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Periodic-boundary spectrum, open-boundary spectrum, as well as the generalized Brillouin zone(GBZ) are
three essential properties of a one-dimensional non-Hermitian system. In this paper we illustrate that the deep
connections between them can be revealed by a series of special similar transformations. This viewpoint closely
connects the topological geometry of the open-boundary spectrum with the GBZ and provides a new efficient
numerical method of calculating them accurately. We further extend these connections to non-Hermitian systems
in the symplectic symmetry class. We show that if just the open-boundary features of a non-Hermitian system
such as the spectrum and the GBZ, are concerned, the relevant symmetry we should consider is not that of the
original system itself, but that of one which has higher symmetry and is related to the original system by a
similarity transformation.

Introduction. —Recent studies on non-Hermitian sys-
tems have revealed dramatic differences from their Hermi-
tian counterparts[1–15]. Non-Hermiticity can arise from op-
tical systems with gain and loss[16–25], open systems with
dissipation[26–33], and noninteracting or interacting electron
systems with finite-lifetime quasi-particles[34–39]. The cen-
tral feature of non-Hermitian systems is the sensitivity of the
bulk states to boundary conditions, i.e., the non-Hermitian
skin effect[40–52], which results in the breakdown of the
conventional bulk-boundary correspondence[53–64]. The ef-
forts of resolving this problem then leads to the establish-
ment of the concept of the GBZ[40] and the non-Bloch band
theory[11, 40, 65–67]. The topological invariants can be re-
defined on the GBZ instead of BZ to give an explanation
of the anomalous bulk-boundary correspondence[40, 68, 69].
Non-Hermitian topological systems can also exhibit unique
features without Hermitian analogs[70–76], which can be at-
tributed to the complex-valued nature of their spectra. The
spectrum of a non-Hermitian system under open-boundary
conditions(OBCs) differs greatly from that under periodic-
boundary conditions(PBCs)[44, 60]. The latter can also define
a set of winding numbers to characterize the spectrum of the
system under the half-infinite boundary conditions[44]. The
two spectra, together with the winding numbers, are closely
related, and are playing important roles in a non-Hermitian
system.

In this paper, we reveal that there are intrinsic connections
between the OBC spectrum, the PBC spectrum and the GBZ.
We find the bridge which connects them are a series of special
similarity transformations. We can thus give an interpreta-
tion of the close relation between the geometry of the OBC
spectrum such as 3-bifurcation or 4-bifurcation states with the
structure of the GBZ. Based on our conclusions, we can also
provide a new efficient numerical approach of calculating ac-
curately the OBC spectrum and the GBZ of non-Hermitian
systems. Next, we generalize the conclusions on the connec-
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tions from non-Hermitian systems without symmetry to those
with anomalous time-reversal symmetry. We also find that
if just the OBC features of a non-Hermitian system such as
the OBC spectrum and GBZ, are concerned, the original sys-
tem together with a series of ones which are related to it by
the special similarity transformations, are actually forming an
equivalent class which should be treated as a whole, even
though these systems may have different symmetries. The
open-boundary feature is determined by the symmetry of the
system which owns the highest symmetry in the class.

Correspondence between winding number and the OBC
spectrum. —We start with a generic quasi-1D tight-binding
model whose Hamiltonian reads

H =
∑

j

M1∑

m=−M2

N∑

µ,ν=1

Tµνm c†j+m,µcj,ν , (1)

where µ, ν represent the degrees of freedom including sublat-
tice, spin, orbitals, etc. Tµνm are the hopping amplitudes, and
M1(M2) is the range of the hopping to the right(left). Thus,
in terms of complex-valued β, we have the following non-
Hermitian Bloch Hamiltonian,

H(β) =

M1∑

m=−M2

Tmβ
−m, (2)

where Tm is the N ×N hopping matrix with (Tm)µν = Tµνm .
The energy bandsEα(β)(α = 1, 2, . . . , N) ofH(β) are de-

termined by the characteristic equation det(E − H(β)) = 0.
This is an algebraic equation for β of (p + q)th order, with
p = NM1 and q = NM2, as the determinant is a polynomial
of E and β, which can be expressed by det(E − H(β)) =∏N
α=1(E − Eα(β)) = a−p 1

βp + . . . + aqβ
q . For a fixed

eigenenergy E, the p + q solutions βi(E) are assumed to be
numbered as |β1(E)| ≤ |β2(E)| ≤ . . . ≤ |βp+q(E)|. For a
non-Hermitian system without any symmetry, a state belong-
ing to the OBC continuum bands must have to obey the condi-
tion |βp(E)| = |βp+1(E)|[11, 65], and the trajectories of βp
and βp+1 give the GBZ.

To illustrate the connections between the OBC spectrum
and the GBZ in non-Hermitian systems, we study a series of
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systems described by Hamiltonians Hρ, which are related to
the matrix Hamiltonian of H by a special similarity transfor-
mation,

Hρ ≡ S−1HS, (3)

where S = diag
{
1, ρ, ρ2, . . . , ρL

}⊗
I is a block-diagonal

matrix, with I the N × N identity matrix and L the system
size.

