Czechoslovak Mathematical Journal

Antonella Cabras; Ivan Kolar
Connections on some functional bundles

Czechoslovak Mathematical Journal, Vol. 45 (1995), No. 3, 529-548

Persistent URL: http://dml.cz/dmlcz/128542

Terms of use:

© Institute of Mathematics AS CR, 1995

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/128542
http://dml.cz

Czechoslovak Mathematical Journal, 45 (120) 1995, Praha

CONNECTIONS ON SOME FUNCTIONAL BUNDLES

ANTONELLA CABRAS, Florence, IVAN KOLAR, Brno!

(Received November 23, 1993)

INTRODUCTION

Our starting point was the idea of the Schrédinger connection on a double fibered
manifold by Jadezyk and Modugno, [4], [5]. We discuss the “pure case” of two
classical fiber bundles E; and Ey over the same base and define a connection I' on
the bundle .# (E,, E3) of all smooth maps from a fiber of E; into the fiber of Ey over
the same base point. We study systematically the geometry of the iterated tangent
bundle of the infinite dimensional space F(E, Ey) as well as the jet prolongations
of #(E1, E;) by means of the ideas introduced by the second author in [9]. Since
we deal with functional bundles, our vector fields and connections represent a kind
of differential operators. That is why we pay special attention to the case of finite
order operators, in which we are able to deduce a very concrete description of the
objects and operations in question.

In such a situation we found the simplest way for introducing the curvature of T’
in a construction by Ehresmann, [2], which is based on the notion of semiholonomic
2-jets. In the new context we were obliged to rearrange some results, deduced in the
finite dimension by direct evaluation, into a more geometrical setting, which could
be generalized to our infinite dimensional case. Only then we study the bracket of
two vector fields on #(E,, E»). This is a modification of the bracket of two vertical
prolongation operators on a classical fibered manifold by Kosmann-Schwarzbach,
[11], and the second author, [8]. In Proposition 14 we deduce a satisfactory bracket
formula for the curvature of I'. We also discuss the absolute differentiation with
respect to I' and the special case Ej is a vector bundle.

If we deal with two finite dimensional manifolds and a map between them, we
always assume they are of class C*, i.e. smooth in the classical sense. On the other

! This paper was prepared during the visit of Prof. . Kolaf at Dipartimento di Matematica
Applicata “G. Sansone”, Universita di Firenze, supported by G.N.S.A.G.A. of C.N.R. The
second author was also supported by a grant of the GA CR No 201/93/2125.
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hand, the idea of smoothness in the infinite dimension is taken from the theory of
smooth structures by Frélicher, (3].

The authors acknowledge Prof. Marco Modugno for several stimulating discussions
on the subject of this paper.

1. THE TANGENT BUNDLE OF % (Ej, Es)

Let p1: Ey - M and py: E; — M be two classical fiber bundles (i.e. locally trivial
fibered manifolds) over the same base. Consider the set of all fiber maps

F(Ey, Br) = | C°(Erz, Eaz)
zeM

and denote by p: F(E;, F2) - M the canonical projection. We define no topol-
ogy on Z(E,, E;), but we introduce the concept of a smooth map from a classical
manifold @ into & (F1, Es).

Definition 1. A map f: Q = ZF (K, E,) is called smooth, if
(i) po f: @ = M is smooth and
(ii) the induced map f: (po f}*Ey — E»,

fla,y) = f@®), (ay) € (pof)E

is also smooth.

As usual, (po f)*E; — @ denotes the bundle induced from E; by means of po f,
ie.
(po f)"Ex={(g,y) €Q x Ex | (po f)(a) =p1(v)}-

Thus, % (E1, E») is endowed with a smooth structure in the sense of Frolicher, [3].
For every smooth curve f: R — £ (E4, E2) we first construct the tangent vector
X = 3%|0(po f) € TM of its base map at t = 0. Write

TxFE;, = (Tpl)_l(X) CTE, or TxFE,= (Tpg)_l(X) C TE2,
so that Tx E; or Tx E, is an affine bundle over Ey, or Ea,, z = p(f(0)), with the

derived vector bundle T(Ei.) := V. E, or T(Ey;) = V. E,, respectively. Then f
defines a map Ipf: TxEy, = Tx E; by

7] 0
® Tof (5], h0) = 5] O (R®)
where we may assume that h: R — E; satisfies po f =p; o h.
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Definition 2. We say that two smooth curves f,g: R — F(E), E») satisfying
Z2|,pof=2£]|,pog= X determine the same tangent vector at f(0) = g(0) = o, if

Tof = ng: TxE1 — Tsz.

The set T F(E1, E2) of all equivalence classes will be called the tangent bundle of
‘?(El 3 E2 ) .

