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CONNECTIONS BETWEEN SINGULAR CONTROL AND OPTIMAL
SWITCHING

XIN GUO∗ AND PASCAL TOMECEK†

Abstract. This paper builds a new theoretical connection between singular control of finite
variation and optimal switching problems. This correspondence provides a novel method for solving
high-dimensional singular control problems, and enables us to extend the theory of reversible invest-
ment: sufficient conditions are derived for the existence of optimal controls and for the regularity
of value functions. Consequently, our regularity result links singular controls and Dynkin games
through sequential optimal stopping problems.

Key words. Dynkin’s game, singular stochastic control, switching control
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1. Introduction with a Motivating Control Problem. Let (Ω,F , P ) be a
complete probability space and F = {Ft; 0 ≤ t < ∞} a completed filtration that is
right continuous. Consider the following (motivating) singular control problem from
[33],

V (x, y) = sup
(ξ+,ξ−)∈A

E[
∫ ∞

0

e−rth(Xt, Yt)dt−K+

∫ ∞

0

e−rtdξ+
t −K−

∫ ∞

0

e−rtdξ−t ],

(1.1)
where Yt = y + ξ+

t − ξ−t , (ξ+
t , ξ−t )t≥0 is a pair of F-adapted, non-decreasing càglàd

processes, Xt is a diffusion process with X0 = x, h(Xt, Yt) is a concave function
of Yt satisfying appropriate integrability conditions, and K+,K−, r > 0 are some
constants. Here the supremum is taken over the set A of all singular controls with a
finite variation.

This multi-dimensional control problem and its variants have been studied exten-
sively in both the mathematics and economics literature. For example, taking h as a
concave function with a special additive form h(Xt+Yt) and K−+K+ ≥ 0, this is the
well-known monotone fuel follower problem, for which explicit solutions can be found
in [4, 5, 6, 25] and [24]. In mathematical economics, (1.1) is a typical (ir)reversible
investment problem in which a company, by adjusting its production capacity through
expansion and contraction according to market fluctuations, wishes to maximize its
overall expected net profit over an infinite horizon. Under the special additive form
(again) of h(Xt+Yt) with Xt+Yt = y+µt+σWt+ξ+

t and ξ−t = K− = 0, this problem
has been investigated by numerous authors (See for instance [14, 31, 1, 2, 34, 38, 13, 3];
and [21]). With another special form of h(1−Yt +XtYt), where h is a power function,
K− = K+ = 0, and Yt ∈ [0, 1], the problem was analyzed via a dimension reduction
technique by [37]. For a standard reference on irreversible investment, see [15].

Most recently, [33] treated this problem with a more general and genuinely high-
dimensional form, where Xt is a geometric Brownian motion and h is a function of
both Xt and Yt, subject to some technical conditions. They used the traditional
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2 X. GUO AND P. TOMECEK

approach of the dynamic programming principle: first construct (by ad hoc methods)
a solution to the Bellman equation and then validate the optimality of the solution
by a sufficient verification theorem for smooth functions.

In this paper, we analyze this high-dimensional control problem under a general
setting. Unlike the ad-hoc approach, we establish regularity properties and the smooth
fit principle directly instead of assuming them a priori. We accomplish this by estab-
lishing a generic theoretical connection between singular control and optimal switching
problems: we define a consistency property for collections of switching controls, and
prove that there is an exact correspondence between the set of finite variation càglàd
processes and the set of consistent collections of switching controls. We then apply
this correspondence, in conjunction with direct integration arguments, to obtain an
integral representation for the value function of a very general reversible investment
problem in terms of the values of corresponding optimal switching problems. Finally,
we exploit this representation to study the regularity of the value function and to
obtain sufficient conditions on the existence of optimal controls. As a corollary, we
are able to represent the value of a Dynkin game as the difference between the values
of two related switching problems, thereby linking the general reversible investment
problem, the Dynkin game, and the optimal switching problem.

It is worth pointing out that this approach of connecting singular control problems
and related optimal stopping problems dates back to the seminal paper of [4], and
has since been developed and applied to monotone singular control problems by [25,
26, 27, 28, 29, 17, 18, 19], and [2] 1. Indeed, our integral representation theorem
for the reversible investment problem is in part inspired by the elegant integration
arguments of [2] for irreversible investment. Another closely related body of work
is [11, 8, 9, 10]. However, the connections between the singular control problem,
the entry-exit problem, and Dynkin’s game in their works are established within the
framework of forward backward stochastic differential equations and require a finite
time horizon with the restrictive assumption that the control has only an additive
affect on the diffusion. As such, their results cannot be used to solve the more general
reversible investment problems such as (1.1).

Compared to all previous works and approaches, the correspondence between
singular controls and switching controls in our paper does not depend on the specific
form of the control problem. Thus, our methodology applies to cases for which Xt

can be any diffusion process other than the geometric Brown motion, and to cases for
which the running payoff function h is a general and non-smooth function of both the
diffusion Xt and the control process Yt. In fact, our method is applicable when the
underlying randomness is not necessarily captured by a diffusion. This enables us to
solve very general reversible investment problems. In particular, when h is smooth
enough, the regularity assumptions for the value function in [33] are recovered.

The organization of the paper is as follows. In Section 2, we define consistent
collections of switching controls and describe how to obtain such a collection from a
singular control and vice versa. We prove that these transformations define a bijection
between the set of singular controls and the set of consistent collections of switching
controls and prove a change of variable formula. In Section 3, we apply this corre-
spondence to the problem of reversible investment and show how the value function
of the singular control problem can be represented in terms of the value functions of
optimal switching problems. Using this representation, we prove the differentiability

1Recently, [22] observed that both the Dynkin game and the two regime optimal switching
problem lead to BSDE’s with two reflecting barriers.
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of the value function and show that due to the relationship between optimal switching
problems and Dynkin games, the derivative can be represented in terms of either one.
Lastly, we give a two-dimensional example with an explicit solution.

2. Correspondence between Singular Controls and Switching Controls.
In this section, we establish by explicit construction a bijection between admissible sin-
gular controls and consistent collections of switching controls with two regimes. Our
result is analogous to the well-known correspondence between a non-decreasing, F-
adapted, càglàd singular control (ξt)t≥0 and a collection of stopping times (τ ξ(z))z∈R,
given by

τ ξ(z) = inf{t ≥ 0 : ξt > z}, and ξt = sup{z ∈ R : τ ξ(z) < t}.

2.1. Definitions. Let (Ω,F , P ) be a complete probability space and F = {Ft; 0 ≤
t < ∞} a filtration satisfying the usual hypotheses. Let I ⊂ R be an open (possibly
unbounded) interval, and Ī be its closure.

Let us first recall the notion of admissible singular controls.
Definition 2.1. Given y ∈ Ī, an admissible singular control is a pair (ξ+

t , ξ−t )t≥0

of F-adapted, non-decreasing càglàd processes such that ξ+(0) = ξ−(0) = 0, Yt :=
y + ξ+

t − ξ−t ∈ Ī,∀t ∈ [0,∞), and dξ+, dξ− are supported on disjoint subsets.
We denote here Ay to be the set of admissible strategies corresponding to an

initial capacity level of y.
Since dξ+, dξ− are supported on disjoint subsets, ξ+ and ξ− are the positive

and negative variation of Y , respectively. By the uniqueness of the variation decom-
position, there is a one-to-one correspondence between strategies (ξ+, ξ−) ∈ Ay and
F-adapted càglàd finite variation processes Y with Y0 = y and Yt ∈ Ī for all t.

Throughout the paper, (Yt)t≥0 is a finite variation control process with Y0 = y.

Next, we introduce admissible switching controls (with two regimes).
Definition 2.2. A switching control α = (τn, κn)n≥0 consists of an increasing

sequence of stopping times (τn)n≥0 and a sequence of new regime values (κn)n≥0 that
are assumed immediately after each stopping time.

