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Abstract

A permutation test assigns a p-value by conditioning on the data and treating the different possible 

treatment assignments as random. The fact that the conditional type I error rate given the data is 

controlled at level α ensures validity of the test even if certain adaptations are made. We show the 

connection between permutation and t-tests, and use this connection to explain why certain 

adaptations are valid in a t-test setting as well. We illustrate this with an example of blinded 

sample size re-calculation.
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1 Introduction

Randomized controlled trials are considered the gold standard for determining whether a 

new treatment is superior to a control. Assigning treatments at random tends to produce 

comparable arms that can then be compared in an unbiased manner. Consistent with the high 

degree of rigor in clinical trials is an analysis plan requiring as few assumptions as possible 

to avoid making subsequent changes in response to data not fitting the assumed model. One 

such plan in a fixed design setting uses a permutation test, whose validity is guaranteed 

under the strong null hypothesis that the experimental treatment has no effect compared to 

the control. Under this hypothesis, the observed data should be equally plausible regardless 

of the treatment labels. We can generate a valid reference distribution by 1) fixing the data at 

their observed values, 2) re-generating treatment labels, 3) re-computing the test statistic 

corresponding to those labels, and 4) repeating steps 1-3 until we exhaust the possibilities.

Because permutation tests condition on the observed data, they are also attractive in adaptive 

settings [1-2]. For example, consider a two-stage design in which we look at the first stage 

data blinded to treatment assignment and decide to increase the second stage sample size 

because the variance was larger than expected. The permutation distribution of the between-

arm difference of the first stage is not marred by having looked at the data because a 

permutation test already conditions on all data other than the treatment assignments. This 
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suggests that we might be able to combine the first stage p-value with a p-value from the 

second stage in a way that preserves the overall type I error rate.

Inferences from permutation tests are often extremely close to those of t-tests because 

permutation distributions are closely approximated by normal distributions. This is well-

recognized (e.g., see Sections 4.1 and 4.2 of [3] for the two-sample and one-sample cases, 

respectively), and formal proofs date back many decades [4-6]. If we can construct a valid 

two-stage adaptive procedure using permutation tests, and permutation tests are 

asymptotically equivalent to t-tests, it seems reasonable that we might be able to use 

adaptive methods in a t-test setting as well. We show one such adaptation, sample size 

change, in a two-stage adaptive t-test setting.

We show the close connection between permutation tests and t-tests in both paired (Section 

2) and unpaired (Section 3) settings. The permutation test is particularly simple in the paired 

setting because it is equivalent to conditioning on the absolute value of paired differences, as 

recognized by O'Brien and Fleming [7], among others. We exploit the asymptotic 

equivalence of permutation and t-tests to show why, under certain conditions, valid 

adaptations in a permutation test setting are also valid in a t-test setting. Section 4 explores 

the usefulness of these results in adaptive clinical trials with continuous outcomes.

2 One-Sample and Paired Settings

2.1 The Permutation Distribution of the Test Statistic

Paired data can arise in different ways in clinical trials, such as crossover designs, pair-

matched community randomized trials, and trials in which the experimental treatment is 

applied to one eye or ear, etc., and a control to the other. The outcome is a difference Di 

between the treatment (T) and control (C) observations on pair i. The permutation test is 

based on the idea that under the null hypothesis, Di is symmetric about 0. Once we condition 

on |Di| = |di|, or equivalently, , Di is equally likely to be ±|di|. That is, the conditional 

distribution of Di given  is the distribution of Zidi, where di is fixed and

(1)

Because the Di were independent before conditioning on , i = 1, . . . , n, the Zi are 

also independent. Even though exactly half of the participants are assigned to the order 

(T,C) and half to (C,T), we need not impose the additional constraint that . The 

symmetry assumption alone ensures that the conditional distribution of  Di given 

 is the distribution of

(2)
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where the di are fixed constants and Zi are iid with distribution (1). We consider all 2n 

possibilities, Zi = +1 or −1, i = 1, . . . , n, and calculate  Zidi for each. We then see 

where the observed value  di lies with respect to this permutation distribution. This is 

consistent with the analysis in Section 4.2 of [3]. For instance, for a 1-tailed test rejecting the 

null hypothesis for a large sum of differences, the p-value is the proportion of sums (2) that 

are at least as large as  di.