We write %[0 f(t) € T Z(E, E,) for the tangent vector determined by f and
m: T F(E, Ey) - F(E,E) and Tp: T F(E,, Ey) - TM for the canonical pro-

jections. If A € T #(FE;,E,), then we denote by A: TrpayE1 — TrpayEa the
associated map (1).

Remark 1. Lete C #(E), E») be any subset. Then we define Te C T F(E1, E2)
by restricting ourselves to the smooth curves with values in €.

One sees easily that Tof = Tog: TxE1 = TxE, is an affine bundle morphism
over the base map ¢: Ey, — Es, with the derived linear morphism T¢: T'(F;,) —
T(E,;). Indeed, let 2* be some local coordinates on M, yP or z* be some additional
coordinates on E; or Eo and

(2) ot =fiY), 2t =R
be the coordinate expression of f(t). Write

a a a a a of° p,O
yr — dy?_,’ 7% = dz , P (y):f (y,O), d (y) :_f_(ayt__)

Then the coordinate form of (1) is

(3) zo = "Wy + ®%(y).
oyP

Hence the tangent vector to (2) is locally characterized by two systems of numbers
and two systems of functions

(4) i = fi(O), Xi= 8{;510)’ ©*(yP), ¥ (yP).

The following lemma gives a global assertion of such a type.

Lemma 1. Let F': Tx E; — Tx Ey be an affine bundle morphism over ¢: E;, —
E,,. with the derived linear morphism Ty: T(E1,) — T(Fs.). Then there exists
a smooth curve f: R — Z(F,,E,) such that F = A for the tangent vector A =

Lo F(0).
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Proof. Consider some local trivializations U x S; and U x Sy of FE}, and Ey
over a neighborhood U C M of z. Then F(U x S1,U x S3) = U x C*(S51,53). The
restriction of F to Y? = 0 represents a map F: S; — T'S, along ¢. By Proposition 5
from [16] there exists a smooth curve y: R = C°(S;, S2) such that F(y) = 6—:’%}—),
where 7: R x S; — S, is defined by #(y,t) = v(t)(y). If 6: R — U is any curve with
E%|O5 = X, then the curve (4,7): R — U x C*°(S;,S;) has the required property.

O

Now we show that each fiber of T #(FE:, E2) — F(Ei, E») is a vector space.
Consider A, : Tx, By = Tx,Ey and A, Tx,E1 = Tx,FE> over the same . Given
Y € (Tx,+x:E1)y, y € Erg, we take any W € (T'x, E,)y, sothat Y =W € (T'x, E1)y,
and we define

AL+ (V) = A, (W) + A (Y = W).

If we select another W € (T'x, E1),, then W — W is a vertical vector. Hence
AWy = A (W) +To(W —W),  AY - W)= A(Y - W)+ Tp(W - W),
so that our definition is correct. Further, for 0 # k € R we define

kA: TixE1 — ToxEa by ﬂ(y)zm(%y)

while for & = 0 we prescribe 0A to be Tyo: ToF1, — ToEs,. In coordinates, if
Ay = (2%, Xi, 0%, ®%) and Ay = (¥, X3, 0, ®%), then

(5) Ap+ Ay = (28, XT + X5 %, 8% + %), kA = (27, kX, 0%, k®2).

This proves that each 7~ !(y) is a vector space.
In general, consider another pair E3 — N, Ey — N of fiber bundles over the same
base and subset e C ZF(E, Es).

Definition 3. A map f: e — F(FE3,E;) is called smooth, if fog: Q@ —
F (E3, E4) is smooth for every smooth map g: @ — €.

Definition 4. A vector field on #(E,, E;) is a smooth map A: F(E,, E;) —
T F(E;, E) satisfying m o A = id. We say that A is projectable, if there exists a
classical smooth vector field A°: M — TM such that A’ o7 = Tpo A.

Write V . F (E}, E») for the kernel of Tp: T F(E,, E;) — T M. which will be called
the vertical tangent bundle of .#(E;, E;). Then we have an exact sequence

(6) 0——)‘/32(E1,EQ)—>T§(E1,E2)—*j\(El,Ez);&TA4—)O

532



Consider a linear splitting I': ?(El,Eg)X;TM - TZ(E,Ey), ie. o' =

pri,TpoT = pry and I'(p,—): TuM — T, F(Ey, E;) is a linear map for each
p € F(Ey, Es),xz = n(p). Then for every vector field X : M — T'M we have defined
its D-Ift X : F(F,, Ey) > T F(E;, Ez). We say that I is smooth, if ['X is smooth
for every classical smooth vector field X: M —- TM.

Definition 5. A connection (in tangent form) on % (E4, F») is a smooth linear
splitting I: .JGZ(EI, Ez) 1\>f1TM - Tg(El,EQ)

Remark 2. If E is the trivial fibering M — M, then F(E,, E2) = E; and we
obtain the standard connection on E; — M.