When there are only two distinct regimes, an optimal switching problem is often
referred to as the starting and stopping problem ([12, 23], etc.) or the entry and exit
problem ([9, 16], etc.). Following convention, we label the two regimes 0 and 1.

Definition 2.3. A switching control α = (τn, κn)n≥0 is admissible if the follow-
ing hold almost surely: τ0 = 0, τn+1 > τn for n ≥ 1, τn → ∞, and for all n ≥ 0,
κn ∈ {0, 1} is Fτn

measurable, with κn = κ0 for even n and κn = 1− κ0 for odd n.
Alternatively, an admissible switching control has a more mathematically conve-

nient representation given by its regime indicator function.
Proposition 2.4. There is a one-to-one correspondence between admissible

switching controls and the regime indicator function It(ω), which is an F-adapted
càglàd process of finite variation, so that It(ω) : Ω× [0,∞) → {0, 1}, with

It :=
∞∑

n=0

κn1{τn<t≤τn+1}, I0 = κ0. (2.1)
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Lemma 2.5. Given an admissible switching control α = (τn, κn)n≥0, define the
increasing càglàd processes I+ and I− by

I+
t :=

∞∑
n>0,κn=1

1{τn<t}, I+
0 = 0 and I−t :=

∞∑
n>0,κn=0

1{τn<t}, I−0 = 0.

Then for all t ≥ 0, I±t < ∞ almost surely, It = κ0 + I+
t − I−t , and I+

t (I−t ) is the
positive (negative) variation of the corresponding regime indicator function.

Finally, we define a class of consistent collections of switching controls. We shall
see later that it is exactly this class of consistent collections of switching controls that
corresponds to singular controls of finite variation.

Definition 2.6. Let y ∈ Ī be given, and for each z ∈ I, let α(z) = (τn(z), κn(z))n≥0

be a switching control. The collection (α(z))z∈I is consistent if

α(z) is admissible for Lebesgue-almost every z ∈ I, (2.2)
I0(z) := κ0(z) = 1{z≤y}, for Lebesgue-almost every z ∈ I, (2.3)

and for all t < ∞,∫
I
(I+

t (z) + I−t (z))dz < ∞, almost surely, and (2.4)

It(z) is decreasing in z for P⊗ dz-almost every (ω, z). (2.5)

Here It(z), I+
t (z) and I−t (z) are defined as in (2.1) and Lemma 2.5.

For It(z) to be decreasing in z for P⊗dz-almost every (ω, z), it means there exists
a set E ⊂ Ω × Ī such that P ⊗ dz(E) = 0 and if (ω, z0), (ω, z1) ∈ (Ω × Ī)\E with
z0 ≤ z1, then It(ω, z0) ≥ It(ω, z1).

2.2. Bijection. First, we describe how a consistent collection of switching con-
trols can be obtained from an admissible singular control. To this end, we quote two
technical lemmas, the first one adapted from [20, Theorem 5.5.1].

Lemma 2.7 (Evans and Gariepy). Let f : [0,∞) → R be a function of finite
(i.e. locally bounded) variation and define E : [0,∞)×R → R by E(s, z) = 1{f(s)>z}.
Then

1. The function E(·, z) is of finite variation for almost all z ∈ R, and
2. ||df ||([0, t)) =

∫∞
−∞ ||dE(·, z)||([0, t))dz for all t ∈ (0,∞).

Lemma 2.8. Let f : [0,∞) → {0, 1} be of finite variation and define g(t) =
lims↑t f(s). Then almost surely, the paths of g are càglàd and for all T < ∞,

||dg||([0, T )) ≤ ||df ||([0, T )) < ∞.

Proposition 2.9 (From Singular Controls to Switching Controls). Given (ξ+, ξ−) ∈
Ay, define a switching control α(z) = (τn(z), κn(z))n≥0 for each z ∈ I through
the regime indicator function It(z) := lims↑t 1{Ys>z}. Then, the resulting collection
(α(z))z∈I of switching controls is consistent.

Proof. First we show that I is a regime indicator function as per Proposition
2.4. Let Yt = y + ξ+

t − ξ−t . Since Y is F adapted, so is I·(z). Furthermore, since Y
is of finite variation, Lemma 2.7 implies that the function s → 1{Ys(ω)>z} is of finite
variation for P⊗dz-almost every (ω, z). Hence It(ω, z) is càglàd and of finite variation
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(ω, z)-a.e. by Lemma 2.8. Thus, for almost all z, there is an admissible switching
control α(z) corresponding to I(z).

Moreover, Lemma 2.7, in conjunction with Lemmas 2.8 and 2.5, implies

||dY·||([0, t)) = ξ+
t + ξ−t =

∫ ∞

−∞
||d1{Y·>z}||([0, t))dz ≥

∫
I
||dI·(z)||([0, t))dz

=
∫
I

I+
t (z) + I−t (z)dz.

Hence
∫
I I+

t (z)+I−t (z)dz < ∞. In addition, It(z) is decreasing in z and I0(z) = 1{y≥z}
for all z (except for z = y), so the collection (α(z))z∈I is consistent.

Next, we construct an admissible singular control (ξ+, ξ−) from a consistent col-
lection of switching controls via their regime indicator functions. Consequently, we
give two useful representations of a finite variation process Y .

Proposition 2.10 (From Switching Controls to Singular Controls). Given y ∈ Ī
and a consistent collection of switching controls (α(z))z∈I , define two processes ξ+ and
ξ− by setting ξ+

0 = 0, ξ−0 = 0, and for t > 0: ξ+
t :=

∫
I I+

t (z)dz, ξ−t :=
∫
I I−t (z)dz.

Then
1. The pair (ξ+, ξ−) ∈ Ay is an admissible singular control,
2. Up to indistinguishability,

Yt = y +
∫ ∞

y

It(z)1{z∈I}dz +
∫ y

−∞
(It(z)− 1)1{z∈I}dz, and

3. For all t, we almost surely have

Yt = ess sup{z ∈ I : It(z) = 1} = ess inf{z ∈ I : It(z) = 0},

where ess sup ∅ := inf I and ess inf ∅ := sup I.
Proof.
1. Obvious from the property of (α(z))z∈I , Definition 2.6, and Lemma 2.5.
2. Applying Lemma 2.5, we have a.e. for every t ≥ 0,

Yt = y + ξ+
t − ξ−t = y +

∫
I
(I+

t (z)− I−t (z))dz

= y +
∫ ∞

y

It(z)1{z∈I}dz +
∫ y

−∞
(It(z)− 1)1{z∈I}dz.

3. Fix t ≥ 0 and observe that It(z) ∈ {0, 1} is decreasing in z, (ω, z)-a.e., we see

Yt = y +
∫ ∞

y

It(z)1{z∈I}dz +
∫ y

−∞
(It(z)− 1)1{z∈I}dz

= y + [ess sup{z ∈ I : It(z) = 1} − y]+ − [ess sup{z ∈ I : It(z) = 1} − y]−

= ess sup{z ∈ I : It(z) = 1}.

Proposition 2.11 (One-to-One Mapping). The mapping from consistent collec-
tions of switching controls to singular controls defined by Proposition 2.10 is one-to-
one.

Finally, we shall show that the two mappings defined in Propositions 2.9 and 2.10
are inverses of each other, thus inducing a bijection.
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Theorem 2.12 (Bijection). The mappings in Propositions 2.9 and 2.10 define a
bijection between admissible singular controls (ξ+, ξ−) ∈ Ay and consistent collections
of switching controls (up to equivalence).