When the number of permutations is small, we can enumerate all values in the permutation 

distribution. When the number of pairs is large, we can approximate the p-value by 

simulation, generating a large number of vectors (Z1, . . . , Zn) and computing  Zidi for 

each. The approximate 1-tailed p-value is the proportion of simulated values of  Zidi 

that are at least as large as  di. An alternative method of approximating the p-value 

when n is large is presented in the next subsection.

2.2 Approximating The Permutation Distribution for Large n

We approximate the permutation distribution using a normal distribution with the same 

mean and variance. The mean of Zi is, from (1), 0, so the mean of the permutation 

distribution of , namely the mean of Expression 2, is also 0. The variance of Zi is 

just , so the permutation variance of the sum of differences is . 

Approximating the permutation distribution by a normal with mean 0 and variance 

can be justified rigorously using the Lindeberg-Feller version of the central limit theorem 

because we are dealing with a sum of independent, but not identically distributed, random 

variables with mean 0 and respective variances , i = 1, 2, . . . (see Section 27 of [8]).

Instead of starting with the unstandardized statistic , we could have begun with the 

standardized test statistic,

(3)

where  is the total variance . The only difference between (3) and the usual t-

statistic is the use of the total variance  instead of the usual variance estimate 

. The same reasoning as before shows that the permutation 

distribution of , namely the conditional distribution of  given , is the 

distribution of

(4)
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Here again the di are fixed constants and the Zi are the only source of randomness.

We can summarize these findings as follows.

1.
The permutation distribution of  is the conditional distribution of 

given , which is the distribution of Expression (2).

2. For large n, this conditional distribution depends on  only through 

. Thus, .

3. For large n, the conditional distribution of the standardized statistic , given , is 

approximately N(0, 1).

Item 3 shows that the asymptotic conditional distribution of  given  does not depend on 

. In other words,  must be asymptotically independent of .

2.3 Deducing An Exact Result for Normal Random Variables

The preceding subsection showed that the conditional distribution of  is, for large n, 

approximately normal and independent of . This suggests that for iid normal data with 

mean 0,  might be independent of  for any sample size n. We will show the equivalent 

result that  is independent of  for any n if the Di are iid 

N(0, σ2).

The geometric way to verify that  is independent of  for 

normal data is to note that the distribution of a random sample from N(0, σ2) is radially 

symmetric, meaning that the conditional distribution of D1, . . . , Dn given  is 

uniform on the hypersphere  of radius r (see Figure 1 for the case of n = 2). 

Accordingly, the conditional distribution of

given  is uniform on the unit hypersphere. It follows that the conditional 

distribution of  given  is the sum of 

components of a uniform random vector on the unit hypersphere, and therefore does not 

depend on . This also follows from Theorem 2.4.1 of [9] that 

 has a Dirichlet distribution D(1/2, . . . , 1/2) and is 

independent of .

The geometric method of proof suggests an alternative method of constructing a conditional 

test if we know the data are normal. When the number of observations is very small, e.g., n 
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= 2, the coarseness of the permutation distribution makes it impossible to achieve statistical 

significance. An alternative test based on rotation symmetry conditions on  and 

treats all rotations of the data as equally likely. For example, when n = 2, we can 1) generate 

a uniform deviate θ on [0, 2π), 2) set D1 = r cos(θ) and D2 = r sin(θ), 3) compute  of (3), 

and repeat these three steps many times to get its reference distribution. The same procedure 

can be used for any n, but constructing rotations is somewhat more complicated [10]. For iid 

data data, all rotations are equally likely if and only if the Di are N(0, σ2) for some σ2 (see 

problem 4, page 53 of [11]). Thus, for iid data, the rotation method makes the same 

assumption as the t-test. Therefore, a more direct alternative is to simulate standard normal 

observations a very large number of times and estimate the (1 – α)th quantile of . This is a 

valid conditional test because, as we have seen, the conditional distribution of  given 

 is the same as the unconditional distribution of .

A second way to verify the claim that  is independent of 

actually shows a more general result. It is based on Basu's theorem. Recall that a statistic S 

(which could be a vector) is said to be sufficient for a parameter θ if the conditional 

distribution of the data given S does not depend on θ. S is called complete if E{f(S)} = 0 for 

all θ implies that f(S) = 0 with probability 1, where  is any Borel function. A 

statistic A is called ancillary if its distribution does not depend on θ.