2. JET PROLONGATIONS OF #(E1, E»)

The simplest way how to define the r-th jet prolongation of #(E), E;) is based
on the concept of the fiber r-jet, [9], [10]. In general, given a fiber bundle E — M
and a manifold N, two maps f,g: E — N are said to determine the same fiber
r-jet jof = jrg at x € M, if jif = jyg for all y € E,. Every smooth section
s of F(E1, E;) determines the associated base-preserving morphism §: E; — Es,
5(y) = s(p1y)(y).

Definition 6. Two sections s1,s2: M — F(F1, E;) determine the same r-jet
Jrsy = jise at x € M, if j2§; = jI5s. The set J™ F(E;, E;) of all r-jets of the local
sections of F(E4, Ey) is called the r-jet prolongation of #(E;, Es).

However, it will be useful to discuss another approach as well. Since §: E1 — Ej is
a base-preserving morphism, we can construct its r-th jet prolongation J"5: J"E; —
JTEy. Write J75 = JTEIJ;El, z € M. By direct evaluation, one easily verifies.

Proposition 1. We have jIs; = jlsy iff J75 = J]3s.

Let z* = f2(z?,y?) be the coordinate expression of §. Then the additional coor-
dinate expression of J}3 is

o af(l afﬂ. »
(7) Zi = Oz aypyi

where y? or z¢ are the induced coordinates on J'E; or J! E,. For x = 0, the functions
¢*(y?) == f*(0,y”) are the coordinates of the target s(0) of jis; and JJ§ has the
form

(8) zf = awa(y)yf+wék(z/), @i (y) =

af*(0,y)

ozt
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It is well-known that J! E; or J! E, is an affine bundle over E), or Es,, whose derived
vector bundle is Vo E; QT M or Vo, E, ® T M, respectively. Obviously, (8) is an affine
bundle morphism over ¢ with the derived linear morphism T'¢ ® idrsps. Similarly
to §1, we denote by jls the associated map J'5: J'E; — J!E,. Analogously to
Lemma 1, one can prove

Lemma 2. Let S: JYE, — JLE; be an affine bundle morphism over ¢: E;, —
E,, with the derived linear morphism Ty ® idT; M. Then there exists a local section
s of Z(Ey, E) such that s(z) = ¢ and jls = S.

By (8), every X = 'BQE f € TxM and every S = jls define a vector

o

©) S(X) = 2] (s01) € Ty F (51, )

such that Tp(S(X)) = X.

Definition 7. A connection in the jet form on F(E1, E;) is a smooth section
I': F(Ey, E3) » J* F(E, Ez) of the target jet projection.

Proposition 2. The map (9) establishes a bijection between the jet form and the
tangent form of connections on & (E, E,).

Proof. Using (8) we find directly that (9) defines a bijection between the linear
splittings T, M — T, F(E, E;) of Tp and the elements of J! Z(Ey, E2)(p. Assume
the jet form of ' is smooth and f: Q@ —» F(E|, E;) is a smooth map, so that T'o f:
Q — JL F(E,, E,) is smooth. For every smooth vector field X : M — T M, the map
(T'o f)(X opo f) is also smooth, so that the tangent form of " is smooth. Conversely,
take a local basis X, ..., X,, of vector fields on TM. Then (TX;)o f,...,(TX)of
are smooth maps Q = T .Z(E1, E2). By (8) we deduce that Tof: Q — J' F(E,, Es)
is smooth. O

To define the curvature of a connection of & (E;, E) in §5, we shall use the second
semiholonomic prolongation of #(E,, E;). We recall that J'(J'E;, — M) := J°E,
is the classical second nonholonomic prolongation of E; — M. If o', y?, y! are
the above local coordinates of J'E;, then the induced coordinates on J2E1 are
yb. = g—fv and yj; = g—gf We have the target jet projection 8;: J2E; — J'E, and
the induced map J'3: J2E, — J'E, of the target jet projection 8: J'E, — E;. An
element Y € J2E, is said to be semiholonomic if 3,(Y) = J'3(Y). In coordinates
this is characterized by y? = yb.. All semiholonomic elements form a subbundle
J2E, ¢ J2E,;, and the second holonomic prolongation J?FE is a subbundle of J?E.

Since we have interpreted J! F(E;, E2) as a subset of Z(J'E;, J'E,), we have

defined jlo for a local smooth section ¢ of J! .Z(E;, E2) — M by jlé. In this way we
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introduce the second nonholonomic prolongation J2 & (Ey, Ey) of F(Ey, E;). An el-
ement jlo is said to be semiholonomic, if o(z) = jl(Bo0), where 8: J! F(E;, E;) —
F(E,, E,) is the target jet projection. This defines J? #(E;, Es) C J? #(Ey, Es).
The inclusion J2 F(E,, E;) C J? Z(E, E,) is given by j2s — jl(jls).

