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Abstract

This paper argues for the need to address the issue of multi-channel network performance under constraints

on channel switching. We present examples from emergent directions in wireless networking to motivate the need

for such a study, and introduce some models to capture channel switching constraints. For some of these models,

we study connectivity and capacity of a wireless network comprising n randomly deployed nodes, equipped with a

single interface each, when there are c = O(logn) channels of equal bandwidth W
c available. We consider an adjacent

(c, f ) channel assignment where a node may switch between f adjacent channels, but the adjacent channel block

is randomly assigned. We show that the per-flow capacity for this channel assignment model is Θ(W
√

f
cn logn ).

We then show how the adjacent (c,2) assignment maps to the case of untuned radios [1]. We also consider a

random (c, f ) assignment where each node may switch between a pre-assigned random subset of f channels. For

this model, we prove that per-flow capacity is O(W
√

prnd
n logn ) (where prnd = 1− (1− f

c )(1− f
c−1 )...(1− f

c− f +1 ))

and Ω(W
√

f
cn logn), with the conjecture that it is Θ(W

√

prnd
n logn ). The capacity constructions presented in this paper

are also relevant and applicable to other scenarios including fixed deterministic assignment (which has interesting

practical implications for elimination of channel switching costs), and we briefly discuss this issue.

This research is supported in part by US Army Research Office grant W911NF-05-1-0246, and a Vodafone Graduate Fellowship.



I. INTRODUCTION

Earlier work on protocols for multi-channel wireless networks [2] has assumed that each node is

capable of switching on all channels. This assumption may be challenged by emerging paradigms in

wireless networking, such as envisioned large-scale deployment of extremely inexpensive wireless devices

embedded in the environment, and dynamic spectrum access via cognitive radio. We briefly summarize

some such scenarios:

• The need for low-cost, low-power radio transceivers to be used in inexpensive sensor nodes can give

rise to many situations involving constrained switching. Hardware complexity (and hence cost), and/or

power consumption may be significantly reduced if each node operates only in a small spectral range,

and switches between a small subset of adjacent channels (e.g., if the transceiver uses an oscillator

with limited tunability). However, if more spectrum is available than a single device can utilize, it

may be possible at time of manufacture to lock different devices on to different frequency ranges.

Also, potentially a transceiver may have an RF channel selector comprising a bank of switchable

µmechanical filters [3], from which it may select one to use for transmission/reception.

• In the case of cognitive radio, given a multi-hop network of secondary users attempting to utilize

unused spectrum, some channels may be locally unavailable to some nodes due to the presence of

an active primary user in the vicinity.

• In wide-area mesh network deployments with a large number of available channels, different nodes

may see different SINR conditions on different channels, and poor channel quality may render some

channels unattractive to use, and effectively unusable over significant time-periods.

Thus, there is need to address the issue of multi-channel network performance in the presence of

constraints on channel-switching, both in terms of determining how asymptotic transport capacity is

affected by the constraints, and designing protocols for efficient channel-coordination, and data-transfer.

It has been proposed in [1] that extremely inexpensive wireless devices can be manufactured if it is

possible to handle untuned radios whose operating frequency may lie randomly within some band. Also

considered in [1] is the possibility that each device may have a small number of such untuned radios,

and a random network coding based approach is proposed to relay information between a single source-

destination pair. Some work on cognitive radio has addressed the issue of coordination in the face of

restricted and variable channel availability at individual nodes due to active primary users [4], [5].

However, no formal theoretical models have been developed for the various types of switching

constraints encountered in these previous works, and in other anticipated scenarios, and the impact of

the constraints on network performance in a general multi-hop setting has not been quantified.
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In this paper we present an initial foundation for this domain by introducing some models for constrained

channel assignment, and exploring issues of connectivity and transport capacity for some of these models.

We consider an adjacent (c, f ) channel assignment, and show that the per-flow capacity for this case

is Θ(W
√

f
cn log n). We then establish a mapping between the adjacent (2c+2,3) and adjacent (4c+1,2)

models and the case of untuned radios [1], and obtain asymptotic capacity results for untuned radios with

random source-destination pairs. We also study a random (c, f ) assignment, where each node is assigned

a random subset of f channels at time of deployment, and can thereafter only switch between these

channels. We also introduce and briefly discuss a spatially correlated channel assignment model.

The capacity constructions presented in this paper are also relevant and applicable to other interesting

scenarios including fixed deterministic assignment, which we briefly discuss in Section XVII. The fixed

deterministic assignment scenario has interesting practical implications in terms of elimination of channel

switching costs (see Section XVII for a brief outline of how, when c = O(logn), two deterministically

assigned non-switchable interfaces per node yield the same asymptotic capacity as one fully switchable

interface per node) for which the reader is further referred to [6].