Theorem 1—Basu (1955) [12]. If S is sufficient and complete and A is ancillary, then S 

and A are independent.

In the setting of iid normal data D1, . . . , Dn with known mean 0 and unknown variance σ2, 

 is sufficient and complete, while  is ancillary because it is invariant to 

division of each Di by the same constant. By Basu's theorem,  and  are 

independent under the null hypothesis that E(Di) = 0. They are not independent under the 

alternative hypothesis that E(Di) ≠ 0.

Notice that the more commonly used test statistic

is also ancillary for the same reason, where  is the usual 

sample variance. Basu's theorem implies that the usual t-statistic is also independent of 

 under the null hypothesis that E(Di) = 0 (page 412 of [13]).

Proschan et al. Page 5

Stat Med. Author manuscript; available in PMC 2015 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3 Two-sample Settings

3.1 The Permutation Distribution of the Test Statistic

Consider a two sample setting with n/2 observations from treatment (T) and n/2 from control 

(C). The unstandardized statistic is

(5)

Under the null hypothesis, conditioned on X1 = x1, . . . , Xn = xn, the treatment observations 

are equally likely to be any subset of size n/2 from (x1, . . . , xn). Therefore, the permutation 

distribution of the unstandardized statistic (5), namely its conditional distribution given X1 = 

x1, . . . , Xn = xn, is the distribution of

(6)

where the xi are fixed constants and each Zi has distribution given by (1); however, unlike 

the paired setting, the two-sample setting requires the imposition of the constraint that 

 because the distribution of the difference in sample means changes if the 

numbers assigned to T and C change. Note the similarity between (6) and (2). The only 

difference is that the Zi in (2) are independent, whereas the Zi of (6) are not because they 

sum to 0. This small deviation leads to slightly different variances for (6) and (2). For small 

n, we can enumerate all possible Z vectors of ±1 that sum to 0, and compute (6) for each. 

The one-tailed p-value is the proportion of statistics that are at least as large as the observed 

value. For large n, we can simulate or use the method of the next subsection.

3.2 Approximating The Permutation Distribution for Large n

As in the paired setting, we approximate the permutation distribution with a normal 

distribution with the same mean and variance (a formal proof of the asymptotic normality of 

the permutation distribution is in [14]). The mean of (6) is clearly 0. From expression 7.13 

of [15],

(7)

where  is the total variance, the sample variance of all 

observations. Thus, the conditional distribution of (5) given X1 = x1, . . . , Xn = xn, namely 

the distribution of Expression (6), depends on x1, . . . , xn only through .

Suppose that we had begun with the standardized statistic

(8)
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Because the denominator is constant once we condition on X1 = x1, . . . , Xn = xn, the 

permutation distribution of (8) is the distribution of

which is approximately standard normal. Again we are asserting that the conditional 

distribution of  given  is approximately standard normal. Recapitulating, we have:

1.
The permutation distribution of  is the distribution of 

, namely the conditional distribution of  given X1 = x1, . . . , 

Xn = xn.

2. For large n, this conditional distribution depends on x1, . . . , xn only through the 

total variance . Thus, 

.

3. For large n, the conditional distribution of the standardized statistic  given  is 

approximately N(0, 1).

Because the conditional distribution of  given  is approximately the same for every , 

is asymptotically independent of .

3.3 Deducing An Exact Result for Normal Random Variables

Having seen that  is asymptotically independent of , we naturally inquire whether this 

holds for any n if the data are normally distributed. In the two sample setting, assume the 

null hypothesis that the Xi are iid N(μ, σ2). Then , being complete and sufficient, is 

independent of any ancillary statistic by Basu's theorem. In particular, Basu's theorem 

implies that  is independent of the ancillary statistic  of (8).  is ancillary because 

transforming each observation Xi by  does not change . Furthermore, the 

usual t-statistic

where s2 is the familiar pooled variance, is also ancillary for the same reason. Therefore, T is 

independent of  (page 414 of [13]).

For simplicity, we have assumed equal sample sizes in the two arms. With unequal sample 

sizes, the same arguments prove that  and T are each independent of , where
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(9)

The derivation is similar to the equal sample size case except that

and the permutation variance of  is .