Analogously to the first order case, jlo determines a map j}a: J2E, = J?E;. In
coordinates, if o = (f*(z,y), f#(2,y)), then § is of the form

(10) =) = 2y ).

Hence

0f*(0.y) . _ 9/ (0,y)

gzt TV oxd

(11) e () = f2(0,9), i =fi'0,9), 05 =

are the coordinates of jio. From (10) we obtain the coordinate expression of jzo in
the form z* = ¢?(y) and

a a __. a(pa ¥4 a
(12) zi = 8yP Preh = Dy Yoi + #0is
a a 8@1 0@0.7 p a2¢a P, 4
2 =i+ 3y pyoJ ayP y; + 0ypayqyi Yo; + ByP y”

Using (12) we deduce directly the following assertion.

Proposition 3. jlo is semiholonomic or holonomic iff jio maps J2E into J2E;
or J2E; into J2E,, respectively.

In coordinates, an element of J2.Z(E,, E,) is characterized by ¢¢ = ¢g; and the
additional condition for a holonomic element is ¢f; = ¢%;.

We remark that the higher order nonholonomic and semiholonomic prolongations
of #(E, E) can be defined in a quite similar way.

3. THE FINITE ORDER CASE

Since both vector fields from §1 and the connections from §2 are defined on a
functional bundle, they represent a kind of differential operators. We are going to
describe the simplest case of finite order operators.

Definition 8. A projectable vector field A: Z(E, E;) — T F(E;, Es) over A®:
M — TM is of order r, if the condition _]y(p =jy, o, € C%(E1z, E2g), y € Ers

implies that the restrictions of A(<p) and A(l/)) over y coincide, i.e.

(13) AP |(Taoe) Er)y = AW (Tao(e) Er)y-
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Let S(TE;,TE3) be the set of all affine morphism (TxE;), = (TxEs)., p1y =
poz = wy X, where mpr: TM — M is the bundle projection. This is a fibered
manifold over E; 1\>51 E, xTM. Write

M

FI(E\,Ey) = || J(Ere, Eao).
zEM

This is a classical manifold as well.
A projectable r-th order vector field A: #(Ey, E2) - T F(E,, E;) over A” defines
the associated map &: FJ"(Ey, E;) — S(TE,, TE,) by

(14) (i) = AP (Tao(z) Er)y-
Proposition 4. The associated map of a projectable r-th order vector field on
F(E:, E?) is a classical C*°-map.

Proof. This follows from the fact that A is smooth in the sense of Definition 3
quite analogously to [6]. O

The local coordinates on & J"(E, Ez) induced by z*, y? and z% are 22,1 < |a| < 7,
where « is a multiindex, the range of which is the fiber dimension of E;. Hence the
coordinate form of & is X*(z7) and

(15) ®* = ¢z, 9P, 2), 0< ol <.

The derived linear map of each element of S(TE;,TE,) is identified with an
element of # J'(E;, E;). This defines a map D: S(TE;,TE;) — FJ'(E;, E;) and
the following diagram commutes:

FIJNE,, E,)

@T ‘\\g\\

FJ(Ey, Ey) —%—> S(TE,, TE,)

l id x 4° l

E, XE2_M‘>E1 XEQXTM
M M M

where 3, is the jet projection. Conversely, let &: FJ"(Ey, E2) — S(TE,, TE;)
be a smooth map with an underlying vector field A°: M — TM such that (16)
commutes. Then the rule

(17) A = | “Uie)
yEFE 1,
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defines a projectable r-th order vector field A on % (E, Es).

Since T #(E\, E») is a subset of #Z(TE,,TE,), we can define the second tangent
bundle T(T #(E1, E2)). This will be described in more detail in §6. Here we re-
strict ourselves to a general remark, which is related to our study of the order of
connections.

Definition 9. A vector field 4: % (E1, Es) - Z(E1, E») is called differentiable
if the formula

0s) TA(gl, ) = 4o

defines a smooth map TA: T F(E,, Ey) = TT & (E,, E2).

From (16) we easily deduce (see the coordinate formula in §6) the following asser-
tion.

Proposition 5. Every r-th order vector field on & (E,, E,) is differentiable.

Definition 10. A connection I': F#(E, E;) = J* Z(E;, E») is of order r if the
condition jy¢ = jyv, v, € C>=(E1s, Es.), y € E1,, implies

(19) ()| By = T(D)|JLE;.

Let S(J'E,, J'E3) be the set of all affine maps (J'E;), — (J1E;). with the
derived linear map of the form

(20) B ®idry m Be & e (V,E, V. Es).

An r-th order connection I': Z(Ey, Ey) — J! ZF(E1, E,) defines the associated map
G: FJ(E1, Es) — S(JLE1, J'Ey) by

(21) G (jye) =T(p)|J, Enr.
The coordinate form of ¢ is

(22) ¢ = ®%(zt,yP, 22), 0<]a| <.

