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The convective diffusion equation with drift  and indefinite weight ���� �����

� �
�� �� ��

�� �	 
 � ���� � ���� � �
�� �� � �

is introduced as a model for population dispersal.  Strong connections between

Equation (1) and the forced Burgers equation with positive frequency ,�� � ��

�� � � ��
�� �� ��	 � � ���� ����� ���

�

�

are established through the Hopf-Cole transformation.  Equation (2) is a prime

prototype of the large class of quasilinear parabolic equations given by

�� � �
�� �� ��

�������	 � � ���� � ����� ���
�

�

A compact attractor and an inertial manifold for the forced Burgers equation are

shown to exist via the Kwak transformation.  Consequently, existence of an

inertial manifold for the convective diffusion equation is guaranteed.  Equation (2)

can be interpreted as the velocity field precursed by Equation (1).  Therefore, the

dynamics exhibited by the population density in Equation (1) show their effects on

the velocity expressed in Equation (2).  Numerical results illustrating some aspects

of the previous connections are obtained by using a pseudospectral method.

   Convective Diffusion Equation, Indefinite Weights, BurgersKey words:

Equation, Hopf-Cole Transformation, Kwak Transformation.

   35F25, 35K05, 34K45, 35K57.AMS subject classifications:

1.  Introduction

The indefinite logistic type with drift vector ,����

�
��

�� 	 � � �
� � ���� � � ���� � ���� � ��� �� �!�� � � � � in 
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with initial density  and boundary values  on  ,� � � ���� �� 	 ��� � � ��� �� 	 � � � ��� ��

describes a population with density  inhabiting a bounded environment  in , where� � �"

" 	 
� � � � 
 	 �
 �, or , with deadly boundary .  The matrix  measures the diffusion rate of� #$

the population while the function  measures the self-limiting effects such as crowding.����
The coefficient  represents a local growth rate and may be considered a food source.  The����
region  may be endowed with favorable subregions , unfavorable ones� ����� % ��
����� & �� ����� 	 ��, and neutral subregions .  If  contains both favorable and unfavorable�

subhabitats, we say that  is indefinite.�
 Many quantitative and qualitative aspects of the analysis of (4) depend heavily on the size

of the first positive eigenvalue for the Dirichlet indefinite linear elliptic problem

� � �
� � ���� � � ���� 	 � � ��� �� �'�� � � � � in 

When  is a constant,  and , Equation (4) has a unique positive steady
 ���� ( � � ) * � � �

state solution  provided that the principal eigenvalue  of Equation (5) satisfies � � �+ + 




&

(Cantrell and Cosner [12-14]).  Furthermore, if , the steady state solution of Equation�+ 




&

(5) is globally asymptotically stable.  A population whose dynamics are modeled by Equation

(4), with , will persist and will go extinct if .  The estimation of  for linear� � �+ + +
 


 


& %

indefinite weight problems is then necessary to comprehend more complicated dynamics (see

[5]).

 The paper is organized as follows:  In Section 2, we show the existence of the principal

eigenvalue for the convective diffusion equation.  A connection via the Hopf-Cole trans-

formation between the Burgers equation and the convective diffusion equation is presented in

Section 3.  Section 4 describes the original Burgers equation, the forced Burgers equation, and

shows that the latter admits an absorbing all and hence has a compact attractor.  In that

section, a nonlinear transformation mapping the forced original Burgers equation into a

reaction diffusion system that admits an inertial manifold is also given.  In Section 5, some

numerical results based on a pseudospectral method are obtained for the forced Burgers

equation, the reaction diffusion system, and the convective diffusion equation.  The

computational results illustrate and reinforce many of the connections obtained analytically

among the three separate systems.

