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Abstract

In this article, we prove that the ω-periodic discrete evolution family

Ŵ := {ρ(n, k) : n, k ∈ Z+,n ≥ k} of bounded linear operators is Hyers-Ulam stable if and

only if it is uniformly exponentially stable under certain conditions. More precisely, we

prove that if for each real number γ and each sequence (ξ (n)) taken from some

Banach space, the approximate solution of the nonautonomous ω-periodic discrete

system θn+1 =�nθn, n ∈ Z+ is represented by φn+1 =�nφn + eiγ (n+1)ξ (n + 1), n ∈ Z+;

φ0 = θ0, then the Hyers-Ulam stability of the nonautonomous ω-periodic discrete

system θn+1 =�nθn, n ∈ Z+ is equivalent to its uniform exponential stability.

MSC: 39A30
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1 Introduction

The stability theory is an important research area of the qualitative analysis of differen-

tial equations and difference equations. Ulam [] proposed a question regarding the sta-

bility of functional equations for homomorphism as follows: when can an approximate

homomorphism from a group G to a metric group G be approximated by an exact ho-

momorphism? Assuming that G and G are Banach spaces, Hyers [] brilliantly gave the

first result to this question. Aoki [] and Rassias [] generalized this result. In particular,

Rassias [] improved the condition for the bound of the norm of the Cauchy difference

f (x+ y) – f (x) – f (y). Obłoza [] established the connections between Hyers and Lyapunov

stability of ordinary differential equations. Later on, Alsina and Ger [] investigated the

stability of the differential equation y′(x) = y(x), which was then extended to the Banach

space-valued differential equation y′(x) = λy(x) by Takahasi et al. []. We also refer the

reader to [–] regarding the study of Hyers-Ulam stability of differential equations and

differential operators.

The stability and nonstability of different classes of recurrences were studied by Brzdȩk

et al. [–] and Popa [, ]. Jung [] proved the Hyers-Ulam stability of a first-order

linear homogeneous matrix difference equation. Note that the investigation of the differ-
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ence equations θn+ = �nθn or θn+ = �nθn+ξn leads to the idea of discrete evolution family.

Themain interest in this area is the asymptotic properties and stability of solutions to such

systems. In recent years, the exponential stability of such systems has received a great deal

of attention since it has been widely applied in research of control theory and engineering;

see, e.g., [–] and the references cited therein.

In this paper, we are concerned with the first-order linear system

θn+ = �nθn, n ∈ Z+, (.)

where Z+ is the set of all nonnegative integers and (�n) is an ω-periodic sequence of

bounded linear operators on Banach space �. We proved that system (.) is Hyers-Ulam

stable if and only if it is uniformly exponentially stable under certain conditions.

2 Notation and preliminaries

Throughout, R stands for the set of all real numbers, � denotes a real or complex Banach

space, L(�) is the Banach algebra of all linear and bounded operators over �, L(Z+,�)

is the space of all �-valued bounded sequences endowed with the sup norm denoted by

‖·‖∞, Pω
 (Z+,�) stands for the space of allω-periodic bounded sequences (ξ (n)) satisfying

ξ () = , and we denote by ‖ · ‖ the norms in � and L(�).

LetH belong to L(�) and σ (H) be its spectrum. The spectral radius ofH is denoted by

r(H) := sup{|λ| : λ ∈ σ (H)} = limn→∞ ‖Hn‖

n .

Definition . The operatorH is said to be power bounded if there exists a positive con-

stantM such that ‖Hn‖ ≤ M for all n ∈ Z+.

We need the following auxiliary lemma.

Lemma . (See []) IfH ∈L(�) and

sup
γ∈R

sup
n∈Z+

∥

∥

∥

∥

∥

n
∑

k=

eiγ kHk

∥

∥

∥

∥

∥

< ∞,

then r(H) < .

The family Ŵ := {ρ(n,m) : n,m ∈ Z+,n ≥ m} of bounded linear operators is called an

ω-periodic discrete evolution family for a fixed integer ω ∈ {, , . . .} if it satisfies the fol-

lowing properties:

• ρ(n,n) = I for all n ∈ Z+.

• ρ(n,m)ρ(m, r) = ρ(n, r) for all n≥ m ≥ r, n,m, r ∈ Z+.

• ρ(n +ω,m +ω) = ρ(n,m) for all n≥ m, n,m ∈ Z+.