Proof. To show that the constructions in Propositions 2.9 and 2.10 are inverses
of each other, let us start with a singular control (ξ+, ξ−) ∈ Ay. First, applying
Proposition 2.9 to (ξ+, ξ−) ∈ Ay generates a collection (α(z))z∈I of switching controls.
Then, applying Proposition 2.10 to (α(z))z∈I yields another pair of singular control
(ξ̃+, ξ̃−). We shall show that (ξ+, ξ−) = (ξ̃+, ξ̃−).

By Proposition 2.9 we have It(z) = lims↑t 1{Ys>z}. Therefore, by Proposition 2.10,
the Dominated Convergence Theorem, and with Y ∈ Ī almost surely, we have

Ỹt = y +
∫ ∞

y

It(z)1{z∈I}dz +
∫ y

−∞
(It(z)− 1)1{z∈I}dz

= y +
∫ ∞

y

lim
s↑t

1{Ys>z}1{z∈I}dz −
∫ y

−∞
lim
s↑t

1{Ys≤z}1{z∈I}dz

= y + lim
s↑t

∫ ∞

y

1{Ys>z}1{z∈I}dz − lim
s↑t

∫ y

−∞
1{Ys≤z}1{z∈I}dz

= y + [Yt − y]+ − [Yt − y]− = Yt.

Thus, Ỹt and Yt have the same variation decompositions, hence (ξ+, ξ−) = (ξ̃+, ξ̃−)
almost surely.

Since the mapping in Proposition 2.10 is one-to-one by Proposition 2.11, this
proves that the mappings in Propositions 2.10 and 2.9 are inverses of each other,
hence a bijection exists.

Given this correspondence, we shall use the following terminology in the sequel.
Given a singular control (ξ+, ξ−) ∈ Ay, the corresponding collection of switching
controls (α(z))z∈I refers to the one defined in Proposition 2.9; given a consistent
collection of switching controls, the corresponding singular control refers to that in
Proposition 2.10.

2.3. Change of Variable Formula. With the bijection established in Theorem
2.12, we are ready to establish a change of variable formula for integration with respect
to the variation of a singular control.

Lemma 2.13. Let (ξ+, ξ−) ∈ Ay be an admissible singular control and (α(z))z∈I
be the corresponding collection of switching controls. For every càdlàg process g :
Ω× [0,∞] → [0,∞) with g(∞) ≡ 0,∫

[0,∞)

g(t)dξ+
t =

∫
I

∑
n>0

κn=1

g(τn(z))dz, a.s.,

and
∫

[0,∞)

g(t)dξ−t =
∫
I

∑
n>0

κn=0

g(τn(z))dz, a.s.

Proof. We shall only show the result for ξ+ as the proof for ξ− is almost identical.
Suppose g is a càdlàg process with the representation

g(t) =
N∑

i=0

gi1[σi,σi+1)(t),
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where N is finite and constant, 0 = σ0 ≤ σ1 ≤ · · · ≤ σN+1 < ∞, gi ∈ Fσi
, and |gi| <

∞ almost surely. Then, by Proposition 2.10, the monotone convergence theorem, and
Fubini’s theorem,

∫
[0,∞)

g(t)dξ+
t =

∫
[0,∞)

N∑
i=0

gi1[σi,σi+1)(t)dξ+
t =

N∑
i=0

gi

∫
[0,∞)

1[σi,σi+1)(t)dξ+
t

=
N∑

i=0

gi(ξ+
σi+1

− ξ+
σi

)

=
N∑

i=0

gi

∫
I

∑
n>0

κn=1

1{τn(z)<σi+1}dz −
∫
I

∑
n>0

κn=1

1{τn(z)<σi}dz


=

N∑
i=0

gi

∫
I

∑
n>0

κn=1

1{σi≤τn(z)<σi+1}dz


=

∫
I

∞∑
n>0

κn=1

N∑
i=0

gi1{σi≤τn(z)<σi+1}dz

=
∫
I

∑
n>0

κn=1

g(τn(z))dz.

Since piecewise constant left continuous functions can uniformly approximate càglàd
functions, this formula holds for all càglàd processes.

In particular, when Y is non-decreasing (i.e. ξ− ≡ 0), Ī = [0,∞) and y ≥ 0, we
have τn(z) ≡ 0 for all n > 1, and for n = 1 when z ≤ y. In this case, our change of
variable formula reduces to the one for monotone controls in [2], after adjusting for
notational differences, ∫

[0,∞)

g(t)dξ+
t =

∫ ∞

y

g(τ1(z))dz.

3. Application: Reversible Investment . Having established the correspon-
dence between singular controls and consistent collections of switching controls, we
shall illustrate how this theory can be applied to solving singular control problems.

As an example, we return to the aforementioned infinite-horizon, reversible in-
vestment problem (1.1): a company adjusts its reversible production capacity (or
investment) level by proper controls of expansion and contraction in the presence of
a stochastic economic environment. The net profit of such an investment depends
on the running production function of the actual capacity, the economic uncertainty
such as price or demand for the product, the benefits of contraction (e.g. via spinning
off part of the business), and the cost of expanding and reducing the capital. The
company’s objective is to maximize the expected profit over an infinite time horizon
by controlling expansion and contraction.

3.1. The Singular Control Problem for Reversible Investment. More
specifically, the instantaneous operating profit of the company is a function of the
production capacity and random variables representing the uncertain economic envi-
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ronment:

Π(ω, t, z) : Ω× [0,∞)× Ī → R. (3.1)

The unit cost of increasing the capacity at time t is γ+(ω, t) : Ω × [0,∞) → R, and
the unit cost of decreasing capacity is γ−(ω, t) : Ω× [0,∞) → R, where both γ+ and
γ− are adapted to F.2

The control of the production capacity Yt is represented by a pair (ξ+
t , ξ−t )t≥0 of

F-adapted, non-decreasing càglàd processes such that

ξ+(0) = ξ−(0) = 0, (3.2)

Yt = y + ξ+
t − ξ−t ∈ Ī, ∀t ∈ [0,∞). (3.3)

Here, ξ+
t and ξ−t represent the cumulative expansion and reduction of capital until time

t respectively. We say the policy (ξ+, ξ−) is integrable if the integrability condition is
satisfied for the initial capacity level y. That is,

E

[∫ ∞

0

|Π(t, Yt)|dt +
∫

[0,∞)

|γ+(t)|dξ+
t +

∫
[0,∞)

|γ−(t)|dξ−t

]
< ∞. (3.4)

We denote A′y ⊂ Ay as the set of integrable strategies.
Faced with these profit and cost functions, the company must choose an invest-

ment strategy of capacity expansion and reduction which produces the following ex-
pected payoff over an infinite horizon:

J(y, ξ+, ξ−) := E

[∫ ∞

0

Π(t, Yt)dt−
∫

[0,∞)

γ+(t)dξ+
t −

∫
[0,∞)

γ−(t)dξ−t

]
. (3.5)

The objective is to maximize over all integrable policies (ξ+, ξ−) ∈ A′y. Accord-
ingly, the value function is defined as:

V (y) := sup
(ξ+,ξ−)∈A′

y

J(y, ξ+, ξ−). (3.6)

Note that for any y ∈ Ī, A′y is not empty, as the expected profit of not investing at
all (i.e. ξ+ ≡ 0 ≡ ξ−) is finite and is given by

R(y) := J(y, 0, 0) = E
[∫ ∞

0

Π(t, y)dt

]
. (3.7)

Throughout the remaining section, we impose several conditions.
Standing assumptions.
A1. Π is concave in y and continuous at the boundary of I, so that for y1 < y2 ∈ Ī,

Π(t, y2)−Π(t, y1) :=
∫ y2

y1

π(t, z)dz, (3.8)

2When there is no risk of ambiguity, we suppress the dependence of the profit and cost functions
on ω, writing Π(t, z), γ+(t) and γ−(t)
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where π is decreasing in z a.s. and adapted to F. Furthermore,

E
[∫ ∞

0

|Π(t, z)|dt

]
< ∞, ∀z ∈ Ī, (3.9)

E
[∫ ∞

0

|π(t, z)|dt

]
< ∞, ∀z ∈ I. (3.10)

This assumption implies that the value function is well defined and although
it may take values of +∞, it is never −∞ since V (y) ≥ R(y) > −∞ by (3.9).