2.  Existence of the Principal Eigenvalue

The Langevin equation

,� 	 ,-��� � �,�� �.��

is the stochastic equation governing the motion of each individual in a population undergoing

a diffusion  and a drift .  Belgacem [7] showed that using the Ito chain rule on
 	 ���

�

Equation (6) yields the convection diffusion equation

�
��
� 	 � � �
� � ���� �� �/�� �

The dynamics of a population inhabiting a region  in , subjected to indefinite reactions,� �"

moving about under the influence of diffusion and drift, were studied in [5 8, 18-20].  The

effects of the drift on the survival of the population described can be established by

considerations of the weighted, steady state eigenvalue problem

*� � 	 �� � �
� � ���� � 	 ���� � �0�� � � � �
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 Belgacem and Cosner [8] considered situations when the drift is along the negative gradient

of the reaction growth potential , :� � � ���

� 	 � ��� �1��

For Equation (8), existence of a positive principal eigenvalue , having a� � �+ +	 �
� �� �� �
unique positive density , can be deduced from the works of Belgacem [5], Castro-Lazer�+

[15] or those of Hess [26-28].

 Theorem 2.1:  Let  be positive definite in , with , , ,
 
 ��� � ��� ) 2 � � ���� ) 2 � �
� �

� � �#$ #
� 


and  for some .  Then for Dirichlet boundary conditions, Equation  admits��� � % � � ) �0�� � �

a positive principal eigenvalue , having a unique positive density eigenfunction .� �+ +

Furthermore,  is connected to  via a generalized Raleigh-Ritz quotient.� �+ +

 Proof:   For  in , Equation (8) is self-adjoint, and hence the conclusion is���� ( � �

reached by using the Manes-Micheletti [32] results.  For , multiplying Equation (8) by � 3 � �

and integrating yields:

� � � � �� �
� �

� ,� 	 � � �� � 
 � ,�� �
���
�

Integrating the right-hand side of equation (10) by parts yields:

� � � � � � �� � �
� � �

� ,� 	 � � ������ � 
 � �,� � �� �
�� � ,�� 4
�

�

�

� ����� ,��� � �
�

��

�

Now, using the boundary condition, and integrating by parts again, we finally get:

� � � � �� � �
� � �

� ,� 	 �� �
�� � ,� � ,�� �
��� 4 �������
�

It is obvious that the positivity of , and therefore of , is guaranteed if�
�
� ,�� �� +

� � ���� � � � �
�� in �

or if for some ,� � �

� � ���� � ���� 5� ) � �
!�� �,  

Other coercivity conditions guaranteeing the positivity of  are provided in [5-7].  Provided�+

� ) 2 � � �� � , joining Equation (9) and (14), we obtain the following  condition on the weight :

�� �� � � 6 �� �
'�

Equation (15) with equality is readily satisfied, if for instance  is proportional to cos� �� �� �
�

or sin  in the one-dimensional case.  Furthermore, when , taking� �� �
�
� " 	 


7 	 � ,�� 8 	 � �9 	 �� � : 	 
� � �
.�� �



7 �7 �7�  and 

makes Equation (8) self-adjoint.  Indeed, since
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� 8 	 
� � 7 � 	 
 � ���� � �
/��7
� � � �� � � �

Equation (8) becomes:

� :8 	 � �
 � ���� � 	 � 	 �� 8 	 98 � �
0�� �
�� ��� �

�7	 
 � � � � � �

Note that , and  on .  The positivity of  at some point in ,9�� � % � 8 ��� ( � � 9���� � �

insures the positivity and simplicity of a principal eigenvalue  having a positive�+

eigenfunction , as in [32].  The eigenfunction  for problem (8) is then obtained via the8 + +�

transformation:

�+ + �7	 8 � � �
1�

with  being given by:�+

�+
:�8 � ,�

9�8 � ,�
	 � ����

�
��
�

+ �
�

+ �

 Now, set .  Then from Equation (20), we see that the principal� � ��
+	 �
� �� 
� �

eigenfunction  of Equation (8) satisfies�+

� � ��
+ � + �

�
� �
� �

� � ,� 6 � � ,�� ��
�

There is no loss of generality in assuming that  and that ; ���� ; 6 
 
 	� �
� �

�� � ,� 6 � � ,��� �+ � + �

  Corollary 2.1: Let  be a positive constant, and  with , then
 � 	 � � �� � �

� �+
� �

6 
 � � �����

 Using Equation (12) together with Equation (21), we getProof:  

� � � �+ + �
� �� �� 
 � � ,� � � 
 � � �����

�

� �

From a control viewpoint, such as in animal refuge design, taking  is expected to� 	 � �� �

be detrimental to the population survival, since it raises the energy  required for that� ��+

survival.  Therefore, one may think that in general,

� � � �+ +�
� �� �� � � �
� �� �� �� ��!�

At first look, it appears that, should we choose a drift in the positive direction of the gradient

of , we expect the chances of the population to be improved. However, Belgacem [5] showed�
that the direction of the inequality in Equation (24) depends on the nature of the weight  and�
its interplay with the absorbative Dirichlet boundary condition.  In fact, the sign and value of
�
�

+ <
�

�
�

+

��� 	 � � ��  highly depend on the proximity of the food source  to the deadly boundary.