According to Eq.(2), it is clear that Hρ(β) = H(ρβ), as
the hopping matrix Tm becomes Tmρ−m under the similarity
transformation. For open systems, since det(S−1HS−E) =
det(H − E) = 0, Hρ and H share identical OBC spectrum.
The unit circle |β| = 1 on the complex β-plane is the BZ of
H(β). The map of this circle onto the complex E-plane by
Eα(β) are N curves Eα(|β| = 1)(α = 1, 2, . . . , N), which
form the PBC spectrum of H(β) and is denoted for simplic-
ity as E(|β| = 1). Because the BZ of the system described
by Hρ(β) exactly corresponds to |β| = ρ of the original sys-
tem described by H(β), the PBC spectrum of Hρ(β) can be
faithfully given by E(|β| = ρ). For a definite E, if we de-
note the solutions of det(H(β) − E) = 0 as βi(E), then the
solutions of det(H(ρβ) − E) = 0 must be βi(E)/ρ, where
i =1, 2,· · ·, p + q. Thus for any positive-valued ρ, Hρ(β)
shares with H(β) the same condition |βp(E)| = |βp+1(E)|
for the OBC continuum bands, resulting in thatHρ(β) has ex-
actly the same shape of GBZ to that of H(β), but with a scale
factor ρ−1.

Due to the multi-valued nature of Eα(β), each curve of
E(|β| = ρ) is not necessarily closed but all the curves
must always form some closed loops with their number be-
ing Nρ ≤ N . The Nρ closed loops divide the whole E-plane
into several areas. Each area can be characterized by a wind-
ing number which is the sum of the phase winding of each
loop around any point within this area. For any such point E,
this winding number can be formally defined by

wρ(E) =
1

2πi

∮

|β|=1

dβ
d

dβ
det(Hρ(β)− E)

=
1

2πi

∮

|β|=ρ
dβ

d

dβ
ln(det(H(β)− E))

=

p+q∑

i=1

1

2πi

∮

|β|=ρ
dβln(β − βi(E))− p

=Nρ(E)− p, (4)

whereNρ(E) is the number of βi(E) inside the circle |β| = ρ.
We consider the crossing points of these closed loops,

which can be self-intersection ones between the same loop
or intersection ones between different loops. One of our cen-
tral results is a theorem: For a non-Hermitian system without
any symmetry, for a definite ρ, if there exists a crossing point
Ec which is on the boundary between two areas with winding
number wρ = +1 and wρ = −1 respectively, then Ec belongs
to the OBC spectrum. Conversely, for any “normal” point Es
on the OBC spectrum, there must be one and only one ρ so
that the PBC spectrum E(|β| = ρ) has a crossing point ex-
actly at Es, with their two adjacent areas possessing winding
numbers ±1.
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FIG. 1: Connections between the PBC spectrum and OBC spectrum
via winding numbers. The solid(dotted) lines denote the spectra un-
der PBCs(OBCs). (a)-(b) are for a single-band model with differ-
ent ρ, where the nonzero parameters are T−2 = −1, T−1 = i,
T1 = −0.5i, T2 = 0.5, while (c)-(d) are for a two-band model,
where the nonzero parameters are T−1 = I + 2σ3, T0 = −I + iσ2,
T1 = 2I+σ3, with σi(i = 1, 2, 3) Pauli matrices. The colored areas
are possessing winding number wρ(E) = ±1.

In Fig.1 we illustrate the essential points of the above result
by using both a single-band and two-band model as examples.
In the single-band model, even one closed loop give multiple
self-crossing points which are located on the OBC spectrum,
while in the two-band model, for a definite ρ, the PBC spec-
trum E(|β| = ρ) give simultaneously the self-crossing points
and intersection points between the two loops, which also be-
long to the corresponding OBC spectrum.

Now we give the proof. Let Ec be a crossing point of a
PBC spectrum E(|β| = ρ). This crossing point means that
there must be two different βc and β

′
c on the circle |β| = ρ(

see Fig.2(a)), satisfying Eα(βc) = Eγ(β
′
c) = Ec for two dif-

ferent bands α and γ, or Eα(βc) = Eα(β
′
c) = Ec for the

same band α. Adjacent to Ec, there are four areas with wind-
ing numbers (w + 1)/w/(w − 1)/w respectively, as shown
in Fig 2.(b). We have to prove that if w = 0, Ec is on the
OBC spectrum. Consider a small curve starting from point
A to point B, which is passing through Ec. The area where
A/B sits possesses winding number (w + 1)/(w − 1). Due
to Eq.( 4), the number of βi(EA/B) inside the circle |β| = ρ
should be (p+w+1)/(p+w−1). IfA andB are sufficiently
close to Ec, among the p+ q image curves of the map βi(E)
of the trajectory EA → Ec → EB onto the β-plane, only two
small curves would intersect the circle |β| = ρ at β = βc and
β = β

′
c. Moreover, these two curves must be pointing out-

wards, as shown in Fig 2.(a), in order to reduce the winding
number by two. Therefore, the number of βi(Ec) inside the
circle should be p+ w − 1. If w = 0, then βc and β