A2. γ+ and γ− are adapted to F, γ±(∞) := 0 and

γ+(t) + γ−(t) > 0, for all t, a.s. (3.11)

This restriction eliminates the opportunity of making profit by simply switch-
ing regimes and immediately switching back.

A3. • If I is not bounded above, then γ+(t) ≥ 0 for all t almost surely. And,
• if I is not bounded below, γ−(t) ≥ 0 for all t almost surely.

This is to ensure that when the domain is unbounded, an arbitrarily large
profit is not obtainable by arbitrarily large changes in the capacity level.

A very special case for the above problem (3.6) is Π(ω, t, z) = e−ρt(Xx
t (ω))λzβ ,

where the randomness in the economy is captured by the price process X of the
commodity, and X is modelled by a geometric Brownian motion dXx

t = bXx
s dt +√

2σXx
s dWs, with X0 = x > 0. The cost functions are γ+(ω, t) = e−ρtK1, γ−(ω, t) =

e−ρtK0 for some constant ρ > 0,K0,K1. We shall provide a detailed analysis and an
explicit solution to this case in Section 3.4.

3.2. The Corresponding Optimal Switching Problems. The key to using
the connection between singular controls and switching controls to solve problem
(3.6) in Section 3.1 is to write the payoff of this problem in terms of the payoffs of
its corresponding optimal switching problems. This is accomplished by exploiting the
absolute continuity of the running payoff and the change of variable formula for the
cost processes.

3.2.1. Switching Controls from Singular Controls. First, given the running
profit and cost functions from the singular control problem (3.6), we define a collection
of optimal switching problems, indexed by z ∈ I.

Definition 3.1. The switching cost process γ : Ω× [0,∞)× {0, 1} → R is given
by

γ(t, κ) := γ+(t)1{κ=1} + γ−(t)1{κ=0}.

Here γ(t, κ) represents the cost of switching to regime κ at time t.
The following lemma shows that for the integrable singular control (ξ+, ξ−) ∈ A′y,

the switching controls in the corresponding collection satisfy a certain integrability
condition. It is a simple application of Fubini’s theorem, from Lemma 2.13 and
condition (3.4).

Lemma 3.2. If (ξ+, ξ−) ∈ A′y, then for the corresponding consistent collection
of switching controls (α(z))z∈I , we have α(z) ∈ B for Lebesgue almost every z ∈ I,
where B is the set of admissible switching controls (τn, κn)n≥0 satisfying

E

[ ∞∑
n=1

|γ(τn, κn)|

]
< ∞. (3.12)



10 X. GUO AND P. TOMECEK

Note that the converse of the lemma is not true: a consistent collection of switch-
ing controls, each of which is integrable, does not necessarily correspond to an inte-
grable singular control.

Next, we establish

Proposition 3.3. Assume (ξ+, ξ−) ∈ A′y. Let (α(z))z∈I be the corresponding
consistent collection of switching controls with regime indicator functions I(z), then

J(y, ξ+, ξ−)−R(y) =
∫ ∞

y

m+(z, α(z))1{z∈I}dz +
∫ y

−∞
m−(z, α(z))1{z∈I}dz.

Where

m+(z, α) := E

[∫ ∞

0

π(t, z)Itdt−
∞∑

n=1

γ(τn, κn)

]
∈ (−∞,∞), (3.13)

and m−(z, α) := E

[∫ ∞

0

−π(t, z)(1− It)dt−
∞∑

n=1

γ(τn, κn)

]
∈ (−∞,∞). (3.14)

Here m+(z, α),m−(z, α) are two expected payoffs for the switching controls for each
z ∈ I and α ∈ B, with κ0 = k ∈ {0, 1}.

Proof. [of Proposition 3.3]

Since (ξ+, ξ−) ∈ A′y, we have the integrability conditions (3.4) and (3.12). Ap-
plying Lemma 2.13 to the positive and negative parts of γ+ and γ−, we see

∫
[0,∞)

γ+(t)dξ+
t +

∫
[0,∞)

γ−(t)dξ−t =
∫ ∞

−∞

∞∑
n=1

γ(τn(z), κn(z))dz.

Moreover, Proposition 2.9 implies that It(z) = lims↑t 1{Ys>z}, (ω, z)-a.e. and that
I·(z) is of finite variation, (ω, z)-a.e. Thus, It(z) = 1{Yt>z}, (ω, z, t)-a.e.

Therefore, by Fubini’s Theorem and (3.8), we almost surely have

∫ ∞

0

(Π(t, Yt)−Π(t, y))dt =
∫ ∞

0

∫ ∞

y

π(t, z)1{Yt>z}dzdt−
∫ ∞

0

∫ y

−∞
π(t, z)1{Yt≤z}dzdt

=
∫ ∞

y

∫ ∞

0

π(t, z)It(z)dtdz +
∫ y

−∞

∫ ∞

0

−π(t, z)(1− It(z))dtdz.

Resorting again to the integrability conditions (3.4) and (3.12) and Fubini’s theorem
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yields

J(y, ξ+, ξ−)−R(y)

= E

[∫ ∞

0

Π(t, Yt)dt−
∫

[0,∞)

γ+(t)dξ+
t −

∫
[0,∞)

γ−(t)dξ−t

]
− E

[∫ ∞

0

Π(t, y)dt

]

= E

[∫ ∞

y

∫ ∞

0

π(t, z)It(z)dt−
∞∑

n=1

γ(τn(z), κn(z))dz

]

+ E

[∫ y

−∞

∫ ∞

0

−π(t, z)(1− It(z))dt−
∞∑

n=1

γ(τn(z), κn(z))dz

]

=
∫ ∞

y

E

[∫ ∞

0

π(t, z)It(z)dt−
∞∑

n=1

γ(τn(z), κn(z))

]
dz

+
∫ y

−∞
E

[∫ ∞

0

−π(t, z)(1− It(z))dt−
∞∑

n=1

γ(τn(z), κn(z))

]
dz

=
∫ ∞

y

m+

(
z;α(z)

)
dz +

∫ y

−∞
m−

(
z;α(z)

)
dz.

The finiteness of the payoff for z ∈ I follows from the assumed integrability of π in
(3.10) and |It| ≤ 1.

3.2.2. Representation Theorem. Now, for each z ∈ I, the optimal switching
control problem is to maximize the expected payoff over possible switching controls
α ∈ B such that κ0 = k ∈ {0, 1}. This leads to the value functions given by

m∗
+(z, k) := sup

α∈B
κ0=k

m+(z, α), (3.15)

m∗
−(z, k) := sup

α∈B
κ0=k

m−(z, α), (3.16)

where m+(z, α) and m−(z, α) are given by (3.13) and (3.14).
In fact, these two value functions (3.15) and (3.16) are essentially the same as

shown in the following lemma.
Lemma 3.4. The value functions m∗

+(z, k) and m∗
−(z, k) in (3.15) and (3.16)

satisfy, for k ∈ {0, 1},

m∗
+(z, k)−m∗

−(z, k) = E
[∫ ∞

0

π(t, z)dt

]
.

In addition, for fixed k ∈ {0, 1}, each switching control α ∈ B that is optimal for
(3.15) will also be optimal for (3.16) and vice versa.