It is well known that any ω-periodic discrete evolution family Ŵ is exponentially bounded,

that is, there exist a τ ∈R and anMτ ≥  such that

∥

∥ρ(n,m)
∥

∥ ≤ Mτ e
τ (n–m) for all n≥ m,n,m ∈ Z+. (.)

When the family Ŵ is exponentially bounded, its growth bound τ(Ŵ) is the infimum of all

τ ∈R for which there exists anMτ ≥  such that inequality (.) is fulfilled. It is well known
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that

τ(Ŵ) = lim
n→∞

ln‖ρ(n, )‖

n
=



ω
ln

(

r
(

ρ(ω, )
))

.

The family Ŵ is uniformly exponentially stable if τ(Ŵ) is negative or, equivalently, there

exist an M >  and a τ >  such that ‖ρ(n,m)‖ ≤ Me–τ (n–m) for all n ≥ m ∈ Z+. Thus, we

have the following lemma.

Lemma . The discrete evolution family Ŵ is uniformly exponentially stable if and only

if r(ρ(ω, )) < .

The map ρ(ω, ) is also called the Poincaré map of the evolution family Ŵ.

Consider the following discrete Cauchy problem:

⎧

⎨

⎩

φn+ = �nφn + eiγ (n+)ξ (n + ), n ∈ Z+,

φ = θ,
(�n,γ , θ)

where γ ∈R, the sequence (�n) is ω-periodic, i.e., �(n+ω) = �(n) = �n for all n ∈ Z+ and

a fixed ω ∈ {, , . . .}. Let

ρ(n,k) :=

⎧

⎨

⎩

�n–�n– · · ·�k if k ≤ n – ,

I if k = n.

Then the family {ρ(n,k)}n≥k≥ is a discrete ω-periodic evolution family. Over finite di-

mensional spaces, the uniform exponential stability of the Cauchy problem (�n,γ , θ) in

discrete and continuous autonomous cases has been investigated in [, ].

Definition . System (.) is said to be Hyers-Ulam stable if

‖φn+ –�nφn‖ ≤ ǫ for any n ∈ Z+ and ǫ > ,

and there exist an exact solution θn of (.) and a constant L ≥  such that

‖φn – θn‖ ≤ Lǫ for any n ∈ Z+ and ǫ > .

Remark . If φn is an approximate solution of (.), then φn+ ≈ �nφn. Therefore, letting

(ξ (n)) be an error sequence, then φn is the exact solution of φn+ = �nφn + ξ (n).

With the help of Remark ., Definition . can be modified as follows.

Definition . System (.) is termed Hyers-Ulam stable if ‖ξ (n)‖ ≤ ǫ holds for any

n ∈ Z+ and ǫ > , and there exist an exact solution θn of (.) and a constant L ≥  such

that

‖φn – θn‖ ≤ Lǫ for any n ∈ Z+ and ǫ > .
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3 Main results

Consider the Cauchy problem (�n,γ , θ). The solution of the Cauchy problem (�n,γ , θ)

is given by

φn = ρ(n, )θ +

n
∑

k=

eiγ kρ(n,k)ξ (k).

Let us divide n by ω, i.e., n = lω + r for some l ∈ Z+, where r ∈ {, , . . . ,ω– }. We consider

the following sets, which will be useful in this paper:

Aj :=
{

 + jω,  + jω, . . . , (j + )ω – 
}

for all j ∈ Z+.

If r ∈ {, , . . . ,ω – }, then define

Bl := {lω + , lω + , . . . , lω + r}

and

C := {,ω, ω, . . . , lω}.

It is clear that

l–
⋃

j=

Aj

⋃

Bl

⋃

C = {, , , . . . ,n}. (.)

On the basis of partition (.), we construct the space W , which consists of all the se-

quences of the form

ξ (k) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(k – jω)[( + j)ω – k]ρ(k – jω, ) if k ∈Aj,

k(ω – k)ρ(k, ) if k ∈ Bl,

 if k ∈ C.

(.)

That is,

W :=
{(

ξ (n)
)

: ξ (n) satisfies (.)
}

.

Obviously,W is the subspace of Pω
 (Z+,�).

Now, we state and prove the main results.

Theorem . Let Ŵ := {ρ(n,k) : n ≥ k ∈ Z+} be the ω-periodic discrete evolution family

on � and let φn+ = �nφn + eiγ (n+)ξ (n + ), φ = θ be the approximate solution of (.)

with the error term eiγ (n+)ξ (n+ ), where γ ∈R and (ξ (n)) ∈ Pω
 (Z+,�). Then the following

statements are true.