However, in the Neumann boundary condition it remains a conjecture of Cosner see -� �' 0��
that inequality  is always true, provided  with .��!� � 	 � � �� ��

   signConjecture 2.1: � � 	 � 
��+ <�
 At this point, we show:

 Corollary 2.2:   If  and  with ,  then� 	 � � 	 � � �� � � �� �

� � � � �+ + � + <
� �� � 	 
� � ,� � � � � ��'��

�
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 Proof:  Belgacem [5] has already shown that in this case .  Using this� � 	 � ,�� �+ < �
� ���

�

result along with Equation (12), we obtain Equation (25).

 Now suppose that  is initially infinite and that the coefficients , and  in Equation (8)� 
� � �
are periodic with period .  We may then limit our problem to , with* 	 ��� *��� *
�

+ ��� � ,� 	 
 ��� 	 �*�� � � and periodic boundary conditions .

 Corollary 2.3:  The eigenvalue of Equation  with periodic coefficients and periodic�0�
boundary conditions with period  is given by*

� � � � � �+ + � + � + + +
*

�
� � �

�
�

	 
� � � � � ,� � 
 ���� ��� � �*��� ��.�� � �    
�

 Proof:  Equation (26) is a simple recomputation of Equation (11).  The surface term on the

RHS of Equation (26) disappears, and we recover Equation (12) should we use the Dirichlet

condition .� �+ +��� 	 �*� 	 �

3.  The Hopf-Cole Transformation

The Hopf-Cole transformation [29] has been used extensively in the area of nonlinear para-

bolic and hyperbolic partial differential equations [1, 24, 25, 33, 38] and in the study of

viscous conservation laws [16, 30, 40].  In this work, the Hopf-Cole transformation is used on

the one-dimensional time dependent family of equations:

� � � � � �� �
�
��	 �
 � � � � ���� � ��� �� ��/� in 

where .  Letting , exp , we get� �) ��� � � 	 � �
 � ��� �� 	 � � ,����
�
� � ������

�


� 	 � � 	 � �
 ��0��
� �

� � � �� �
� �
� �

and

� 	 � �
 � 	 � �
 � � ��1��

�
�
��


�
 �� � � �� �� � �
� � �
�� � ��

Therefore,


� 	 � �
 
 � 
 � ������
�
�


�

�
� �� ��

�
��

and

  
� � �
 	 � �
 
��
� �

�


�

� �
� � � �� � �

�
��

 	 � �
 � � �� �� � � ��
� �

�� �

� �

�� �
��

 	 � � �
 � � � � �
 � � ��
�� � �
�
��
 �

� � �
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Rearranging terms, we get:

� 	 
� � �� � ���� � �
�� � �� � ����� �� � � � ��

 Equation (32) is Burgers equation with a cross velocity-drift gradient and a forcing term.

The forcing term is generated from the drift and the weight .  Note that if we choose � � 	 �� �

(compare with Corollary 2.1), then the forcing term disappears from Equation (32) and we

would have

� 	 
� � �� � ���� � ����� �� � �

In this case, Equation (33) is simply the Hopf-Cole transform to the linear diffusion equation

� � �� �� �	 
 � ���� � ��!�

 Setting , then , and Equation (33) can be transformed to���� �� 	 ���� �� � ���� � 	 �� �

� 	 �
� � �� � � �
� � �� � 	 7=��� � 7=��� 	 7=��� � ����� ��'�� �� � �� �

where  is denoted by the Burger Functional:�7=�

7=��� 	 
� � �� � ��.��� �

The Hopf-Cole transformation allows for the clear separation of events related to , and those�
related to , so the cross term  in Equation (33) is avoided in Equation (35).  Equation� �7���
(35) also indicates that the velocity field is augmented linearly in the presence of an external

drift , when Equation (34) is satisfied.  So,  the acceleration in the absence of a drift is�
parallel to that with a drift  having .  This is in particular true if  is���� 7=��� 	 � ����
constant.