′
c must be

the pth and (p + 1)th β solutions of Ec and then their equal
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FIG. 2: Illustration of the theorem: (a) |β| = ρ and (b) a crossing
point Ec of the corresponding PBC spectrum E(|β| = ρ), where
the four areas adjacent to Ec have been marked by their winding
numbers. The spectrum on the E-plane is the image of the circle on
the β-plane, under the mapping E(β). The two solid dots βc, β

′
c

on the circle in (a) are the preimages of Ec in (b), and accordingly,
the two small arcs passing through the two points corresponds to the
trajectory of from A to B in (b).

absolute value means that Ec is on the OBC spectrum.
Conversely, consider a pointEs on the OBC spectrum. This

Es generally corresponds to two different βp(Es), βp+1(Es)
on the GBZ. Since |βp(Es)| = |βp+1(Es)| = ρs, the PBC
spectrum E(|β| = ρs) would inevitable form a crossing point
atEs. Obviously, the number of βi(Es) inside the circle |β| =
ρs is p−1, and for the four areas adjacent toEs, similar to the
situation as shown in Fig.2(b), their winding numbers must be
(+1)/0/(−1)/0. Thus we complete the proof.

Therefore, any crossing point of a PBC spectrum of Hρ(β)
with ±1 winding numbers in its two adjacent areas must be
on the OBC spectrum. This theorem thus provides an ac-
curate and effective new method to numerically obtain the
OBC spectrum as well as the GBZ for 1D non-Hermitian
systems[77]. Compared with the previous works[59, 65], this
numerical method is much easier to handle.

Obviously, not every crossing point is on the OBC spec-
trum, because some crossing points are not adjacent to the
areas with winding numbers ±1. These energy states E gen-
erally require |βi(E)| = |βi+1(E)| with i 6= p, and thus the
two β values should be on the auxiliary GBZ introduced in
Ref.[59] in obtaining the GBZ.

An exception to the theorem is when the GBZ is a perfect
circle |β| = r. This can happen even in multi-band models. In
this particular situation, the PBC spectrum E(|β| = r) covers
the whole OBC spectrum, and the other PBC spectra E(|β| =
ρ) with ρ 6= r give no contributions to the OBC spectrum[78].

N-bifurcation states, topological geometry of the OBC
spectrum and their connection with the GBZ. —According to
the theorem, nearly any state on the OBC spectrum can be a
crossing point of a PBC spectrum for a certain ρ. These are
the “normal” points mentioned in the theorem, which nearly
constitute the whole OBC spectrum and are characterized by
their unique feature that each has two and only two extending
directions along the spectrum. However, there always exist
several other energy states on the OBC spectrum, which are
the 3-bifurcation or 4-bifurcation states[79](see the solid dots
in Fig.3(a) and (c)), and end-point states. These particular

states can also be the crossing points of some PBC spectra,
but with different winding number distributions in their adja-
cent areas. Take a 3-bifurcation state E as an example. We
find it obeys,

|βp−1(E)| = |βp(E)| = |βp+1(E)|,
or |βp(E)| = |βp+1(E)| = |βp+2(E)|, (5)

i.e., each 3-bifurcation state has not two, but three β solutions
on the GBZ. More generally, a n-bifurcation state E must
have exactly n β solutions on the GBZ. In this opinion, all
the energy states can be viewed in an universal way. The end
points on the OBC spectrum can be viewed as “1-bifurcation”
ones and the “normal” points as the 2-bifurcation ones. The
single β on the GBZ corresponding to an end-point state E
is actually a doubly degenerate β satisfying βp = βp+1, as
discussed in Ref.[59]. These behavior are exhibited in Fig.3.
In the one-band model with p = q = 4, for the 3-bifurcation
states, we have |β3| = |β4| = |β5|, and for the 4-bifurcation
state, we have |β4| = |β5| = |β6| = |β7|. In the two-
band model with p = q = 2, for the four 3-bifurcation
states, we have |β1| = |β2| = |β3| for A1 and A2, while
|β2| = |β3| = |β4| for B1 and B2.

To prove Eq.(5), for a 3-bifurcation state E, assume its
counterpart on the GBZ is a set of n βi(E) points, where
i = j + 1, j + 2, ...j + n, obeying |βj+1(E)| = |βj+2(E)| =
... = |βj+n(E)|, with j < p and j + n > p. Consider
three small arcs along the three branches connecting to E (see
Fig.3(c)). Because any other state on the arcs is a normal one
which corresponds to two different βs on the GBZ, the three
small arcs must be mapped onto the GBZ to the six small arcs
departing from the n βi(E). But departing from any βi(E),
there exist only two extending directions to accommodate two
small arcs. Then n must be three and we complete the proof.