The proof follows easily by observing that for any control α ∈ B and any fixed
z ∈ I,

m+(z, α)−m−(z, α) = E
[∫ ∞

0

π(t, z)It + π(t, z)(1− It)dt

]
= E

[∫ ∞

0

π(t, z)dt

]
.

Next, we obtain the following lower bounds on the value functions of the switching
problems, by considering the no-switching strategies (τn = ∞ for all n).
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Proposition 3.5. Given m∗
+(z, k) and m∗

−(z, k) in (3.15) and (3.16),

m∗
+(z, 0) ≥ 0, m∗

+(z, 1) ≥ E
[∫ ∞

0

π(t, z)dt

]
,

m∗
−(z, 0) ≥ −E

[∫ ∞

0

π(t, z)dt

]
, m∗

−(z, 1) ≥ 0.

Moreover, we have the following upper bound on the value function of the singular
control problem:

Proposition 3.6. Given V (y) and R(y) from (3.6) and (3.7), and m∗
+(z, k) and

m∗
−(z, k) in (3.15) and (3.16),

V (y)−R(y) ≤
∫ ∞

y

m∗
+(z, 0)1{z∈I}dz +

∫ y

−∞
m∗
−(z, 1)1{z∈I}dz. (3.17)

Proof. [of Proposition 3.6] Given any integrable strategy (ξ+, ξ−) ∈ A′y, let
(α(z))z∈I be the corresponding consistent collection of switching controls. From
Proposition 3.3,

J(y, ξ+, ξ−)−R(y) =
∫ ∞

y

m+(z, α(z))1{z∈I}dz +
∫ y

−∞
m−(z, α(z))1{z∈I}dz

≤
∫ ∞

y

m∗
+(z, 0)1{z∈I}dz +

∫ y

−∞
m∗
−(z, 1)1{z∈I}dz.

since for z > y, m+(z, α(z)) ≤ m∗
+(z, 0) and for z ≤ y, m−(z, α(z)) ≤ m∗

−(z, 1).
Eq. (3.17) follows easily by taking the supremum over all (ξ+, ξ−) ∈ A′y.
However, the other direction of the inequality requires additional conditions to

guarantee the existence of a consistent collection of optimal (or near-optimal) switch-
ing controls and that this consistent collection corresponds to an integrable singular
control. That is,

Theorem 3.7 (Representation). Fix y ∈ Ī, let V (y) and R(y) be given from
(3.6), m∗

+(z, k) and m∗
−(z, k) be given by (3.15) and (3.16), and (ξ̂j+, ξ̂j−) ∈ Ay be

the corresponding singular control as per Proposition 2.10. Assume there is a sequence
of consistent collections of switching controls (αj(z))z∈R so that as j →∞,∫ ∞

y

m+(z, αj(z))1{z∈I}dz +
∫ y

−∞
m−(z, αj(z))1{z∈I}dz

→
∫ ∞

y

m∗
+(z, 0)1{z∈I}dz +

∫ y

−∞
m∗
−(z, 1)1{z∈I}dz.

Assume also (ξ̂j+, ξ̂j−) ∈ A′y for all j. Then,

V (y)−R(y) =
∫ ∞

y

m∗
+(z, 0)1{z∈I}dz +

∫ y

−∞
m∗
−(z, 1)1{z∈I}dz.

Proof. [of Theorem 3.7]
Define

Q(y) :=
∫ ∞

y

m∗
+(z, 0)1{z∈I}dz +

∫ y

−∞
m∗
−(z, 1)1{z∈I}dz.
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First, we treat the case where Q(y) = ∞. Let ε > 0 be given. From the assump-
tion, find j so large that 1

ε <
∫∞

y
m+(z, αj(z))1{z∈I}dz +

∫ y

−∞ m−(z, αj(z))1{z∈I}dz.
By Proposition 3.3 we have

V (y)−R(y) ≥ J(y, ξ̂j+, ξ̂j−)−R(y)

=
∫ ∞

y

m+(z, αj(z))1{z∈I}dz +
∫ y

−∞
m−(z, αj(z))1{z∈I}dz >

1
ε
.

Since ε is arbitrary and R(y) is finite, V (y) = ∞ = Q(y).
Next, suppose Q(y) < ∞ and let ε > 0 be given. Again from the assumption, find

j so large that
∫∞

y
m+(z, αj(z))1{z∈I}dz +

∫ y

−∞ m−(z, αj(z))1{z∈I}dz > Q(y)− ε. By
Proposition 3.3 and Proposition 3.6,

V (y)−R(y) ≥ J(y, ξ̂+, ξ̂−)−R(y)

=
∫ ∞

y

m+(z, αj(z))1{z∈I}dz +
∫ y

−∞
m−(z, αj(z))1{z∈I}dz

> Q(y)− ε ≥ V (y)−R(y)− ε.

Since ε is arbitrary, V (y)−R(y) = Q(y) as desired.
Moreover, with stronger assumptions, one can further establish the existence of

an optimal control strategy, from Propositions 3.3 and 3.6.
Assumption 3.8.
1. [Existence of consistent controls] Fix y ∈ Ī and let m∗

+(z, k) and m∗
−(z, k)

be given by (3.15) and (3.16). For almost all z ∈ I, there exists an optimal
admissible switching control α(z) ∈ B such that

m∗
+(z, 0) = m+(z, α(z)), for z > y,

and, m∗
+(z, 1) = m+(z, α(z)), for z ≤ y.

Furthermore, the collection (α(z))z∈R is consistent.
2. [Integrability of singular control] Let (ξ̂+, ξ̂−) ∈ Ay be the corresponding sin-

gular control as per Proposition 2.10, then (ξ̂+, ξ̂−) ∈ A′y.
Theorem 3.9 (Representation and Existence). Under Assumption 3.8, the Rep-

resentation Theorem 3.7 holds. Moreover, the strategy (ξ̂+, ξ̂−) is optimal.

3.2.3. Remarks on Integrability of Singular Controls. Although estab-
lishing simpler conditions for the consistency of the switching controls requires more
structure for the control problem, the equally technical integrability assumption on
the singular controls can be reduced to easily verifiable ones when I is bounded.
These extra assumptions are in line with some of those in [33].

Theorem 3.10 (Sufficient Condition for Integrability). Let I be bounded, assume
3.8.1 and let (ξ̂+, ξ̂−) be the corresponding singular control as per Proposition 2.10.
Furthermore, suppose

1. sup0≤t≤T supz∈I |Π(ω, t, z)| < ∞, almost surely, for all T > 0,
2. lim supT→∞ E [|γ+(T )|+ |γ−(T )|] < ∞, and
3. For every strategy (ξ+, ξ−) ∈ Ay, either (ξ+, ξ−) ∈ A′y; Or, there exists an

F-adapted process Z such that U· ≤ Z· almost surely, E[|ZT |] < ∞ for all
T ≥ 0, and
lim supT→∞ E[ZT ] = −∞, where

UT (y, ξ+, ξ−) :=
∫ T

0

Π(t, Yt)dt−
∫

[0,T )

γ+(t)dξ+
t −

∫
[0,T )

γ−(t)dξ−t . (3.18)
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Then (ξ̂+, ξ̂−) ∈ A′y. Hence Assumption 3.8 holds, yielding Theorem 3.9.
The proof is somewhat technical and thus given in the Appendix.
Note that when I is unbounded, integrable consistent controls may not exist under

these extra conditions. Nevertheless,
Corollary 3.11. If I is unbounded, the assumptions of Theorem 3.10 yield

Theorem 3.7.
Proof.
Let I be unbounded and (α(z))z∈I be the optimal consistent collection from

Assumption 3.8. 1. For each j ≥ 1, define αj(z) = α(z) for z ∈ I ∩ (−j, j). For
z /∈ I ∩ (−j, j), define αj(z) to be the no action switching control (corresponding to
the regime indicator function Ij

t (z) = 1{z≤y}).
The resulting collection (αj(z))z∈I is clearly consistent, so we let (ξ̂j+, ξ̂j−) be

the corresponding singular controls. Furthermore, by considering the control problem
restricted to Ī ∩ [−j, j], Theorem 3.10 implies that (ξ̂j+, ξ̂j−) ∈ A′y. Lastly, by the
Monotone Convergence Theorem (since m∗

+(z, 0) and m∗
−(z, 1) are non-negative), we

have, as j →∞∫ ∞

y

m+(z, αj(z))1{z∈I}dz +
∫ y

−∞
m−(z, αj(z))1{z∈I}dz

=
∫ ∞

y

m∗
+(z, 0)1{z∈I∩(−j,j)}dz +

∫ y

−∞
m∗
−(z, 1)1{z∈I∩(−j,j)}dz

→
∫ ∞

y

m∗
+(z, 0)1{z∈I}dz +

∫ y

−∞
m∗
−(z, 1)1{z∈I}dz.