II. SOME MODELS FOR CONSTRAINED CHANNEL ASSIGNMENT

In this section we elaborate on some of the models for constrained channel assignment that we propose.

These models assume that nodes possess only one interface each, there are c channels available, and all

channels are orthogonal. However, it is possible to extend them to the case where multiple interfaces are

available at each node.

A. Adjacent (c, f ) Assignment

We introduce an assignment model wherein a node can switch between a set of f contiguous channels

(2 ≤ f ≤ c). Thus, if the frequency band is divided into c channels numbered 1, 2, ..., c in order of

increasing frequency, then, at deployment time, each node is assigned a block location i uniformly at

random from {1, ...,c− f + 1} and thereafter it can switch between the set {i, ..., i + f − 1}. This model

is relevant when each individual node has a tranceiver with limited tunability, and thus may only switch

between a small set of contiguous channels. It is also possible to establish a mapping between adjacent

(2c+1,2) assignment, and the case of untuned radios.

B. Random (c, f ) Assignment

In this assignment model, a node is assigned a subset of f channels (2 ≤ f ≤ c) uniformly at random

from the set of all possible channel subsets of size f . This model captures situations where tiny low-cost
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sensor nodes may be equipped with a transceiver having a bank of f filters [3], each of which operates

on some random channel determined at time of manufacture.

C. Spatially Correlated Channel Assignment

In this model, a set of N pseudo-nodes is placed uninformly at random in the network, in addition

to the regular network nodes. Each of these pseudo-nodes is assigned a randomly chosen channel. All

network nodes within a distance R of a pseudonode with assigned channel i are blocked from using

channel i. This model captures channel unavailability due to an active primary user in the vicinity in

cognitive radio networks, as well as situations where an external source of noise leads to poor channel

quality in a certain region.

While these models assume a single-interface at each node, they may be extended to cover the

case where each node has m interfaces. It is also possible to envision situations involving a combination

of these models, e.g., a node may have a bank of filters, each capable of tuning on a few channels in a

contiguous sub-band, with each filter operating on some random sub-band.

III. NETWORK MODEL

In the assumed network model, n nodes are located uniformly at random in a unit area toroidal region.

Nodes use a common transmission range r(n). We assume the Protocol Model [7]. There are c available

channels of bandwidth W
c each. We focus on the case where the total number of available channels

c = O(logn). We believe this is justified because in large scale deployments, the number of nodes will

typically be much larger than the number of available channels. Besides, when c = ω(logn), there is a

huge capacity degradation even with unconstrained channel switching (as shown in [2]), thus making

channelization an increasing liability, and constrained switching can only lead to additional degradation,

and potentially unacceptable performance.

As in [7], each node is source of exactly one flow. It chooses a point uniformly at random (we shall

refer to these points as pseudo-destinations throughout this paper), and selects the node (other than itself)

lying closest to that point as its destination.

IV. NOTATION AND TERMINOLOGY

We use the following asymptotic notation:

• f (n) = O(g(n)) means that ∃c,No, such that

f (n) ≤ cg(n) for n > No
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• f (n) = o(g(n)) means that lim
n→∞

f (n)
g(n) = 0

• f (n) = ω(g(n)) means that g(n) = o( f (n))

• f (n) = Ω(g(n)) means that g(n) = O( f (n))

• f (n) = Θ(g(n))means that ∃c1,c2,No, such that

c1g(n) ≤ f (n) ≤ c2g(n) for n > No

When f (n) = O(g(n)), any function h(n) = O( f (n)) is also O(g(n)). We often refer to such a situation

as h(n) = O( f (n)) =⇒ O(g(n)).

As in [7], we say that the per flow network capacity is λ(n) if each flow in the network can be

guaranteed a throughput of at least λ. Whenever we use log without explicitly specifying the base, we

imply the natural logarithm.

V. SOME USEFUL RESULTS

Theorem 1: (Vapnik-Chervonenkis Theorem) Let S be a set with finite VC dimension VCdim(S). Let

{Xi} be i.i.d. random variables with distribution P. Then for ε,δ > 0:

Pr

(

sup
D∈S

| 1
N

N

∑
i=1

IXi∈D−P(D)| ≤ ε

)

> 1−δ

whenever N > max
(

8VCdim(S)

ε
log2

16e
ε

,
4
ε

log2
2
δ

)

Theorem 2: (Chernoff Bound[8]) Let X1, ...,Xn be independent Poisson trials, where Pr[Xi = 1] = pi.