For a generic n-bifurcation state E, since there are n suc-
cessive βi(E) solutions with the same absolute value lo-
cated on the GBZ, the PBC spectrum E(|β| = ρ0) is pass-
ing through E exactly n times, where ρ0 = |βp(E)|. The
local areas adjacent to E would be divided into 2n parts.
A n-bifurcation state generally has relatively definite wind-
ing number distributions in these adjacent areas. For a 3-
bifurcation or 4-bifurcation energy state, all possible wind-
ing number distributions are shown explicitly in Fig.3(e). The
n βi(E) solutions on the GBZ can also be viewed in an-
other way: They are the intersection points between the cir-
cle |β| = ρ and the GBZ, as seen in Fig.3(b) and Fig.3(d).
So starting with a circle |β| = ρ, with ρ increasing grad-
ually from 0 to infinity, one has a set of intersection points
for each ρ with the GBZ. Each set determines one or sev-
eral energy states E on the OBC spectrum and the number
of the points in the set indicates the topological geometry of
this state: One only means an end-point state, two means a
“normal” state or two end-point states, and three means a 3-
bifurcation state, or a “normal” state together with an end-
point state, or three end-point states, etc. Thus the ρ param-
eter of the PBC spectrum having crossing points on the open
spectrum has actually a finite range: |β|min ≤ ρ ≤ |β|max,
where |β|max/min is the maximum/minimum value of |β| on
the GBZ. Now we can also give the non-Hermitian skin ef-
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FIG. 3: N-bifurcation states on the OBC spectrum and the GBZ. (a)
and (c): 3-bifurcation and 4-bifurcation states, on the OBC spectrum,
together with the PBC spectra passing through them. (b) and (d):
GBZ, where the solid circles are the corresponding three(four) βs for
the 3(4)-bifurcation states. Here (a)-(b) are for a single-band model
with the nonzero parameters T−4 = 0.8, T±3 = ∓1, T±2 = ±1,
T−1 = 2, T1 = 3, T4 = 0.3, while (c)-(d) are for a two-band model
with the nonzero parameters are T−1 = 1.5I+σ1+0.5σ3, T0 = iσ2,
T1 = 0.5I + σ1 − 2.5σ3,where the PBC spectrum passing through
the 3-bifurcation state A1(B1) is also passing through A2(B2). The
dotted loops in (b) and (d) are the circles |β| = ρ corresponding
to the PBC spectra in (a) and (c). (e) All possible winding number
distributions adjacent to a 3-bifurcation or 4-bifurcation state.

fect a new viewpoint. Under OBCs, any state belonging to the
continuum bands generally will be localized at end. However,
if we assign each state E on the OBC spectrum an unique
open system described by Hρ(β), with ρ = |βp(E)|, then this
state with respect to Hρ(β) must be extended, since its β so-
lutions β

′
i(E) = βi(E)/ρ obey: |β′

p(E)| = |β′
p+1(E)| = 1.

Thus from this opinion, the whole OBC spectrum of the con-
tinuum bands can still be viewed as being extended without
skin effect, not for the original system H(β), but for a series
of representatives Hρ(β) with ρ = |βp(E)|.

Extension to systems with anomalous time-reversal symme-
try. —Now we extend our results to systems with symme-
try. We focus on the non-Hermitian systems in the symplec-
tic symmetry class, which has the anomalous time-reversal
symmetry[45, 66, 73] defined by: UTHtU−1T = H, where
UT is a unitary matrix satisfying UTUT ∗ = −1. This sym-
metry indicates UTHt(β−1)U−1T = H(β), so the standard
non-Bloch band theory breaks down and should be modified
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FIG. 4: A non-Hermitian system in the symplectic symmetry class.
(a) OBC spectrum, PBC spectra for a two-band model with the non-
zero parameters T±1 = 2I ± (1 + 1.5i)σ1 ± σ2 ± 2iσ3, T±2 =
3iI± (−0.6+0.2i)σ1±σ2± 0.8σ3. Here the crossing points of the
PBC spectrum in (a) have two adjacent areas with winding number 0
or ±2 and so they belong to the OBC spectrum. (c) A 3-bifurcation
state on the OBC spectrum and the PBC spectra passing through it,
and (d) its counterpart on the GBZ, where the nonzero parameters are
T±1 = 2I±1.5iσ1±1.5iσ2±σ3, T±2 = iI±0.7iσ1±0.7iσ2±0.5σ3.
In both models, UT = σ2.

according to Ref.[66]. The characteristic equation det[H(β)−
E] = 0 has 2p numbered solutions βi(E) in total( p =
q = NM1), obeying βp+i(E) = β−1p+1−i(E) due to Kramers
degeneracy[66], which results in a new condition for the GBZ:
|βp−1(E)| = |βp(E)| or |βp+1(E)| = |βp+2(E)|[80].

Analogous discussion leads us to a similar conclusion for a
non-Hermitian system in the symplectic symmetry class: The
crossing points of the PBC spectrum E(|β| = ρ) with its two
adjacent areas possessing winding numbers ±2/0 belong to
the OBC spectrum. Conversely, for any “normal” point Es
on the OBC spectrum, these must exist two ρ1 and ρ2 with
ρ1ρ2 = 1 and ρ1 ≤ ρ2 so that the PBC spectrum E(|β| = ρ1)
( E(|β| = ρ2)) has a crossing point exactly at Es, with its two
adjacent areas possessing winding numbers −2/0(+2/0).