13

Analogously to Proposition 4, one proves

Proposition 6. The associated map of an r-th order connection Z(E;, E;) —
J! Z(E1, E;) is a classical C*-map.

537



Let D: S(J'Ey, J'Ey) — FJY(E,, E,) be the map defined by (20). Then the
following diagram commutes

FJV(E,, Ey)
(23) ﬁ.T \
FJ(Ey, Ey) —£> S(J By, J'E,)
Conversely, let 4: ZJ"(E,, E;) = S(J'E;, J'E;) be a smooth morphism over the
identity of Ey x E, such that (23) commutes. Then the rule
(24) ) = |J 4G
yEE,

defines an r-th order connection on #(E}, Es).
Analogously to Definition 9, we introduce

Definition 11. A connection I': F(E;, E;) = J! F(Ey, E;) is called differen-
tiable if the formula

(25) J'T(j}s) = ja(Tos)
defines a smooth map J' Z(E, Ey) — J2 ZF(Ey, E,).

Proposition 7. Every r-th order connection is differentiable.

Proof. We deduce from (22) the coordinate form of J'I" in some coordinates
ot 9%, ¢ on J' F (B, Ep) and o, %, 0F, 5, 955 on J F(Ey, E;). Take a section
a

(26) 2* = ¥(z*, yP)

so that ¢* = ¢*(0,y) and ¥ = Q’%—O;ﬁl. Then we obtain for T'o o
e 811}(1 fE, a a

27) = 20 yr 4 020, 0007 (0,0))

Now (26) yields
ot (0,y) »  0¥°(0,y)

(28) z; = _éy”—- Yoi + T o Le. g =¢f
and (27) implies
a 32[); P 82‘»0& o 5 dp? P
%57 gr i T Byroge viYe; + ayp By Vi T Gyr Yoi
a9? 8<I> 8‘1);‘ b
(29) + G gg—aaaﬂﬁ .
In particular, (29) shows that J'I' is well-defined and smooth. m|
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Following Virsik, [17], if T" is differentiable and A is another connection
F(E1, Ey) — JV F(E;, E;), we define a section

(30) CxA=JToA: F(E,E)—~ J2#(E, Ey).
The order of such a section can be introduced similarly to Definition 10.

Proposition 8. IfT" and A are connections of orders r and s, respectively, then
' * A has the order r + s.

Proof. We substitute the associated map of A into (28) and (29). 0

To obtain an explicit formula for the associated map of I' * A, we introduce the
following concept. Having a smooth function f: FJ"(E;, E2) — R, we define its
formal differential D f by

(31) Df: FJNE By) = V'E,L,Df(jyte) = dy f(i79).

Then every vertical vector field 4 on V* E; determines (D f, i) : FJ TY(Ey, E) — R.

For the coordinate vector fields 0—2,— we obtain the formal derivatives
af | of of
(32) Dpf = -a—y; + az“l; + ..+ b—g;zg,w.

By iteration, we introduce D f: FJHONE Ey) — R. Let ¥¢(a?,y?, z5), 0 < |B] <

s, be associated map of A. Then the coordinate form of the main term of (29) is

. 0By 0%¢ _,  0®¢ o9 .,
(33) Pl = T U S DU L 5o DT
P o

Remark 3. In both cases of connections in the jet form and of projectable vector
fields we have a situation somewhat similar to the vertical prolongation operators on
classical fibered manifolds studied by Kosmann-Schwarzbach, [11], and the second
author, [8]. In [10] Slovak deduced that every vertical prolongation operator is
differentiable in the sense of our Definitions 9 and 11. However, his proof is based on
quite sophisticated procedures in mathematical analysis, so that we have the feeling
that such a problem in our setting is beyond the scope of the present paper.
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4. EHRESMANN PROLONGATION IN THE CLASSICAL CASE

We describe some properties of connections on a classical fibered manifold p:
E — M in a way which can be generalized to #(E;, Ey). Given A € JJE and
B € T,M,z = py, we denote by A(B) € T,E the A-lift of B. We show that
every A € J:j’E induces similarly a lifting AA: TT,M — TT,E. If A = Jlo and
B= %Io f(t) € TT, M, then we construct a(r(f(¢)))(f(t)): R = TE and set

(34) AA(B) = | o(x(f()(f(2))

where 7: TM — M is the bundle projection. Given some local fiber coordinates x?,
y" on E, we have the induced coordinates y7, y;, y;; on J2E, the induced coordinates
X', Y? on TE and the additional coordinates on T EE denoted by a dot. Then one
finds easily the following coordinate form of (34):

(35) YP=yPXE 9P =yldt, VP =yl X' 4yl X

Let x be the canonical involution of the second tangent bundle. If A € J §E , then
kpoAAoky: TT.M — TT,E is the lifting of another element kA € J2E, [15]. In
coordinates, y%;(kA) = y7;(A). Hence A is holonomic iff k4 = A. Since J2E — J'E
is an affine bundle with the derived vector bundle VE @ (®2T*M), the points KA
and A determine a vector A(A) := m € V,E ® AT M, which is called the
deviation (or difference tensor) of A, [7], [12]. The coordinates of A(A) are yf; —y%;.
If Xy, X, € T, M, then we have A(4)(X1, X2) € V,E.