4.  The Burgers Equation

The viscous Burgers equation

�� � � ��
�� �� ��	 � �� � ��/�	

�

�

introduced by Burgers [9, 10] as a simple model for a turbulent flow through a channel, has

received a lot of attention in recent years [1, 11, 21, 29, 34]. Originally, Burgers introduced

two different types of models for studying the behavior of hydrodynamic equations.  The first

model consisted of a system of nonlinear ODEs,

,>
,�

�	 ? � > � � ��0�	

,�
,�
	 >� � �� ��1�	

where  and  are velocities connected with the primary and secondary motions, respectively.> �
The quantities  and  are positive constants representing the external force and the kinematic? 	

viscosity, respectively.  A simple linear stability analysis shows that if , then the	� � ?
system above has only one stable steady solution .  However, if , then the system� � �� & ?? �

	
	

has three steady state solutions:  ( , , and .  The first? � �
	
� �� � � ? � � � � � ? � �	 	 	 	� �
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steady state solution is unstable, the second and third solutions are asymptotically stable if

	 	� �0 0
1 1

& ? ) � ? � ? � and stable if .

 Burgers realized that Equations (38) and (39) fail to incorporate the spatial nature of

turbulence.  Therefore, he proposed an improved mathematical model for turbulence given by

* 	 ? � � � ,� �!��,> > 

,� * *

*

�

�	 �    

�� � � �� >
�� �� �� *
	 � �� � �� �!
�	

�

�

Here  ,  and  are the same variables as in (38) and (39), except that  is now>� � ? � 	 ���� ��	

a function of space and time.  When  differs from zero, it is said that there is turbulence in the�
system.  The space variable  is the coordinate in the direction of the cross dimension of the�
channel and extends from 0 to .*
 If turbulence is not activated by energy transmission from a primary motion (i.e., ,> 	 ��
Equation (41) simplifies to the viscous Burgers equation (37).  However, when there is a

constant transmission of energy from the primary motion to the secondary motion (i.e.,

> 3 ��, Burgers equations simplify to the original Burgers equation (41).  The steady state

solutions of Equation (41) also satisfy Equation (40) provided an appropriate value of  is?
given.

 The forced original Burgers equation,

�� � � �� 

�� �� �� *
	 � �� � >� � ����� �!��	

�

�

with periodic boundary conditions  and zero mean , can be easily���� �� 	 ��*� �� �,� 	 �� *
�

transformed to

�� � � ��
�� �� ��	 � � ���� ����� �!��

�

�

Equation (43) is of the type of Equation (35) if  and  (see Smaoui [34]).� 	 � 
 	 

Furthermore, the relation  clarifies the source and type of the forcing term in���� 	 � 7=���
the Burgers equation.  That is, an external drift  in the diffusion equation induces an external�
forcing acceleration term  in the Burgers equation� .  For instance, in  if��� � �

���� 	 � 	 � 
 	 
 ���� 	 � � ���



�

sin  and , then sin sin  (compare with Belgacem [5], page

106).

 In the absence of the drift , we observe that the transform of the diffusion equation�

- 	 
- � �!!�� ��

is identical to that of the diffusion equation with constant growth frequency ,�

� � �� ��	 
 � � � �!'�

Indeed, taking , yields .  Substituting  in Equation- 	 � � 	 � �
 	 � �
 � ( �� ��� -
-
� ��

�

(32), we obtain the classical Burgers equation

� 	 
� � �� 	 7=���� �!.�� �� �

The growth term , with constant frequency  in the diffusion equation (45) has no effect on� ��

the velocity profile  in the Burgers equation.  However, if  is dependent on , then its���� �� � �
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influence becomes apparent through its derivative (or gradient) in the forcing term of the

velocity field.