4 Relevance to Adaptive Methods

As mentioned in the Introduction, permutation tests are useful in adaptive settings because 

they already condition on data other than the treatment labels, including the data used to 

modify the trial [1,16]. We exploit the connection between results about permutation and t-

tests to show how to construct an exact, level α test with adaptive sample size modification.

We first review sample size calculations in a non-adaptive, paired t-test setting. We must 

estimate the variance σ2 of Di. The sample size for power 1 – β to detect a difference of size 

δ in a 1-tailed test at level α is

(10)

where, for 0 < a < 1, za is the 100(1 – a)th percentile of the standard normal distribution. 

Pre-trial variance estimates are based on data from other studies that might not be 

completely comparable to the current trial. It is appealing to use the current trial data to 

revise the sample size should the original variance estimate be too small. Revising the 

sample size in a way that preserves the blinding is also desirable to avoid bias [17].

The following is one possible method of blinded sample size re-calculation. Before the trial 

begins, use the best available data to form a sample size estimate n0. After n1 = n0/2 

observations (stage 1), replace σ2 by the total variance  and compute 

a “new” sample size  from (10). The usual t-statistic T1 from stage 1 is 

independent of ν because ν is a function of , and T1 is independent of  from the results 

of Section 2.3. Likewise, the first stage p-value P1 is independent of ν. Therefore, the 

conditional distribution of P1 given ν is uniform [0, 1].

Now accrue n2 = ν – n1 = ν – n0/2 additional observations in stage 2 and compute the usual 

t-statistic T2 and its p-value P2 using only stage 2 observations. Conditioned on ν, P2 is 

uniform [0, 1] under the null hypothesis. Now combine P1 and P2 to preserve the overall 
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type I error rate. Two possible p-value combination functions are Fisher's combination 

method and the inverse normal combination method:

(11)

[18-19]. Whichever function is used, it must be specified before the trial. The conditional 

distribution of f(P1, P2) given ν is chi-squared with 4 degrees of freedom. Therefore, if we 

reject the null hypothesis at the end of the trial if f(P1, P2) exceeds the 100(1 – α)th 

percentile of a  distribution, the conditional type 1 error rate given ν is controlled at level 

α, hence so is the unconditional error rate. The same is true if we had pre-specified g(P1, 

P2): if we reject if g(P1, P2) exceeds the 100(1 – α)th percentile of the standard normal 

distribution, then the type 1 error rate is controlled both conditional on ν and 

unconditionally. Note that for the procedure to be valid, the recalculated sample size must be 

a function of ; otherwise, the type I error rate need not be controlled. Also, one is 

not allowed to change the p-value combination function after looking at data.

Table 1 shows the simulated Type I error rate and power for four different adaptive 

methods: the one treating the recalculated sample size as if it had been fixed in advance, 

Fisher's combination of p-values, the inverse normal method with fixed and equal weights 

for the two stages, and the new inverse normal method with adaptive weights. The first stage 

sample size is n1 = 30. Without loss of generality, we took the true variance to be 1. Notice 

that in these simulations of a million clinical trials with a first stage sample size of 30, the 

type I error rate was controlled at 0.05 even for the method treating the sample size as if it 

had been fixed in advance. However, the Appendix shows that type I error rate inflation is 

possible even when the sample size rule is based on the total variance. Our result is 

consistent with other findings of slight error rate inflation in some superiority and non-

inferiority settings with unblinded or blinded sample size recalculation [20-22]. This is 

contrary to sentiments expressed in guidance documents issued by regulatory agencies such 

as the FDA that any blinded sample size re-calculation has no impact on the type 1 error 

rate. Nonetheless, for the sample size reassessment rule based on the standard sample size 

formulas for the two-sample t-test, no relevant inflation of the type 1 error rate was found 

for a wide variety of scenarios [23], consistent with sentiments expressed in [24]. Table 1 

also shows that the new method (last column) has virtually the same power, but it is 

guaranteed to control the type I error rate.

We can do a similar thing in the two-sample setting, in which case the relevant total sample 

size formula is

(12)

If n0 is the pre-trial sample size estimate, stage 1 consists of the first n1 = n0/2 observations. 

Compute the total variance, , and the new sample size  using (12). At 
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the end of the trial, combine the stages using the pre-specified p-value combination function 

and its null distribution (  or N(0, 1) for f or g, respectively). The type 1 error rate will be 

controlled both conditional on ν and unconditionally.