Now we give our explanation. Due to the symmetry
UTH

t(β−1)U−1T = H(β), the Nρ closed loops of the PBC
spectrum E(|β| = ρ) exactly coincide with those of the PBC
spectrumE(|β| = ρ−1), but the two sets of loops are pointing
in opposite directions. So each state on the OBC spectrum will
be experienced twice by the PBC ones. This also indicates that
any area on the E−plane has opposite winding number with
respect to E(|β| = ρ) and E(|β| = ρ−1). Since here a “nor-
mal” state on the OBC spectrum corresponds to four βs on the
GBZ, an end-point state should have two degenerate points on
the GBZ obeying: βp−1 = βp or βp = βp+1. The counterpart
of a 3-bifurcation state should have two sets of β points on
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the GBZ, with each set being composed of the three of them,
which obey:

|βp−2(E)| = |βp−1(E)| = |βp(E)|,
or |βp+1(E)| = |βp+2(E)| = |βp+3(E)|. (6)

In this case, there still exist two PBC spectra for ρ1 and ρ2
with ρ1ρ2 = 1, each of which is passing through the 3-
bifurcation state three times and is overlapping exactly with
each other. We illustrate these results by a two-band model
in Fig.4, where p = 4, and the 3-bifurcation state obeys:
|β2| = |β3| = |β4|, or |β5| = |β6| = |β7|.

It should be noted that Hρ(β) with ρ 6= 1 generally have no
symmetry, but they share identical OBC spectrum with H(β)
since they are related to each other by similarity transforma-
tions. What’s remarkable is that Hρ(β) share with H(β) the
same GBZ conditions, even if they possess different symme-
tries. This is because, as mentioned before, for the same state

with eigenenergyE, the βi(E) solutions of det(E−Hρ(β)) =
0 is proportional to those of det(E−H(β)) = 0. To make this
point more clear, we consider a class of Hamiltonians related
by the special similarity transformations, CH = {Hρ(β) =
H(ρβ) | 0 < ρ < ∞}. If the original system we start with
is described by H(β) which does not have any symmetry, and
simultaneously, one member Hρ(β) of the class has certain
symmetry which leads to a modified GBZ conditions, then
H(β) must have the same GBZ conditions. Therefore, if only
the OBC features of a non-Hermitian system such as the spec-
trum and the GBZ, are concerned, the relevant symmetry we
should consider is not that of the original system H(β) itself,
but the one belonging to CH which has the highest symmetry.
So to extract the properties of an open non-Hermitian systems,
the class CH should be treated as a whole. This viewpoint
could be extended straightforwardly to higher dimensions.
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A. Numerical method of calculating the OBC Spectrum and
the GBZ

We first review our new numerical method that can ac-
curately obtain the OBC spectrum and the GBZ for non-
Hermitian systems. As mentioned in the main article, the map
of |β| = ρ onto the complex E-plane by Eα(β) are N curves
Eα(|β| = ρ)(α = 1, 2, . . . , N), which form some closed
loops. There exist some crossing points, which can be self-
intersection ones between the same loop or intersection ones
between different loops. The method of calculating the OBC
spectrum and the GBZ based on our theorem can be summa-
rized as follows:

(1). Find the crossing points of these closed loops.
(2). Pick out these crossing points which are on the bound-

ary between two areas with winding number wρ = +1 and
wρ = −1 respectively.

(3). Increase ρ gradually from zero to infinity, then one can
obtain the whole OBC spectrum and the GBZ.

To show our method, we start with a single-band model
with Hamiltonian H(β) = − 1

β2 + i
β − i

2β + 1
2β

2 as an ex-
ample. The PBC spectrum E(|β| = ρ) forms a closed loop,
for which there may exist some self-intersection points. First
of all, we seek out the crossing points as shown in Fig1.(a).
Then among them we will pick out those points with their two
adjacent areas possessing winding numbers −1/ + 1, which
belong to the OBC spectrum.

Now we consider one of the crossing points of the PBC
spectrum, which we label as E0, the winding number distri-
bution in the areas adjacent toE0 can only be (w+1)/w/(w−
1)/w, as shown in Fig1.(b). If w = 0, then E0 is on the OBC
spectrum.

In order to check whether w = 0, we first select the points
belonging to the PBC spectrum that satisfy the condition of
|E(|β| = ρ)− E0| < δ. Here δ is a small quantity artificially
set, which needs to be adjusted according to the specific situ-
ation. In Fig1.(b), we plot the crossing point E0 of the PBC
spectrum and several points near E0. Then in the direction of
the PBC spectrum, we determine two vectors v1,v2 along the
two arcs of the spectrum starting from E0. We can define a
vector v = 1

2 (v1 + v2), which points to the region where the
winding number is w. Use v to shift E0 to a position, named
Ew, at which, we calculate the winding number. If w = 0,
reserve E0 as a state belonging to the OBC spectrum. To cal-

∗Electronic address: anjin@nju.edu.cn
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FIG. 1: Illustration of our numerical method of calculating the
OBC spectrum and the GBZ. (a) A PBC spectrum with several self-
crossing points (blue dots). (b) One of the crossing points and the
winding numbers distribution adjacent to it. (c) Comparison between
our numerical method (black points) and the numerical diagonaliza-
tion method (blue points) with lattice size and digit precision chosen
as N = 200, P = 500. (d) GBZ calculated from our numerical
method.

culate the value of w, we use the definition in the main article
w = wρ(Ew) = Nρ(Ew) − p, with Nρ(E) is the number of
βi(E) inside the circle |β| = ρ. As the value of ρ goes from
zero to infinity, we retain the points that meet the conditions
referred to above, so the OBC spectrum can be completely
determined as shown in Fig1.(c). Accordingly, the GBZ (See
Fig1.(d)) can also be determined.

