

any two distinct rows, its natural weighted coincidence numbers δij(D) for i < j

just take the two values λp and λq, hence the optimality of this design follows

from Corollary 2.
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