() If system (.) is uniformly exponentially stable, then it is Hyers-Ulam stable.

() If system (.) is Hyers-Ulam stable for each γ ∈R and each ω-periodic sequence

(ξ (n)) ∈W ⊂ Pω
 (Z+,�), then system (.) is uniformly exponentially stable, i.e., Ŵ is

uniformly exponentially stable.
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Proof () Let ǫ >  and φn be the approximate solution of (.) such that supn∈Z+
‖φn+ –

�nφn‖ = supn∈Z+
‖eiγ (n+)ξ (n + )‖, φ = θ, and supn∈Z+

‖ξ (n)‖ ≤ ǫ, and let θn be the exact

solution of (.). Taking into account that Ŵ is uniformly exponentially stable, we conclude

that there exist two positive constantsM and ν such that

sup
n∈Z+

‖φn – θn‖ = sup
n∈Z+

∥

∥

∥

∥

∥

ρ(n, )θ +

n
∑

k=

eiγ kρ(n,k)ξ (k) – ρ(n, )θ

∥

∥

∥

∥

∥

= sup
n∈Z+

∥

∥

∥

∥

∥

n
∑

k=

eiγ kρ(n,k)ξ (k)

∥

∥

∥

∥

∥

≤

n
∑

k=

sup
n∈Z+

∥

∥eiγ kρ(n,k)ξ (k)
∥

∥

=

n
∑

k=

∥

∥eiγ k
∥

∥ sup
n∈Z+

∥

∥ρ(n,k)
∥

∥

∥

∥ξ (k)
∥

∥

=

n
∑

k=

sup
n∈Z+

∥

∥ρ(n,k)
∥

∥

∥

∥ξ (k)
∥

∥

≤

n
∑

k=

Me–ν(n–k)ǫ

= Me–νn

n
∑

k=

eνkǫ

= Me–νn

(

 – e(n+)ν

 – eν

)

ǫ

= Lǫ,

where L :=Me–νn( – e(n+)ν)/( – eν). Thus, system (.) is Hyers-Ulam stable.

() Let (ξ (n)) ∈W . Then

n
∑

k=

eiγ kρ(n,k)ξ (k) =

lω+r
∑

k=

eiγ kρ(lω + r,k)ξ (k)

=
∑

k∈
⋃l–

j= Aj∪Bl∪C

eiγ kρ(lω + r,k)ξ (k)

=
∑

k∈
⋃l–

j= Aj

eiγ kρ(lω + r,k)ξ (k)

+
∑

k∈Bl

eiγ kρ(lω + r,k)ξ (k)

+
∑

k∈C

eiγ kρ(lω + r,k)ξ (k)

=

l–
∑

j=

ω–+jω
∑

k=+jω

eiγ kρ(lω + r,k)ξ (k)
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+

lω+r
∑

k=lω+

eiγ kρ(lω + r,k)ξ (k)

+
∑

k∈C

eiγ kρ(lω + r,k)ξ (k).

By virtue of (.), we have

n
∑

k=

eiγ kρ(n,k)ξ (k) =

l–
∑

j=

ω–+jω
∑

k=+jω

eiγ kρ(lω + r,k)(k – jω)
[

( + j)ω – k
]

ρ(k – jω, )

+

lω+r
∑

k=lω+

eiγ kρ(lω + r,k)k(ω – k)ρ(k, )

=

l–
∑

j=

ω–+jω
∑

k=+jω

eiγ kρ(lω + r,k)(k – jω)
[

( + j)ω – k
]

ρ(k – jω, )

+

lω+r
∑

k=lω+

eiγ kρ(lω + r,k)k(ω – k)ρ(k, )

= L + L,

where

L :=

l–
∑

j=

ω–+jω
∑

k=+jω

eiγ kρ(lω + r,k)(k – jω)
[

( + j)ω – k
]

ρ(k – jω, )

and

L :=

lω+r
∑

k=lω+

eiγ kρ(lω + r,k)k(ω – k)ρ(k, ).