We further point out that the magnitude of v should be se-
lected appropriately to ensure that Ew should be not only suf-
ficiently separated from E0, but also be within the region pos-
sessing the winding number w.

The above method can be applied to both single-band and
multi-band Hamiltonians to efficiently get more focused re-
sults, compared to the conventional numerical diagonalization
method, which is often sensitive to the matrix dimension and
calculation accuracy, as shown in Fig.1(c). In the calculations,
there are 20, 000 points on the OBC spectrum that can be de-
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termined efficiently by our method. In contrast, this needs to
diagonalize the Hamiltonian HN×N with N = 20, 000 by us-
ing numerical diagonalization method, which become incor-
rect and time-consuming.

B. Non-Hermitian systems with their GBZ being a perfect
circle

An exception to our theorem is when the GBZ is a perfect
circle |β| = r. This situation occurs when the PBC spectrum
E(|β| = r) coincides with the whole OBC spectrum, and the
other PBC spectra E(|β| = ρ) with ρ 6= r give no contribu-
tions to the OBC spectrum. Here, we give some models to
demonstrate this exceptional case.

Firstly, we consider the following two-band model,

H(β) = (β +
1

β
)σ1 + {a(β − 1

β
) + c}σ3. (1)

Its energy bands can be obtained as

E = ±
√

1 + a2(β − 1

β
)± 2ia, (2)

if c is chosen to be c = 2i
√

1 + a2, where a ∈ C. Since
{σ2, H} = 0, this model has chiral symmetry, indicating the
OBC spectrum should be centrosymmetric. As indicated in
Fig.2(a), the OBC spectrum is composed of two line seg-
ments, which coincides on the E-plane with the PBC spec-
trum E(|β| = 1), while the GBZ is the unit circle |β| = 1.

We can construct a more generic two-band model whose
Hamiltonian reads

H(β) =

3∑

j=1

dj(β)σj , (3)

where dj = ajβ + bj
1
β + cj , and aj , bj , cj ∈ C with j =

1, 2, 3. These parameters can be combined into three vectors
a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3). We find
that if c is chosen to be

c =

√
2a× b√√

a2
√
b2 + a · b

, (4)

then the two energy bands can be obtained as

E = ±(
√
a2β +

√
b2

1

β
), (5)

where
√
a2 and

√
b2 can be chosen to be any one of the two

square roots of a2 and b2, respectively. While the GBZ is
still a perfect circle |β| = r, the segment-like OBC spectrum
coincides with the PBC spectrum E(|β| = r), as illustrated in
Fig.2(b).

We now provide another kind of two-band models possess-
ing the unit circle as their GBZs. These models have the fol-
lowing Hamiltonian:

H(β) =
3∑

j=1

(d0jI + dj · σ)(βj + β−j), (6)
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FIG. 2: OBC spectra of two-band systems with their GBZ being
a perfect circle |β| = r, where each OBC spectrum coincides ex-
actly with its PBC spectrum E(|β| = r). (a) Model given by
Eq.(1) with the parameters chosen as a = −0.3 + 0.5i. (b) Model
given by Eq.(3) with the parameters a = (0.8 + 0.8i, 0.5i,−0.7),
b = (−0.6, 0.4, 0.2i). (c-d) Model given by Eq.(6) with the nonzero
parameters taken as (d01,d1) = (0.5 + 0.4i, i, 0.2 − 0.1i, 0.3 +
0.3i), (d02,d2) = (0.8 − 0.7i, 0.7i, 0.3i, 0.45i), (d03,d3) =
(i, 0.73, 0.5i, 0.5) for (c), and d1 = (0.2, 0.6, 0.1), d2 = (0.6 +
i, 0.4i, 0.3i), d3 = (0.7i, 0.3i, 0.2) for (d).

where σ = (σ1, σ2, σ3), dj = (d1j , d
2
j , d

3
j )(j = 1, 2, 3), and

d0j , d
k
j ∈ C with j, k = 1, 2, 3. Obviously, H(β) = H(β−1),

indicating that the system has inversion symmetry. The OBC
spectrum of this model could be two complicated arcs, which
always coincides exactly with the PBC spectrum E(|β| = 1),
as shown in Fig.2(c-d), while the GBZ is still the unit circle.
Particularly, when all d0j = 0, the OBC spectrum has central
symmetry with respect to the origin E = 0(See Fig.2(d)).