Let X =
n
∑

i=1
Xi. Then, for any β > 0:

Pr[X ≥ (1+β)E[X ]] <

(

eβ

(1+β)(1+β)

)E[X ]

(1)

Theorem 3: (Chernoff Upper Tail Bound[8]) Let X1, ...,Xn be independent Poisson trials, where Pr[Xi =

1] = pi. Let X =
n
∑

i=1
Xi. Then, for 0 < β ≤ 1:

Pr[X ≥ (1+β)E[X ]]≤ exp(−β2

3 E[X ]) (2)

Theorem 4: (Chernoff Lower Tail Bound[8]) Let X1, ...,Xn be independent Poisson trials, where Pr[Xi =

1] = pi. Let X =
n
∑

i=1
Xi. Then, for 0 < β < 1:

Pr[X ≤ (1−β)E[X ]]≤ exp(−β2

2
E[X ]) (3)

Lemma 1: [8] When n balls are thrown independently and uniformly at random into n bins, then

Pr[ any bin has >
3log n

log logn balls ] ≤ 1
n for sufficiently large n.
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Lemma 2: If m balls are thrown into b bins independently and uniformly at random, then

Pr[ any bin has >
2m
b balls ] ≤ b·exp(− m

3b).

Proof: For bin i, let Ii1, Ii2, ..., Iim be indicator variables indicating whether ball j ( j = 1,2, ...,m)

fell into bin i. Then, Pr[Iik = 1] = 1
b . Let Xi = ∑ Iik. Then E[Xi] =

m
b . By application of the Chernoff bound

from Theorem 3 (setting β = 1), we then obtain that Pr[X >
2m
b ] ≤ Pr[X ≥ 2m

b ] ≤ exp(− m
3b ). Thereafter,

application of the union bound yields that Pr[ any bin has >
2m
b balls ] ≤ b·exp(− m

3b).

Lemma 3: Suppose we are given a unit toroidal region with n points located uniformly at random,

and the region is sub-divided into axis-parallel square cells of area a(n) each. If a(n) =
100α(n) log n

n ,1 ≤
α(n)≤ n

100log n , then each cell has at least 50α(n) logn points and at most 150α(n) logn points, with high

probability.

Proof: We know that the set of axis-parallel squares has VC-dimension 3. In our construction,

we have a set of axis-parallel square cells S such that the cells all have area a(n) = 100α log n
n . Then

considering the n random variables Xi denoting node positions, Pr[Xi ∈ D(D ∈ S ] = 100α log n
n . Then, from

the VC-theorem (Theorem 1):

Pr

(

sup
D∈S

|No. of nodes inD
n

− 100α(n) logn
n

| ≤ ε(n)

)

> 1−δ(n)

whenever n > max
(

24
ε

log2
16e

ε
,
4
ε

log2
2
δ

)

This is satisfied when ε(n) = δ(n) =
50α(n) log n

n . Thus, with probability at least 1− 50α(n) log n
n , the population

Pop(D) of cell D satisfies:
50α(n) logn

n
≤ Pop(D) ≤ 150α(n) logn

n
(4)

Lemma 4: Suppose n points are thrown uniformly at random on the unit torus. Let us consider the set

of all circles of radius R and area A(n) = πR2 on the unit toroid. If A(n) =
100α(n) log n

n ,1 ≤ α(n)≤ n
100log n ,

then each circle has at most 150α(n) logn points, with high probability.

Proof: The set of all circles of radius R in the plane has VC-dimension 3. Thereafter by the same

argument as in the proof of Lemma 3, the result proceeds.
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Lemma 5: If n pairs of points (Pi,Qi) are chosen uniformly at random in the unit area network, the

resultant set of straight-line formed by each pair Li = PiQi satisfies the condition that no cell has more

than n
√

a(n) lines passing through it.

Proof: Given the lines Li are i.i.d., the proof of Lemma 3 in [12] can be applied to prove this result.

VI. RELATED WORK

It was shown by Gupta and Kumar [7] that for a single-channel single-interface scenario, in an arbitrary

network, the per flow capacity scales as Θ( W√
n) bit-m/s per flow, while in a random network, it scales as

Θ( W√
n logn

) bits/s. It was also shown in [7] that if the available bandwidth W is split into c channels, with

each node having a dedicated interface per channel, the results remain the same.

It was shown in [9] that mobility can increase the capacity, and in fact Θ(1) throughput per flow is

attainable when each node is source and destination for exactly one flow each. The capacity of hybrid

networks (those having some infrastructure support in the form of access points) was studied in [10] and

[11].

The throughput-delay trade-off was studied in [12], and it was shown that the optimal trade-off is given

by D(n) = Θ(nT (n)) where D(n) is delay, and T (n) is throughput. The capacity of ultra-wideband (UWB)

networks was studied in [13], and [14].

In the multi-channel context, an interesting scenario arises when the number of interfaces m at each

node may be smaller than the number of available channels c. This issue was analyzed in [2] and it was

shown that the capacity results are a function of the channel-to-interface ratio c
m . It was also shown that

in the random network case, there are three distinct capacity regions: when c
m = O(logn), the per-flow

capacity is W√
n log n

, when c
m = Ω(logn) and also O

(

n
(

log logn
logn

)2
)

, the per flow capacity is Θ(W
√ m

nc),

and when c
m = Ω

(

n
(

log logn
logn

)2
)

, the per-flow capacity is Θ(Wm log logn
logn ).