We write L in the form

L =

l–
∑

j=

ω–+jω
∑

k=+jω

eiγ kρ(lω + r,k)(k – jω)
[

( + j)ω – k
]

ρ(k – jω, )

=

l–
∑

j=

ω–+jω
∑

k=+jω

eiγ kρ(lω + r,k)(k – jω)
[

( + j)ω – k
]

ρ(k, jω)

=

l–
∑

j=

ω–+jω
∑

k=+jω

eiγ kρ(lω + r, jω)(k – jω)
[

( + j)ω – k
]

=

l–
∑

j=

ρ(lω + r, jω)

ω–+jω
∑

k=+jω

eiγ k(k – jω)
[

( + j)ω – k
]

=

l–
∑

j=

ρ(lω + r, jω)

ω–+jω
∑

k=+jω

eiγ k(k – jω)
[

ω – (k – jω)
]
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=

l–
∑

j=

ρ(r, )ρ l–j(ω, )eiγ jω
ω–
∑

v=

eiγ vv(ω – v)

= ρ(r, )

ω–
∑

v=

eiγ vv(ω – v)

l–
∑

j=

eiγ jωρ l–j(ω, )

= ρ(r, )

ω–
∑

v=

eiγ vv(ω – v)

l
∑

α=

eiγω(l–α)ρα(ω, )

= ρ(r, )

ω–
∑

v=

eiγ vv(ω – v)eiγ lω
l

∑

α=

e–iγωαρα(ω, )

= G(γ ,ω)

l
∑

α=

e–iγωαρα(ω, ),

where G(γ ,ω) := ρ(r, )
∑ω–

v= e
iγ vv(ω – v)eiγ lω �= . Furthermore,

L =

lω+r
∑

k=lω+

eiγ kρ(lω + r,k)k(ω – k)ρ(k, )

=

lω+r
∑

k=lω+

eiγ kρ(lω + r, )k(ω – k)

= ρ(lω + r, )

lω+r
∑

k=lω+

eiγ kk(ω – k).

Therefore,

n
∑

k=

eiγ kρ(n,k)ξ (k) =G(γ ,ω)

l
∑

α=

e–iγωαρα(ω, ) + ρ(lω + r, )

lω+r
∑

k=lω+

eiγ kk(ω – k).

Since (.) is Hyers-Ulam stable,

sup
n∈Z+

‖φn – θn‖ = sup
n∈Z+

∥

∥

∥

∥

∥

n
∑

k=

eiγ kρ(n,k)ξ (k)

∥

∥

∥

∥

∥

is bounded, and so L is bounded, i.e.,

sup
l≥

∥

∥

∥

∥

∥

l
∑

α=

e–iγωαρα(ω, )

∥

∥

∥

∥

∥

< ∞.

Using Lemma ., we deduce that r(ρ(ω, )) < . Hence, by Lemma ., Ŵ is uniformly

exponentially stable. This completes the proof. �

On the basis of Theorem ., we obtain the following corollary as the main result of this

paper.

Corollary . Assume that for each γ ∈ R and each sequence (ξ (n)) ∈ W , the approxi-

mate solution of the nonautonomous ω-periodic discrete system (.) is presented by φn+ =
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�nφn + e
iγ (n+)ξ (n+ ), n ∈ Z+; φ = θ. Then the Hyers-Ulam stability of (.) is equivalent

to its uniform exponential stability.
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21. Buşe, C, Zada, A: Boundedness and exponential stability for periodic time dependent systems. Electron. J. Qual.

Theory Differ. Equ. 2009, 37 (2009)

22. Chicone, C, Latushkin, Y: Evolution Semigroups in Dynamical Systems and Differential Equations. Mathematical

Surveys and Monographs, vol. 70. Am. Math. Soc., Providence (1999)

23. Zada, A: A characterization of dichotomy in terms of boundedness of solutions for some Cauchy problems. Electron.

J. Differ. Equ. 2008, 94 (2008)

24. Zada, A, Ahmad, N, Khan, IU, Khan, FM: On the exponential stability of discrete semigroups. Qual. Theory Dyn. Syst.

14, 149-155 (2015)

25. Zada, A, Arif, M, Khalid, H: Asymptotic behavior of linear and almost periodic discrete evolution systems on Banach

spaceAAP
r
0(Z+ ,W). Qual. Theory Dyn. Syst. (2015). doi:10.1007/s12346-015-0177-5

http://dx.doi.org/10.1007/s12346-015-0177-5

	Connections between Hyers-Ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over Banach spaces
	Abstract
	MSC
	Keywords

	Introduction
	Notation and preliminaries
	Main results
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