3.3. Regularity of the Value Function. In this section, we provide conditions
under which the value function of the switching controls is not only continuous, but
also continuously differentiable. As a result, we prove directly the smooth fit condition
assumed a priori by [33].

Proposition 3.12. Suppose that for some y ∈ I,

lim
z→y

E
[∫ ∞

0

|π(t, z)− π(t, y)|dt

]
= 0. (3.19)

Then for k ∈ {0, 1}, m∗
+(·, k) and m∗

−(·, k) (from (3.15) and (3.16)) are continuous
at y.

Proof. [of Proposition 3.12] Let y ∈ I and k ∈ {0, 1} be given, and consider any
admissible strategy α ∈ B. By (3.12),(3.13) and (3.19),

lim
z→y

|m+(z, α)−m+(y, α)| ≤ lim
z→y

E
[∫ ∞

0

|π(t, z)− π(t, y)|dt

]
= 0.

Note that convergence to zero is uniform across all strategies α ∈ B.
Let ε > 0 be given. There exists δ > 0 so that for any strategy α ∈ B, |m+(z, α)−

m+(y, α)| < ε
2 for all z ∈ I such that |z − y| < δ.

Now, there exists a strategy α̂ ∈ B with κ0 = k such that

m∗
+(y, k) ≤ m+(y, α̂) +

ε

2
.
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So for all z ∈ I such that |z − y| < δ,

m∗
+(y, k) ≤ m+(y, α̂) +

ε

2
≤ m+(z, α̂) + ε ≤ m∗

+(z, k) + ε.

Furthermore, for any such z, there exists a switching control αz ∈ B with κ0 = 0 such
that

m∗
+(z, k) ≤ m+(z, αz) +

ε

2
≤ m+(y, αz) + ε ≤ m∗

+(y, k) + ε.

Hence for all z ∈ I such that |z − y| < δ,

m∗
+(y, k)− ε ≤ m∗

+(z, k) ≤ m∗
+(y, k) + ε.

Thus, limz→y m∗
+(z, k) = m∗

+(y, k). Moreover, limz→y m∗
−(z, k) = m∗

−(y, k) follows
from Lemma 3.4.

Theorem 3.13 (Regularity). Assume conditions in Proposition 3.12 on an open
interval J ⊂ I. Suppose that on J , the value function has the representation

V (y)−R(y) =
∫ ∞

y

m∗
+(z, 0)1{z∈I}dz +

∫ y

−∞
m∗
−(z, 1)1{z∈I}dz.

Then V is C1 on J . And for any y ∈ J ,

V ′(y) = E
[∫ ∞

0

π(t, y)dt

]
+ m∗

−(y, 1)−m∗
+(y, 0) = m∗

+(y, 1)−m∗
+(y, 0).

Proof. [of Theorem 3.13] By Proposition 3.12, it remains to show that R′(y) =
E

[∫∞
0

π(t, y)dt
]
. Fixing z0 ∈ I, this follows easily from (3.8) and (3.9), and

R(y)−R(z0) = E
[∫ ∞

0

(Π(t, y)−Π(t, z0))dt

]
= E

[∫ ∞

0

∫ y

z0

π(t, z)dzdt

]
=

∫ y

z0

E
[∫ ∞

0

π(t, z)dzdt

]
.

Note that previous results of [30] and [8, 9, 10] on the differentiability of the value
function for the (ir)reversible investment problem are special cases of ours. Another
major difference is that the derivative in their work is in terms of the value of a Dynkin
game, whereas the derivative here is the difference between the value functions of an
optimal switching problem.

In the remainder of this section, we shall show, under very mild assumptions, the
value of a Dynkin game exists and is equal to the difference of the value functions for
the optimal switching problem defined by (3.13) and (3.14); thereby we demonstrate
that optimal switching problems provide a “missing link” between Dynkin games and
singular control problems.

For simplicity, we consider an infinite-horizon Dynkin game with no terminal
payoff. With a slight modification, our arguments can be adapted for the finite horizon
case.
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3.3.1. Dynkin Games. A Dynkin game is a game of timing between two play-
ers, whom we call MAX and MIN, following [10]. We fix some level z ∈ I. While the
game is in progress, MIN pays MAX at rate π(t, z) and the game ends when one player
chooses to stop. Thus, MAX and MIN each chooses strategies on when to exit the
game (the stopping times σ− and σ+ respectively). The player to exit first receives
an amount from her opponent equal to γ−(σ−) if MAX exits first, and γ+(σ+) if MIN
exits first. If both players exit at the same time, we treat it as though MIN exited
first. Furthermore, each player may choose never to exit, i.e. σ = ∞. MAX chooses
her strategy σ− to maximize her payoff, and MIN chooses σ+ in order to minimize
MAX’s payoff.

This game is formally described below. To ensure that the payoff of the game is
well defined, we assume in this section that for every stopping time σ, E[|γ−(σ)|] < ∞
and E[|γ+(σ)|] < ∞.

Definition 3.14. Given z ∈ I and F-stopping times σ− and σ+, the payoff of
the Dynkin game is

D(σ−, σ+; z) =
∫ σ−∧σ+

0

π(t, z)dt + γ+(σ+)1{σ+≤σ−} − γ−(σ−)1{σ−<σ+}.

The game has a value if

sup
σ−

inf
σ+

E [D(σ−, σ+; z)] = inf
σ+

sup
σ−

E [D(σ−, σ+; z)] .

It is easy to see that supσ− infσ+ E [D(σ−, σ+; z)] ≤ infσ+ supσ− E [D(σ−, σ+; z)].
Moreover, we have,

Theorem 3.15. Given any z ∈ I such that conditions (3.10) and (3.11) hold,
the value of the Dynkin game exists, and is equal to

m∗
+(z, 1)−m∗

+(z, 0) = sup
σ+

inf
σ−

E [D(σ−, σ+; z)] = inf
σ−

sup
σ+

E [D(σ−, σ+; z)] .

Proof. [of Theorem 3.15] It suffices to show m∗
+(z, 1)−m∗

+(z, 0) ≤ supσ− infσ+ E [D(σ−, σ+; z)],
since it follows similarly for m∗

+(z, 1)−m∗
+(z, 0) ≥ infσ+ supσ− E [D(σ−, σ+; z)].

Note that m∗
+(z, 1)−m∗

+(z, 0) ≤ supσ− infσ+ E [D(σ−, σ+; z)] if and only if for all
ε > 0, there exists σ̂− such that for all σ+, E [D(σ̂−, σ+; z)]+ ε ≥ m∗

+(z, 1)−m∗
+(z, 0).

Let ε > 0 be given and let α1 ∈ B be a switching control with κ0 = 1 such that

m+(z, α1) + ε ≥ m∗
+(z, 1).

and define σ̂− = τ1 = inf{t : I1
t = 0}.