Let mi =mppy =TTM - TM and w1y = Trappr = TTM — TM be the canonical
projections. Consider C, D € TT, M satisfying

(36) m(C) =m (D) and m (D)= m(C).

Since  exchanges the two projections, C and D are in the same fiber of TT M with
respect to m; and satisfy mo(C' — kD) = 0. Hence C — kD is a tangent vector to a
fiber of TM and such a vector can be identified with an element of T, M, which will
be denoted by C = D and called the strong difference of C and D. In coordinates, if

(37) C = (a',bi,c),D = (b',a',d’) then C - D=(~d").

In [8] it is deduced the the bracket [X,Y] of two vector fields X,Y: M — TM can
be expressed by

(38) [X,Y]=TYoX ~TXoY.
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Lemma 3. Let C,D € TT,. M satisfy the condition (36) for the strong difference
and A € J2E. Then AA(C), MA(D) also satisty (36) and

AA(mC,m0) = (AA(C) = AA(D)) - B1(A)(C = D)

where 3,: J3E — J'E is the jet projection.

Proof. By (35) and (37) we have AA(C) = (yPal,yfb', yla't? +yfct), AA(D)
(Yo', yPa’, ylb'a? + yPd*). This implies our claim.

au

According to Remark 2, two connections [',A: £ — J'E determine I' * A
J'ToA: E— J?E. For T = A the values of ' +T lie in J2E. In this case we obtain
a construction closely related to an idea by Ehresmann, [2].

Definition 12. The map I' = J'T'oI': E = J?E is the Ehresmann prolongation
of I". The composition

(39) Cl:=-Aol:E-SVE®AT'M

is the curvature of I'.

To deduce that CT coincides with the standard curvature of I', we need a property
of the lifting map

AL E X TTM — TTE.
Consider two vector fields X,Y: M - TM,sothat TXoY: M - TTM.
Lemma 4. We have
M(TXoY)=(TTX)oIY: E—~TTE.
Proof. Wehave I'(y) =jl(Tos), jls =T(y). HY(z) = 2|, f(t), then
TX(Y(x)) = 9 (X of).
dtlo

By (34),

M(TX (Y (2)) = % , FEU@ONX(f(1) = (TTX o TY)(y).
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Proposition 9. For every vector fields X,Y: M — T M, we have
CT(X,Y)=[TX,TY]-T([X,Y]).

Proof. Consider TXoY,TY oX: M — TTM. By Lemma 4 we obtain
M(TXoY)=TTXolY and A(TY oX)=TIYolX.
Then Lemma 3 and (38) imply

AoT(X,)Y)=(AT(TXoY)SA(TY 0 X)) —T(TX oY = TY 0 X) =
= -[['X,TY] +I([X,Y]).

5. THE CURVATURE OF A CONNECTION ON ¥ (Ey, E»)

The deviation of an element j,o € J? Z(Ey, Ey) can be defined by means of the
associated map jlo: J2E; — J2E,. In the semiholonomic case we have ¢ = ©g;.
So if we take a holonomic 2-jet Y € J2Ej, then the right-hand side of the second
line in (12) is symmetric except the first term. Hence the deviation A(j:lscr(}’,)) is
independent of y and y!;. This defines a map A(jjo): Ei, = Vo Ey © AT M over
@, i.e. an element of F(E,,VE, ® A’°T*M).

Definition 13. A(jlo) is called the deviation of jlo. The coordinate form of
A(jzo) is ¢ — ¢

Definition 14. For a differentiable connection T': Z(E|, Ey) — JL. Z(E, E,).
the map [ := J'I'o T': Z(E,, Ey) = J>.Z(FE,, E,) is the Ehresmann prolongation
of T.

Definition 15. The composition
CT:=-Aol: F(E, E) — F(E),VE, ® A*T*M)
is the curvature of a differentiable connection I': F(E), Es) — J' F(E1, E»).

Clearly, CT is a section of the canonical projection .7 (E,,V Ey © A*T*AM) —
F (B, Es).

Let I be an r-th order connection with the associated map ®¢(x,y?, =2). Then we
obtain the associated map of CT by setting ¥{ = & in (33) and by antisynunetrizing
in 7 and j. This implies

Proposition 10. The curvature of an r-th order connection has the order 2r.