C. Proof of the correspondence between winding number and
the OBC spectrum in systems with anomalous time-reversal

symmetry

Here, we give a proof of the central conclusion general-
ized to systems in the symplectic class in the main article.
As shown in Fig.3(b), the pair of loops of PBC spectrum
E(|β| = ρ) and E(|β| = ρ−1) overlap completely, but point
in opposite directions. Assume ρ < 1 and let Ec be a crossing
point of the PBC spectrum E(|β| = ρ) or E(|β| = ρ−1), then
there must be two different βc and β′c on the circle |β| = ρ,
while β−1c and β′−1c are on the circle |β| = ρ−1 (see Fig.3(a)).
Next, we prove that the prerequisite for Ec being on the OBC
spectrum is w = 0. Consider a small curve from point A
through point Ec to point B. Due to Eq.(4) in the main arti-
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FIG. 3: Schematic depiction of the proof for systems in the sym-
plectic class. (a) |β| = ρ and |β| = ρ−1 with ρ < 1, (b) One of
the crossing points Ec of the corresponding periodic-boundary spec-
trum E(|β| = ρ) or E(|β| = ρ−1), where the two loops coincide
with each other but point in opposite directions due to the anoma-
lous time-reversal symmetry, and the four areas adjacent to Ec have
been marked by their winding numbers. The spectra on the E-plane
are the images of the two circles on the β-plane, under the mapping
E(β). The four solid dots βc, β

′
c, β−1

c and β
′−1
c on the two circles

in (a) are the preimages of Ec, and accordingly, the four small arcs
passing through the four points correspond to the trajectory from A
to B in (b).

cle, the number of βi(EA/B) inside the circle |β| = ρ should
be (p + w)/(p + w − 2), and the number of βi(EA/B) in-
side the circle |β| = ρ−1 should be (p + w)/(p + w + 2)
correspondingly. If A and B are sufficiently close to Ec,
among the 2p image curves of the map βi(E) of the trajec-
tory EA → Ec → EB , there are two possible scenarios that
will happen, as shown in Fig.3(a), one is that two small out-
ward curves would intersect the cirle |β| = ρ at βc and β

′
c, the

other is that two small inward curves would intersect the cirle
|β| = ρ−1 at β−1c and β

′−1
c . The former corresponds to the

change in winding number from w to w − 2, the latter corre-
sponds to the change in winding number from w to w + 2. If
w = 0, then βc and β

′
c must be (p − 1)th and pth β solutions

of Ec, β−1c and β
′−1
c must be (p+ 1)th and (p+ 2)th β solu-

tions ofEc simultaneously. In other words, both the equations
|βp−1(Ec)| = |βp(Ec)| and |βp+1(Ec)| = |βp+2(Ec)| hold,
which means that Ec is on the OBC spectrum. So for sys-
tems in the symplectic class, the crossing points of the PBC
spectrum with its two adjacent areas possessing winding num-
bers 0/ ± 2 must belong to the OBC spectrum. The inverse
proposition can be analogously proved by imitating the main
article.

D. Reality of the 3-bifurcation states

In this section, we first give an explanation of the reality
of the 3-bifurcation states, and then we further give a two-
band model without symmetry and a four-band model with
anomalous time-reversal symmetry as examples to exhibit the
features of the 3-bifurcation and 4-bifurcation states.

One may ask a question: whether are the 3-bifurcation
states really on the OBC spectrum? Namely, whether is a
3-bifurcation state just a limiting point approaching from the
three corresponding branches of the OBC spectrum? Here, we
demonstrate by a simple model that the 3-bifurcation states do
exist and actually belong to the OBC spectrum.
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FIG. 4: (a) OBC spectrum(solid dots) together with the PBC spec-
tra(solid lines) with ρ = ρc , ρ−1

c passing through the 3-bifurcation
states, (b) GBZ of the model corresponding to Eq.(7). The red(blue)
circle |β| = ρc (|β| = ρ−1

c ) intersects the GBZ at three points β1, β2,
β3(β−1

1 , β−1
2 , β−1

3 ) which are the counterpart of the GBZ for the 3-
bifurcation state Ec(E

′
c) on the OBC spectrum. Here ρc = 0.7987.

Let’s consider a single-band model with Hamiltonian
H(β) = − 1

2β
−2 + i

2β
−1 − i

2β + 1
2β

2, whose characteris-
tic equation E −H(β) = 0 can be equivalently written as

β4 − iβ3 − 2Eβ2 + iβ − 1 = 0. (7)

The OBC spectrum and GBZ of this model are shown in Fig.4
as a comparison. According to the relations between roots
and coefficients of the quartic equation, the four roots βi(i =
1, 2, 3, 4) satisfy

β1β2β3β4 = −1, (8)
β1 + β2 + β3 + β4 = i, (9)

β−11 + β−12 + β−13 + β−14 = i, (10)
β1β2 + β1β3 + β1β4 + β2β3 + β2β4 + β3β4 = −2E.

(11)

In order to find the 3-bifurcation states, we seek the follow-
ing kind of solutions, which naturally satisfy Eq.(8),





β1 = −iρc,

β2 = −iρce
iθ0 ,

β3 = −iρce
−iθ0 ,

β4 = iρ−3c ,

(12)

where ρc is a positive real number and θ0 is a real phase angle.
The two parameters ρc and θ0 must be consistent with Eq.(9)
and Eq.(10), which indicates,

(1 + 2 cos θ0)ρ4c + ρ3c = 1, (13)

ρ4c + ρc = 1 + 2 cos θ0. (14)

This implies

ρ8c + ρ5c + ρ3c = 1, (15)

cos θ0 =
1

2
(ρ4c + ρc − 1). (16)

Obviously, Eq.(15) has a unique solution since the leftside of
the equation is an increasing function of ρc when ρc > 0.
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FIG. 5: N-bifurcation states on the OBC spectrum and their counter-
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through it(them), where the former belongs to a two-band system
without any symmetry while the latter belongs to a four-band system
in the symplectic symmetry class. (b) and (d): GBZ, where the solid
dots are the corresponding βs for the 4(3)-bifurcation states.