Let σ+ be an arbitrary stopping time, and define α0 by taking I0
t = 0 for t ≤

σ̂−∧σ+ and I0
t = I1

t for t > σ̂−∧σ+. Thus I0 is a regime indicator function and hence
α0 is an admissible switching control. In fact, since α1 ∈ B, we also have α0 ∈ B.
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Thus, for any σ+,

m∗
+(z, 1)−m∗

+(z, 0) ≤ m∗
+(z, 1)−m+(z, α0) ≤ m+(z, α1)−m+(z, α0) + ε

= E
[∫ ∞

0

π(t, z)(I1
t − I0

t )dt + γ+(σ+)1{σ+<σ̂−} − γ−(σ̂−)1{σ̂−≤σ+}

]
+ ε

= E

[∫ σ̂−∧σ+

0

π(t, z)dt + γ+(σ+)1{σ+<σ̂−} − γ−(σ̂−)1{σ̂−≤σ+}

]
+ ε

= E

[∫ σ̂−∧σ+

0

π(t, z)dt + γ+(σ+)1{σ+<σ̂−} − γ−(σ̂−)1{σ̂−<σ+} − γ−(σ+)1{σ̂−=σ+}

]
+ ε

≤ E

[∫ σ̂−∧σ+

0

π(t, z)dt + γ+(σ+)1{σ+≤σ̂−} − γ−(σ̂−)1{σ̂−<σ+}

]
+ ε

= E [D(σ̂−, σ+; z)] + ε.

where the last inequality follows from (3.11). Thus, m∗
+(z, 1)−m∗

+(z, 0) ≤ supσ− infσ+ E [D(σ−, σ+; z)].

Furthermore, we see
Corollary 3.16. If (3.10) and (3.11) hold and π(t, z) is decreasing in z, then

m∗
+(z, 1)−m∗

+(z, 0) is decreasing in z. That is, when the marginal payoff is decreasing
in the capacity level z, the added benefit of being invested in the project at level z is
also decreasing in z. The economic interpretation is that there are decreasing returns
to scale.

3.4. Examples with Explicit Solutions. We now illustrate how our method-
ology can be used to solve a reversible investment problem with a Cobb-Douglas
production function. This is a special case of the problem solved in [33]. Note that
our method can handle the general problem in [33] among others, we nevertheless
have selected this simple case to illustrate our techniques: Unlike [33], we solve with-
out assuming a priori the continuous differentiability of the value function, or any
assumptions on the structure of the switching regions.

Singular control problem..

V (x, y) := sup
(ξ+,ξ−)∈A′

y

E

[∫ ∞

0

Π(t, Yt)dt−
∫

[0,∞)

γ+(t)dξ+
t −

∫
[0,∞)

γ−(t)dξ−t

]
,

(3.20)

subject to

ξ+(0) = ξ−(0) := 0,

Yt := y + ξ+
t − ξ−t ∈ Ī, ∀t ∈ [0,∞),

Π(ω, t, y) := e−ρt(Xx
t (ω))λyβ ,

dXx
t := bXx

t dt +
√

2σXx
t dWt, X0 := x > 0,

and γ+(t) := e−ρtK1, γ−(t) := e−ρtK0.

For simplicity, we assume Ī = [A,B] ⊂ [0,∞) is a bounded interval, ρ > 0, λ ∈ (0, n),

β ∈ (0, 1], and K0 < 0, K1 > 0 with K0 + K1 > 0. Here n = −(b−σ2)+
√

(b−σ2)2+4σ2ρ

2σ2 .
This formulation is from [33].

This problem is solved in several steps.
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Step 1: Corresponding optimal switching problem.. First, one can check that
Standing assumptions A1, A2, and A3, and assumptions in Theorem 3.10 hold for
this problem, with

π(ω, t, y) = βe−ρt(Xx
t (ω))λy−(1−β).

And R(x, y) is differentiable in y, so that

R(x, y) = E
[∫ ∞

0

Π(t, y)dt

]
=

−xλyβ

σ2λ2 + (b− σ2)λ− ρ
,

and

r(x, y) = Ry(x, y) = E
[∫ ∞

0

π(t, y)dt

]
=

−βxλy−(1−β)

σ2λ2 + (b− σ2)λ− ρ
.

By Lemma 3.4, it suffices to solve for the optimal switching problem defined by

vk(x, z) := m∗
+(x, z, k) = sup

α∈B
κ0=k

E

[∫ ∞

0

e−ρtβz−(1−β)(Xx
t )λItdt−

∞∑
n=1

e−ρτnKκn

]
.

(3.21)

Step 2: Consistent collection of optimal switching controls.. Applying the reg-
ularity results of [32] for switching controls to Problem (3.21), we see that for any
given z ∈ (A,B) and k ∈ {0, 1}, the value function vk(·, z) is continuously differ-
entiable. Moreover, for each z ∈ (A,B), an optimal switching control exists, and
can be described in terms of the switching regions: for each z ∈ (A,B), there exist
0 < F (z) < G(z) < ∞ such that it is optimal to switch from regime 0 to regime 1 (to
invest in the project at level z) when Xx

t ∈ [G(z),∞), and to switch from regime 1 to
regime 0 (disinvest at level z) when Xx

t ∈ [0, F (z)].
Therefore, given any initial value y ∈ [A,B] for the singular control problem, a

collection of optimal switching controls can be defined as follows.
For (x, z) ∈ X×(A,B), define the switching control α̂(x, z) = (τ̂n, κ̂n)n≥0, starting

from τ̂0 = 0 and κ0 = 1{z≤y} by setting κ̂n := 1− κn−1 for all n ≥ 1 and
• if κn−1 = 0, τ̂n := inf{t > τn−1 : Xx

t ≥ G(z)}, or
• if κn−1 = 1, τ̂n := inf{t > τn−1 : Xx

t ≤ F (z)}.
Moreover, by the regularity of the value functions, we solve for F (z) and G(z) explic-
itly in our case, obtaining F (z) = κz

1−β
λ and G(z) = νz

1−β
λ where κ and ν are unique

solutions to

β

λ−m

[
νλ−m − κλ−m

]
= − ρ

m

[
K1ν

−m + K0κ
−m

]
,

β

n− λ

[
νλ−n − κλ−n

]
=

ρ

n

[
K1ν

−n + K0κ
−n

]
.

Here m < 0 < n, and n, m = −(b−σ2)±
√

(b−σ2)2+4σ2r

2σ2 .

Finally, by checking the appropriate integrability conditions, and by noting that
F and G are increasing in z, it is not hard to verify that the above collection of
optimal switching controls is consistent. (See Figure 3.1).
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x
a

b

z

F(z) G(z)

Regime

1

0

(2) For general z, consistent switching controls

(1) For fixed z0, switching control

z0

F(z0) G(z0)

F(z0) G(z0)

Switch upSwitch down

z1

z0

x

Fig. 3.1. Illustration of optimal consistent switching control from optimal singular control

Step 3: Optimal singular control and value functions.. By Proposition 2.10, this
consistent collection of optimal switching control corresponds to an admissible sin-
gular control (ξ̂+, ξ̂−) ∈ Ay. Moreover, since I is bounded, it is integrable following
Theorem 3.10.

Put together, the investment region is given by {(x, z) : x ≥ G(z)} and the
disinvestment region by {(x, z) : x ≤ F (z)}. Yt is constant when (Xt, Yt) is in the
wait region, given by {(x, z) : F (z) < x < G(z)}. If (x, y) is in the investment (or
disinvestment) region, then a jump is exerted at time zero to make Y0+ = G−1(x) (or
Y0+ = F−1(x)).