6. THE BRACKET FORMULA FOR CURVATURE

As remarked in §3, the inclusion T %#(E, E;) C¢ F(TE, -» TM,TE, - TM)
defines the second tangent bundle T(T £ (Ey, E»)) = TT £ (E1, E2). We have a pro-
jection TTp: TT F(E;, E2) — TT M and two projections p, Tw: TT F(E,, E3) —
T Z(Ey, E3). In the above coordinates, consider an element F € TT #(E,, E;) tan-
gent to a curve z7(t), X(t), f*(y,t) and

gi _ 92w, 1)

s ¥ WD),

Then its associated map F:TT.Ey — TT.E2, X =TTp(F), is of the form

a ago a -a_a‘pa'p a
(40) 2% =g YT ) 2 = 5 i+ £ ()
ade afe 8 . O
— a Y4 - Pyq _r.yp
A F()+ y+3PY +aypaquy +8pr.

So %, ®*, f*, F'* are the functional coordinates of F', which are completed by the
coordinates z¢, X%, &%, X% of X € TTM. The coordinate form of 7 or T is

mr(at, X' it XP, 0%, @0, f°, F%) = (a4, X, 0", @),
T7T(.Ti,Xi,j3i,Xi,(pa,@a,fa,Fu) — (mi,ifi,cp“,f“).
Consider the canonical involution kg, or kg, of the second tangent bundle.
Proposition 11. For every F € TT #(E1, E;) over X € TTM there exists a

unique elemenimF € TT % (E,, E;) such that its associated map KE: TT.xE1—
TTKMXEQ is kKF = KE, © FO KE, .

Proof. This follows from (40). 0

Obviously, the coordinate form of & is
(41) w(z,X,%,X,0,9, f,F) = (2,4, X, X, 9, f,®,F).
Consider C,C € TT F(E,, E,) over X, X € TTM satisfying
(42) ar(C) =Tn(C) and wp(C) = Tx(C).

Then we define the strong difference C ~ C € T #(E),E;), Tp(C -~ C) = X - X,
as follows. For every B € (T zE1), we take any YV, Y € (TTEy), over X, X
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such that ¥ =~ ¥ = B. Then one easily verifies that C(Y), C(Y) also satisfy (42),
C(Y) = C(Y) depends on C, C and B only and represents the associated map of an
element C ~ C € T Z(E,, E;), whose coordinates are

(43) (@', X'~ Xi,0% F* - F9).

Let A, B be two differentiable vector fields on F(E;, E2). Then the maps T A o
B,TBo A: #(Ey,E;) - TT % (E, E) satisfy the condition (42) at every ¢ €
F(FE1, Es).

Definition 16. The vector field
[A,B}:=TBoA-TAoB: F(E|,E;)) > TF(E,, Ey)

is called the bracket of A and B.

By (38) we immediately deduce

Proposition 12. If A and B are projectable over A’ and B°, then [A, B] is
projectable over [A°, B°).

Assume A is of order 7 and B is of order s with the associated maps X*(x),
A%(a?,yP, 28), |a| < r and Y¥(z), B*(a%, 97, 23), |B] < s, respectively. Analogously
to §3, the fourth component of the associated map of TAo B is

9A* .  O0A°®

dA° 8A

44 Y B* + —D,B" + <
(44) S P ¥ t oz laf <7
while the fourth component of the associated map of TBo A is
oB* . OB® by oB* by 8B“ b
- X"t D,A DsA®, <
(45) ozt X'+ 9zt A 8 b Bzg s Bl < s

Hence we can summarize by

Proposition 13. The bracket [A, B] has the order r + s and its associated map
is [A%, BY] and the difference (45)—(44).

We are going to generalize Proposition 9 to connections on F(E,, E;). First of
all we remark that every A = jlo € J? F(Ei, Ey),, defines a lifting AA: TT, M —
TT, #(E:, Ez) by

A( 5], 7) = 5| s s @)
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In coordinates, if A = (z,¢% ¢¢,¢8;,¢%) and B = |, f = (z, X, &, X), then
one easily finds the following coordinate form of AA(B):

1o (&', ", @ X, g o X1+ 07 X7).
This directly implies the following generalization of Lemma 3.

Lemma 5. Let C,D € TT, M satisfy the condition (36) for the strong difference
and A € J* F(E\, Ey). Then MA(C), MA(D) satisfy (42) and

AA(rrC, TrC) = (MA(C) = AA(D)) — BL(A)(C = D).

Now we need an assumption of technical character (which is fulfilled for every
finite order connection).

Definition 17. A differentiable connection T': F(E;,E;) — J' F(E),Es) is
called strongly differentiable, if TX is a differentiable vector field on % (E;, E»)
for every smooth vector field X: M — TM.

Proposition 14. For every strongly differentiable connection T' on % (E, Es)
and for all vector fields X,Y on M we have

Cr(X,Y) = [[X,TY] - T([X,Y)).