 Recall that for  and  (see for instance, Belgacem [6]), the���� 	 � -��� �� 	 @ ����

solution  in Equation (44) is given by:-��� ��

-��� �� 	 � � �!/�@ �
� 
� !
��


  exp� ��
Hence, for 0,� %

���� �� 	 �!0�@ !
�� ��
� 
� !
��


  exp� �� �

and

���� �� 	 � �
 	 � �!1�� ���� �
!
� �

This is the solution to the Burgers equation (46) with .  Recall that���� �� 	 � �
 ���A ���� �<

���� �� has the dimensions of a velocity.  Intuitively, this means that if  is the-��� ��
population density, then  describes the population instantaneous velocity field���� �� .  So, if

in the long run the population goes extinct, its motion must cease, and its velocity field must

vanish as indicated by Equation (49).

 The steady state Burgers equation, , yields yet another facet in this rich7=��� 	 �
connection.  A possible solution with  would be���� 	 ��

���� 	 � � � �'���
�
�
 !tan� �


Since the Hopf-Cole setup in this case dictates

���� 	 � ,� � �'
�exp� �� ����
�


we have

���� 	 B � � �'��� �� �cos �
�
 !

�
 �

where  is an integration constant.  Choosing , and substituting at  yields:B ��� 	 
 � 	 ��

� 	 � � �'���
�C"�B�
C"���

4.1  Existence of the Attractor

In this section, we show that in the Hilbert space , the forced original BurgersD 	 D ��� *��

equation admits an absorbing ball.

 Theorem 4.1:  Let  denote the Poincare constant, thenE
  Every solution to the original Burgers equation
�

� 	 � � �� ��� �'!�� �� �

  satisfies the inequality

F � F 6 F � F � � � � � � �''�� �
��� ����� �


E �  for 
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  Every solution to the forced original Burgers equation��

� 	 � � �� ���� ���� �'.�� �� �

  satisfies the inequality

F � F 6 F � F � � � � �'/�� �E

���E �

�
, for 

  with , provided .� 	 G" � &�
E 



���E E F�F �E
�
���E�F� F� ��

�

� �

   If we multiply Equation (56) by  and integrate, we getProof: �

, 
 

,� � �

� � � � �

� � � �

� � �
�� �  � �� � � � �                      
 
 
 
 


� ,� 	 �� ,� � �� � ,� �� � ,� � �� ,�� �'0�

Using the periodicity of , Equation (58) becomes�

, 

,� �

� � � �

� � � �

� � �
� � �� � � �                 
 
 
 


� ,� 	 � � ,� �� � ,� � �� ,�� �'1�

Then, using the Poincare inequality on Equation (59) and the zero mean condition of , we get�

, 
 
 

,� � E

� � �

� � �

� �
E

  � �� � � �             
 
 


� ,� 6 ��� � � ,� � � E� ,�� �.���

If , we use the Gronwall inequality on Equation (60) to obtain the first part of���� 	 �
Theorem 4.1,

F � F 6 F � F � � � � � �.
�� �
��� ����� �


E � ,  for 

 However, in case , we apply the Cauchy-Schwartz inequality on Equation (60) to���� 3 �
obtain


 , 
 �
� ,� E

� �
E

  � F � F � � � ��� F � F 6 F F � F E� F � �.��� �
Using the inequality , Equation (62) becomes
� & �
 �

� �

� �

, 

,� E

� � �� F � F � � � � ��� F � F 6 E F � F � �.��

Again, using the Gronwall inequality on Equation (63), we obtain

F � F 6 � F � F � �
 � � � F � F � �.!�� �� ����� � �� ����� �
�

E

���E


 

E E

�

Finally, given , if we choose  with , and  thenF � F � � � � 	 G" � &� � �
E 



���E E F�F �E
�
���E�F� F� ��

�

� �

F � F 6 F � F � �.'�� �E

���E

�
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It follows from Equation (65) that the original Burgers equation admits an absorbing ball in

the Hilbert space .  Using the machinery developed in [39], one can prove the exist-D ��� *��

ence of a compact attractor, Hence, we will not repeat the analysis, but quote the result.

 Proposition 4.1:  There exists a compact set in , called an attractor, to which anyD�

solution to the forced original Burgers Equation, starting from any initial value of D�

converges.