Finally, by Lemma 3.4 and Theorem 3.9 the value function has the following
representation

V (x, y) = R(x, y) +
∫ B

y

v0(x, z)dz +
∫ y

A

(v1(x, z)− r(x, z))dz

= R(x, A) +
∫ B

y

v0(x, z)dz +
∫ y

A

v1(x, z)dz,
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where v0 and v1 are given by [32, Theorem 4.2.3],

v0(x, z) =
{

A(z)xn, x < G(z),
B(z)xm + r(x, z)−K1, x ≥ G(z),

v1(x, z) =
{

A(z)xn −K0, x ≤ F (z),
B(z)xm + r(x, z), x > F (z).

Where A(z) = ν−n

n−m

(
βνλ

σ2(n−λ) + mK1

)
z
−n(1−β)

λ , B(z) = − κ−m

n−m

(
βκλ

σ2(λ−m) + nK0

)
z
−m(1−β)

λ .

The above results are consistent with Eqs. (117-120) and Remark 4 in [33].

4. Conclusions. This paper builds a generic connection between singular con-
trols of finite variation and sequential optimal stopping problems. This correspon-
dence is independent of any particular formulation of control problems, and provides
a novel method for solving explicitly high-dimensional singular control problems where
randomness may not be necessarily captured by a diffusion and where payoff functions
can be non-smooth. It also enables us to derive sufficient conditions for the existence
of optimal controls, for the smooth fit principle, and for the regularity of value func-
tions. Consequently, this regularity result links singular controls and Dynkin games
through sequential optimal stopping problems.

Acknowledgments. The authors thank the Associate Editor and the two anony-
mous referees for their constructive and detailed suggestions and remarks, which lead
to a substantial improvement of the paper.

REFERENCES

[1] Andrew B. Abel and Janice C. Eberly, An exact solution for the investment and value of a
firm facing uncertainty, adjustment costs, and irreversibility, J. Econom. Dynam. Control,
21 (1997), pp. 831–852.

[2] Frid̄ik Már Baldursson and Ioannis Karatzas, Irreversible investment and industry equi-
librium, Finance and Stoch., 1 (1997), pp. 69–89.

[3] Peter Bank, Optimal control under a dynamic fuel constraint, SIAM J. Control Optim., 44
(2005), pp. 1529–1541 (electronic).

[4] John Bather and Herman Chernoff, Sequential decisions in the control of a spaceship,
in Proc. Fifth Berkeley Sympos. Mathematical Statistics and Probability (Berkeley, Calif.,
1965/66), Vol. III: Physical Sciences, Univ. California Press, Berkeley, Calif., 1967, pp. 181–
207.

[5] , Sequential decisions in the control of a spaceship (finite fuel), J. Appl. Probability, 4
(1967), pp. 584–604.
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Appendix A. Proof of Theorem 3.10.

The proof is built on the following Proposition.
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Proposition A.1. Under Assumption 3.8.1, for almost all z ∈ I, and any
T > 0,

E [uT (z, α(z))] ≥
{

−E [γ+(T )IT+(z)] , when z > y,

−E [γ−(T )(1− IT+(z))] , when z ≤ y,

where α(z) ∈ B is given by Assumption 3.8.1 and

uT (z, α(z)) =

{ ∫ T

0
π(t, z)It(z)dt−

∑∞
n=1 γ(τn(z), κn(z))1{τn(z)<T}, z > y,∫ T

0
−π(t, z)(1− It(z))dt−

∑∞
n=1 γ(τn(z), κn(z))1{τn(z)<T}, z ≤ y.

Proof. By Assumption 3.8.1, α(z) is an optimal admissible switching control for
almost all z ∈ I. Fix such a z ∈ I. Consider the admissible switching control α̃T (z)
defined by the regime indicator function

Ĩt(z) = I0(z)1{t≤T} + It(z)1{t>T}.

Assume for now z > y. In the new switching control we have defined, we may
have to switch at time T from regime κ0 = 0 to regime IT+(z), if IT+(z) = 1. Hence,
the cost of the possible switch at T is given by −γ+(T )IT+(z). After time T , the
switching costs are the same for both strategies.

Since the switching control α(z) ∈ B is optimal, m+(z, α(z))−m+(z, α̃T (z)) ≥ 0.
This means that

0 ≤ m+(z, α(z))−m+(z, α̃(z)) = E

[∫ ∞

0

π(t, z)It(z)dt−
∞∑

n=1

γ(τn(z), κn(z))

]

− E

[∫ ∞

0

π(t, z)Ĩt(z)dt−
∞∑

n=1

γ(τ̃n(z), κ̃n(z))

]

= E

[∫ ∞

0

π(t, z)It(z)dt−
∞∑

n=1

γ(τn(z), κn(z))

]

− E

[∫ ∞

T

π(t, z)It(z)dt− γ+(T )IT+(z)−
∞∑

n=1

γ(τn(z), κn(z))1{T<τn(z)}

]

= E [γ+(T )IT+(z)] + E

[∫ T

0

π(t, z)It(z)dt−
∞∑

n=1

γ(τn(z), κn(z))1{τn(z)<T}

]
.

Thus, by Assumption 3.8, E[uT (z)] ≥ −E [γ+(T )IT+(z)] for almost all z > y.
Similarly, for almost all z ≤ y,

0 ≤ E [γ−(T )(1− IT+(z))] + E

[∫ T

0

−π(t, z)(1− It(z))dt−
∞∑

n=1

γ(τn(z), κn(z))1{τn(z)<T}

]
.

Hence the claim.

Proof. [of Theorem 3.10] Suppose I is bounded and let (α(z))z∈I be the collection
of optimal, consistent switching controls given by Assumption 3.8.1, and (ξ̂+, ξ̂−) ∈ Ay

be the corresponding singular control. The idea of the proof is to show that for any
F-adapted process Z with UT ≤ ZT and E[|ZT |] < ∞ almost surely for each T > 0, we
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have lim supT→∞ E[ZT ] > −∞. It then follows from the assumptions of the theorem
that (ξ̂+, ξ̂−) ∈ A′y.

By the assumptions of the theorem, for any fixed T < ∞, |UT (y, ξ̂+, ξ̂−)| <
∞ almost surely. Furthermore, by applying the same arguments as in the proof of
Proposition 3.3 we get

UT (y, ξ̂+, ξ̂−)−
∫ T

0

Π(t, y)dt =
∫
I

uT (z)dz,

where uT is defined in Proposition A.1
Let Z be any F-adapted process with UT ≤ ZT and E[|ZT |] < ∞ almost surely

for each T > 0. Thus,

ZT ≥ UT (y, ξ̂+, ξ̂−) =
∫
I

uT (z, α(z))dz.

Since I is bounded and |uT | has finite expectation,
∫
I E[|uT (z, α(z))|]dz < ∞. Hence

by Fubini’s theorem and Proposition A.1,

E[ZT ] ≥ E

[∫
I

uT (z, α(z))dz +
∫ T

0

Π(t, y)dt

]

≥
∫
I

E[uT (z, α(z))]dz − E
[∫ ∞

0

|Π(t, y)|dt

]
≥ −

∫ ∞

y

E [γ+(T )IT+(z)] 1{z∈I}dz −
∫ y

−∞
E [γ−(T )(1− IT+(z))] 1{z∈I}dz

− E
[∫ ∞

0

|Π(t, y)|dt

]
= E

[
−γ+(T )[YT+ − y]+ − γ−(T )[YT+ − y]−

]
− E

[∫ ∞

0

|Π(t, y)|dt

]
≥ −CE [|γ+(T )|+ |γ−(T )|]− E

[∫ ∞

0

|Π(t, y)|dt

]
,

where C = sup I − inf I < ∞.
Thus, by (3.9) and the assumptions of the theorem, lim supT→∞ E[ZT ] > −∞.
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