Then cos θ0 is also determined uniquely due to Eq.(16). We
find ρc = 0.7987, θ0 = ±0.4672π. The energy E for this
solution, now denoted by Ec, can be derived from Eq.(11) to
be

Ec =
1

2
(ρ3c − ρ−1c )(ρ3c + 1). (17)

Substitution the value of ρc into the above expression leads
to Ec = −0.5605. Since this solution obeys: |β1| = |β2| =
|β3| < |β4|, we have βi(Ec) = βi(i = 1, 2, 3, 4). So β1,
β2 and β3 are on the GBZ and Ec is the 3-bifurcation state
we are seeking. Another 3-bifurcation state can be found as
follows. The solutions to Eq.(7) always come in pairs. It
can be easily checked that if (β1, β2, β3, β4) is a solution for
energy E, then (β−11 , β−12 , β−13 , β−14 ) must be a solution for
−E. Therefore, the energy E′c of another 3-bifurcation state
must be E′c = −Ec and βi(E′c) = β−15−i(i = 1, 2, 3, 4). As
shown in Fig.4, these analytical results agree with the numer-
ical calculations. Therefore, we assert that the 3-bifurcation
states actually belong to the OBC spectrum.

As explained in the main article, the 3(4)-bifurcation states
which belong to the OBC spectrum of a system without
any symmetry can be described by the following equation

|βp−1| = |βp| = |βp+1| or |βp| = |βp+1| = |βp+2| (|βp−2| =
|βp−1| = |βp| = |βp+1|, |βp−1| = |βp| = |βp+1| = |βp+2|,
or |βp| = |βp+1| = |βp+2| = |βp+3|). Nevertheless, for
systems with anomalous time-reversal symmetry, the 3(4)-
bifurcation states obey |βp−2| = |βp−1| = |βp| or |βp+1| =
|βp+2| = |βp+3| (|βp−3| = |βp−2| = |βp−1| = |βp| or
|βp+1| = |βp+2| = |βp+3| = |βp+4|). In Fig.(5), some more
examples with 3-bifurcation states and 4-bifurcation states are
demonstrated. Here the two-band model is without any sym-
metry, which can be described in terms of notations in Eq.(2)
in the main article. In this two-band model, p = q = 4, and
the nonzero parameters are chosen as T−2 = 0.5iI + 1.5iσ3,
T−1 = T2 = 2iI, T0 = σ1, T1 = 3iI. The clothes-like OBC
spectrum possesses a 4-bifurcation state, where a PBC spec-
trum with a definite ρ would be passing through it four times.
For this 4-bifurcation state, there are four βi(E) solutions
with the same absolute value located on the GBZ, namely
|β4| = |β5| = |β6| = |β7|. These behaviors are exhibited in
Fig.(5)(a-b). The other model is a minimal four-band model
given below,

H(β) = ∆γ2

+ (a1γ1 + a2γ2 + a3γ3 + a4γ4 + a12Γ12)β

+ (−a1γ1 + a2γ2 − a3γ3 − a4γ4 + a12Γ12)
1

β

+ (dγ1β
2 − dγ1

1

β2
), (18)

where γµ(µ = 1, 2, 3, 4, 5) are the 4 × 4 gamma matrices
satisfying Clifford algebra, namely, {γµ, γν} = 2δµν , and
Γ12 = iγ1γ2. Here we choose γ1,2,3 = σ1

⊗
σ1,2,3, γ4 =

σ3
⊗

I, γ5 = σ2
⊗

I = γ1γ2γ3γ4. It can be easily checked
that the non-Bloch Hamiltonian obeys γ5H

t(β−1)γ−15 =
H(β), so the system described by this Hamiltonian indeed
belongs to the symplectic symmetry class. When these
nonzero parameters are chosen as (a1, a2, a3, a4, a12, d,∆) =
(1, 0.5i, 0.8i, 0.7i, 0.6, 0.3, 1), there exist two 3-bifurcation
states denoted by A and B on the OBC spectrum. There ex-
ist two PBC spectra E(|β| = ρc) and E(|β| = ρ−1c ) with
ρc = 0.88 passing through A. These two spectra exactly co-
incide with each other but are pointing in the opposite direc-
tions. What is particular in this model is that either of the
spectra is composed of three closed loops, two of which are
passing through A and B respectively, each three times, as
can be seen from Fig.5(c). The circle |β| = ρc (|β| = ρ−1c )
corresponding to the PBC spectrum then intersects the GBZ at
six points, which are the counterparts of the two 3-bifurcation
states on the GBZ. In this model with p = q = 8, for either of
the two 3-bifurcation states, we have |β6| = |β7| = |β8| and
|β9| = |β10| = |β11|.