4.2  Existence of an Inertial Manifold

The notion of inertial manifold was introduced by Foias, Sell and Temam [22] as a way to

obtain a system of ODEs that has the same dynamics as the PDEs.  Various attempts have

been made to exhibit inertial manifolds for a large class of PDEs [2-4, 17, 35, 37].  Smaoui

and Armbruster [36] have found a system of ODEs that mimics the dynamics of Kolmogorov

flow for a given Reynolds number.  Kwak [31] introduced a nonlinear transformation that

embeds any quasilinear parabolic equation given by

� 	 � � ����� � ���� � ����� �..�� �� �

on the interval , into a reaction-diffusion system that admits an inertial manifold.  The��� *�
transformation is defined by

H ��� 	 ��� � � ������ �./��

The Kwak triple , where  and  are representing the velocity, frequency,��� �� -� 	 H ��� �� � -
and kinetic energy, respectively, must satisfy the system of equations

 � 	 � � - � ���� � ������ �� �

 � 	 � � - � � ���� � � ���� �.0�� �� ��
< <

 - 	 - � � ���� � � ��� � � � ���I���� � ����J�� ��
<< � < � <

with the periodic boundary condition given by  and initial valuesH ����� ��� 	 H ���*� ���
given by . In (68), the prime denotes the derivative with respect to the correspondingH �� �����

argument.

 We apply the transformation defined in (67) to the forced original Burgers equation

� 	 � � �� ���� ����� �.1�� �� �

By setting ,  and , we obtain� 	 � � 	 � - 	 � ��


�
�

 � 	 � � - ���� ������ �� �

 � 	 � � - ��� � � ���� �/��� �� ��
<

 - 	 - � � � � � ��� � ������� ��
� � �

with periodic boundary conditions , , and  .��*� �� 	 ���� �� ��*� �� 	 ���� �� -�*� �� 	 -��� ��
The initial conditions are , , and  .���� �� 	 � ��� ���� �� 	 � ��� -��� �� 	 - ���� � �

 Lemma 4.1:   If  and  is a solution of , then
� ���� �� 	 � ��� �� ���� �� �..��

���� �� 	 � ��� �� 5� � ��  .

   For any steady state solutions of , .�� �/�� � 	 ��
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 Proof:    Let .  Then  with .  The uniqueness property of
� 	 � � � 	 ��� �� 	 �� � � �� � ��

solutions to the diffusion equation with periodic boundary conditions and zero mean implies

that ; hence � ( � ���� �� 	 � ��� ����

   Let .  Then  satisfies .  Since  is periodic in space with zero�� ��� 	 � � � 	 �� � � �� ��

mean, .� ( �
 Proposition 4.2:  The steady state solution of the forced original Burgers equation  is�.1�
also the steady state solution to the transformed reaction diffusion system .  Conversely,�/��
any steady solution  of system  is necessarily of the form , ,��� �� -� �/�� � 	 � - 	 � ��



�
�

where  is a steady state solution of Equation .� �.1�
 Proof:  At the steady state, .  Subtracting the last two equations in (70), we get� 	 - 	 �� �

� � � � � � ���� � � � � � ��� � ����� 	 �� �/
���
� � � <

Since , Equation (71) becomes� 	 ��

� � � � � � ���� � � � � � ��� � ����� 	 �� �/����� � �
� � � <

�

which implies

�� � �� ���� ����� � ��� � �� ���� ������� �/���� � � �� �

However,

� � �� ���� ���� 	 �� �/!��� �

since  is a steady state solution of the forced Burgers equation.�
 To prove the converse, first observe that the steady state solution of (70) satisfies

� � - ���� ���� 	 ���� �

� � - ��� � � ��� 	 �� �/'��� ��
<

- � � � � � ��� � ����� 	 ����
� � �

From the first part of the proof, this implies that

�� � �� ���� ����� � ��� � �� ���� ����� 	 �� �/.��� � � �� �

Let

� 	 � � �� ���� ����� �//��� �

Then, we have

� �� � � 	 �� �/0�

If


 	 ��K�,K �/1�exp � ��    �
�

then
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� � 	 �� �0���
 �

which implies that ,� 
	 E A


  � �          � �

� �
�� �


 