Proof. Inthe same way as in Lemma 4 we deduce A\['(TX oY) = (TTX)oTY.
Then we apply Lemma 5. O

7. THE ABSOLUTE DIFFERENTIATION

Let A,B € J' #(E, Es),, be two 1-jets with the same target . To deduce that
their difference is an element A ~ B € #(FE,,VE; @ T*M) over ¢, we consider the
associated maps 4, B: J1E; - JLE,,

o _ 99%(2,9)

o - T2 DY) L gP(y).
2 G VT i ()

w=20p e, B

A =
i= g

The element A(Y') — B(Y) is independent of the choice of Y € J!E;, which defines a
map Ei; = VE;®T*M over . (In this sense J! F (E;, E;) is an affine bundle with
the derived vector bundle Z(E;,V Es ® T*M) analogously to the classical case.)

Let s: M — Z(F1, E) be a section and [': F(E,, Ey) — J' F(E,, Es) a con-
nection.
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Definition 18. The absolute differential
Vs: M = F(E1,VE, T*M)

is the above difference Vs(zr) = jls — I'(s(z)).

If X: M — TM is a vector field, we define the absolute derivative of s with respect
to X by

(47) Vxs= (VS,X) M- ?(El,VE2)

where ( , ) is the extension of the evaluation map T'xT* — R. Having an r-th order
M

connection with the associated map (22) and a section s of the form 2® = ¢*(z,v),
then the coordinate form of Vs is

9" (z,y)

(48) e

- @g(mi, yp’ aagoa(xv y))

To obtain Vs, we contract (48) with the coordinate functions X*(z) of X.

Remark 4. In the case E; = E; := E we have a distinguished section I:
M — Z(E,E), I(z) = idg,. Analogously to the case of a classical linear connection
on TM, the absolute differential VI: M — F(E,VE @ T*M) can be called the
torsion of a connection I' on F#(E, E). By (48), the coordinate form of the torsion
of an r-th order connection is —@f(xi, yP,y*,07,0,...,0).

It might be instructive to discuss a special case in more detail. Let E — M be
a vector bundle. Consider the subspace LE C Z(E, E) of all linear maps, which is
a classical vector bundle over M. A connection I' on LE in our sense is a classical
general connection on LE. Hence our approach leads to the original idea of the
torsion of a general connection I' on LE. If w} are the induced fiber coordinates on
LE, the usual coordinate expression of ' is dw? = FF;(27, w]) dz*. Then —F};(x7,47)
is the coordinate form of the torsion of I'. Of course, if we take for [' the tensor
product A ® A* of a linear connection A on E and of the dual connection A* on E*,
[10], then the torsion of A ® A* vanishes, for I is invariant with respect to A @ A*.
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8. THE VECTOR BUNDLE CASE

Assume p: E; —» M is a vector bundle. Then each fiber of #(E4, E2) is a vector
space, provided the linear operations on C®(E,,, Fs,) are defined by extending the
linear operations on Ej,. In other words, #(E;, E;) — M is a vector bundle over
sets, cf. [4]. Such a vector bundle structure is further extended to J* Z(E1, E;) by

Jasy + jisa = ja (51 + §2), alks) = jiks, keR
with addition and multiplication by reals in E,. Hence J! #(E, E;) - M also is a

vector bundle over sets.

Definition 19. A connection I': F(E;, Ey) — J! F(Ey, Es) is called linear if
I is a linear morphism over M.

In the case of an r-th order linear connection, its associated map (22) has the form
(49) G(2,9)2" + @ (2,9)zg + ... + B 2.

If E5 is a vector bundle, then VE, = E, 1\>/<1 E,, which implies
F(E\,VE, ® NX’°T*M) = F(E,, E,) ﬁf(El By @ A2T*M).

In this case, analogously to the classical situation, the curvature will be interpreted
as the second component of the map from Definition 15,

Cr: F(E,,Ey) —» F(E1,E; ® N*T*M),
while the first component is the identity.

Proposition 15. For every differentiable linear connection I', the map CT':
F(Ey, Ey) = F(E1,E; ® A*T*M) is a linear morphism over M.

Proof. One easily verifies that in the linear case both T* and A in Definition 15
are linear morphisms over M. O

Quite similarly, if E3 is a vector bundle, then the absolute derivative Vxs of
a section s with respect to a vector field X on M is identified with the second
component of (47), so that it is section of Z(E;, Es) as well.

We finally remark that several other ideas from the classical theory of connec-
tions can be generalized to the case of #(E, E;). The most interesting ones could
be the vertical prolongation of T', the connections on T #(E1,E2) ¢ F(TE;, —
TM,TE, - TM) or a detailed study of the absolute differentiation in the linear
case. Such a research can be based on some general ideas from the theory of classical
connections collected in the book [10].
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