4.1 More General Asymptotic Results

Our argument in Section 2.2 actually shows that the conditional distribution of  (and T) 

given  is approximately standard normal for large n regardless of 

whether the Di are normal. This follows from the fact that, with probability 1, 

 converges in distribution to a standard normal as n → ∞ if the di 

are realizations from iid random variables from any distribution with finite variance 

(because the Lindeberg condition is satisfied). This argues for the asymptotic validity of 

adaptive t-tests even when the data come from a non-normal distribution (but symmetric 

under the null). In fact, the convergence of  to a standard normal is 

relatively fast for symmetric distributions, which explains why there is no material inflation 

of the type I error rate even if we naively treat the recalculated sample size as if it had been 

prespecified (see Table 1). A similar comment applies in the two-sample setting.

5 Discussion

Permutation tests are very useful in adaptive clinical trials. Because they condition on all 

data other than treatment labels, they are valid under the strong null hypothesis even if we 

peek at data. This article exploited the close connection between permutation and t-tests to 

understand the validity of certain adaptive t-tests. Specifically, in the one-sample setting, we 

can peek at the data from the first stage of our trial in a blinded way, change the sample size, 

and still control the type 1 error rate both conditional on that sample size and 

unconditionally. In the two sample setting, we can peek at the overall mean and variance in 

a blinded way, change the sample size, and still control the type 1 error rate both 

conditionally and unconditionally. An important caveat is that we are testing the strong null 

hypothesis. In particular, for the t-test, we assume that under the null hypothesis, the data are 

normally distributed with equal variances in the two arms.
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Appendix: Potential Alpha Inflation for Sample Size Recalculation with t-

tests and Small Samples

Consider a one-sample setting with a fixed sample size of three paired differences D1, D2, 

D3. The t-statistic is
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(13)

Suppose that R2 = r, where . As r → 0, both D1 and D2 converge to 0, and |

T3| converges to 1. It follows that for c > 1, P(T3 > c | R2 = r) → 0 as r → 0. The same holds 

for P(T3 > c | R2 ≤ r). If c3 is the level α critical value for the 1-tailed t-statistic T3, then

where λr = Pr(R2 ≤ r). Assuming that α is small enough that c3 > 1, Pr(T3 > c3 | R2 ≤ r) < α 

for small r (because |T3| converges to 1 as r → 0). Therefore, to offset this deficit and give 

level α for the t-test with a fixed sample size of 3, we must have

(14)

Now consider a two-stage procedure based on observing  and deciding whether 

to stop at two observations or add a third. We know from the fact that T2 is independent of 

R2 that

(15)

where T2 is the t-statistic based on just D1 and D2, and c2 is its critical value. Putting (14) 

and (15) together, we find that the overall type I error rate

must exceed λrα + (1 – λr)α = α for sufficiently small r. That is, a procedure that chooses a 

sample size of 2 if R2 ≤ r0 and 3 if R2 > r0 is guaranteed to have type I error rate inflation if 

r0 is sufficiently small.

This same argument can be used for general n because if , then |Tn| 

→ 1 as Rn–1 → 0. Any procedure that chooses sample size n – 1 if Rn–1 ≤ r0 and n if Rn–1 > 

r0 is guaranteed to have type I error rate inflation if r0 is sufficiently small.
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Figure 1. 
If (D1, D2) are iid normals with mean 0, the conditional distribution of (D1, D2) given 

 is uniform on the circle of radius r centered at (0, 0). Accordingly, given 

, (1/r)(D1,D2 is uniform on the unit circle centered at (0, 0).
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Table 1

Simulated type I error rate and power for four different adaptive tests described in the text. The first stage 

sample size is n1 = 30, and a million trials were simulated.

True Mean δ fixed Fisher Inv Nor New Inv Nor

0 0.5 0.050 0.050 0.050 0.050

0 1.0 0.050 0.050 0.050 0.050

0 1.5 0.050 0.050 0.050 0.050

0 2.0 0.050 0.050 0.050 0.050

0.3 0.3 0.982 0.974 0.971 0.982

0.3 0.45 0.884 0.863 0.875 0.883

0.3 0.6 0.775 0.748 0.773 0.773

0.5 0.5 0.997 0.995 0.996 0.997

0.5 0.75 0.975 0.967 0.974 0.974

0.5 1 0.946 0.930 0.938 0.944
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