����,� 	 �� � �� ���� �����,�

�0
�

 	 �� � � ,� � ��� � �����,��� �         � �

� �
� �

�
�


 

�

Using the periodicity of  and the fact that , we get� ����,� 	 �� �
�




�     �
�




��K�,K 	 �� �0��

which implies .  Since , we have  and� �
�
E









 ,� 	 � % � E 	 	 �
 �

� � �� ���� ���� 	 �� �0���� �

5.  Numerical Results

If we set

���� �� 	 � ��G� ��� �0!�L� 
� 

#G�

and restrict the calculations to -periodic solutions, then the forced original Burgers equation�

(43) in Fourier space can be written as

� �G� �� 	 �� � G ���G� �� � #G ��M� ����N� �� � ��G�� �0'�L L L L L�
�

M�N	G

�
where  is the Fourier transform of  and .  A computer program that uses a��G� �� ���� �� � � �L
spectral Galerkin method with  was written to solve Equation (85).  The “slaved-@ 	 �'.
frog" scheme was used [23].

 Figure 1 presents the steady state solution of the forced Burgers equation for different

values of  with  and sin sin  (recall that in this case,� ���� 	 � ���� 	 � � ����

�

� 	 � 7=��� � 	 � � 	 �, where , and sin , respectively).  Steady state solutions converge

with at least four digits of accuracy in almost 10  time steps.  From Figure 1a), one can!

observe that if  and , then the trivial solution is the only stable solution.  The� 	 � ���� 	 �
steady state solution given in Equation (50) is numerically unstable for that particular case.  In

case when  and  is shown in Figure 1b).  Although the steady state solution in� 	 � ���� 3 �
this case is nontrivial, it is numerically stable.
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Figure 1: Steady state solutions for different values of  and different�
forcing terms with ( ,0) sin : a) ( ) 0; b) sin sin2 .� � 	 � � � 	 � � �


�

 Figure 2 shows the triplet steady state solutions  of the Kwak reaction diffusion��� �� -�
system.  In this case, the steady state solution of the original Burgers equation with  and� 	 �
���� 	 � � ��sin sin  was used as an initial condition for the transformed reaction diffusion


�

system.  After only few time steps, four digits of accuracy was observed in the system.  This

result reinforces the fact that steady state solutions for the forced original Burgers equation

and the transformed reaction diffusion system are the same.
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Figure 2: Steady state triplet ( , , ) of the Kwak system with initial conditions� � -
equal to the steady state original Burgers equation obtained from the case

� 	 � � 	 � � �2 and ( ) sin sin2 .

�

 Figure 3a depicts the time evolution of  when  and sin sin .  Using� � 	 � ���� 	 � � ��

�

the transformation given in Equation (51), one can easily obtain the time evolution of the

population density  without numerically solving Equation (34) (see Figure 3b)).�
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Figure 3: a) The time evolution of  for the case when 0 and� � 	
� � 	 � � � � � 	 � ��( ) sin sin2  and initial condition ( ,0) exp( 10(0.4 1) ).


�
�

Time step is 5 10 . The output is every 100 time steps. Successive outputs� �!

are shifted by 0.025. b) The time evolution of the population density � �� 	
obtained from Hopf-Cole transformation of equation (51).

6.  Concluding Remarks

In this paper, we have shown that the convection diffusion equation with an indefinite weight

can be transformed into the forced Burgers equation via the Hopf-Cole transformation.  The

latter can in turn be transformed into a system of reaction diffusion equations through the

Kwak transformation.  This ingenuous transformation allowed us to show the existence of

inertial manifold for the forced Burgers equation.  Transitively, this implies the existence of

inertial manifold for the convection diffusion equation.  Biologically, this is sound since a

population whose density is described by the indefinite convective diffusion equation has a

velocity field described by the corresponding forced Burgers equation. For instance, a

population who is destined to go extinct must have a velocity that converges to zero, while a

persistent population with density  will have a velocity distribution given by the Hopf-Cole�

transform .  Numerical results illustrate and support many of the aspects of the� 	 � �
�
�
�

connections mentioned above.  In particular, they confirm that the drift in the convection

diffusion equation triggers the forcing in the Burgers equation.
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