Another relevant body of work is that on bond percolation in wireless networks, e.g. [15]. The

constrained assignments considered by us also lead to nodes within range being able to communicate only

with a certain probability. However, unlike percolation, in our case the probabilities are not independent

for all pairs of nodes. Besides, percolation results deal with existence of an unbounded cluster, whereas

our goal is to have full connectivity.

A multi-channel multi-hop network architecture has been considered in [16] in which each node has

a single transceiver, and nodes have a quiescent channel to which they tune when not transmitting. A

node wishing to communicate with a destination tunes to its quiescent channel, and transmits the packet
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to a neighbor whose quiescent channel is the same as that of the destination. Thereafter, the packet

proceeds towards the destination on the quiescent channel. This has some similarity to our model and

constructions in that a flow seeks to transition to a target destination channel (see Sections X and XIV for

our constructions). However, in their case, the transition can happen trivially at the very first hop, since

the source node is always capable of tuning to the destination’s quiescent channel, while in our models

nodes can only switch on some channels, and this needs to be taken into account.

VII. UPPER BOUNDS ON CAPACITY

Some general constraints on the capacity of the network (for any channel assignment model) are as

follows:
a) Source-Destination Constraint for f = 1: If f = 1, but c > 1, then a source and its destination

should have the same channel for communication between them to be possible. This may not always

happen if the channels are assigned randomly. To illustrate, consider the class of assignment models

where the assignment to individual nodes is i.i.d. Suppose, Pr[i and dst(i) share a channel ] ≤ p. If the

traffic model is such that any single node can be the destination of only upto D(n) flows, then we argue

thus:
We can obtain at least b n

2D(n)c pairs with distinct nodes (thus leading to independent probabilities). The

probability that at least one of the n source-destination pairs have different channels can be lower bounded

by the probability that at least one of these distinct pairs do not share a common channel, and this is at

least 1− p
b n

2D(n)c. When log
(

1
p

)

= ω(
2D(n)

n ), it grows to 1, as n → ∞. Thus, the network capacity would

be 0. For the adjacent (c, f ) and random (c, f ) assignments studied in this paper, with c = O(logn), this

condition holds, and so f = 1 when c > 1 yields zero capacity.
When f > 1, as in the rest of this paper, this constraint does not apply.

b) Connectivity Upper Bound: Suppose the necesary condition for connectivity is that r(n) =

Ω(g(n)). Thus, the spatial re-use in the network is limited to O( 1
(g(n))2 ) concurrent transmissions on

any single channel. Besides, each source-destination is separated by average Θ(1) distance (see [7] for

details) and hence average Θ( 1
r(n)) hops. Thus per flow throughput is limited to O(W r(n)

n(g(n))2 ).
c) Interference Constraint: In [2], it was established that the per flow capacity is constrained to

O(W
√

1
cn), when single-interface nodes can switch to any channel. This upper bound still applies to

the adjacent (c, f )-assignment case, since whatever is achievable with adjacent (c, f ) assignment, is also

achievable when nodes can switch to any channel.
d) Destination Bottleneck Constraint: If the traffic model is such that some node can be the

destination of upto D(n) flows, the per-flow throughput is constrained to be O( W
D(n)).
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Note that since we are only interested in the region c = O(logn), the connectivity constraint is

asymptotically dominant, and shall drive the upper bounds, as well as the lower bound constructions

presented for the various channel assignment models.

VIII. ADJACENT (c, f ) CHANNEL ASSIGNMENT

Recall that in this model, the frequency band is divided into c channels numbered 1, 2, ..., c in order

of increasing frequency, but an individual node can only use f channels (2 ≤ f ≤ c). At deployment time,

each node is assigned a block location i uniformly at random from 1, ...,c− f + 1 and thereafter it can

switch between the set i, ..., i+ f −1 . Thus, the probability that a node is capable of switching to channel

i is given by pad j
s (i) =

min{i,c−i+1, f ,c− f +1}
c− f +1 , since channel i occurs in min{i,c− i+1, f ,c− f +1} blocks,

and each block is randomly chosen with probability 1
c− f +1 . When the minimum is f , pad j

s (i) = f
c− f +1 >

f
c .

When the minimum is c− f + 1, pad j
s (i) = 1. When the minimum is i, then for i ≥ d f

2e, pad j
s (i) ≥ f

2c .

When the minimum is c− i+1, then for i ≤ c−b f
2c, pad j

s (i) ≥ f
2c .

Let us call channels with pad j
s (i) ≥ f

2c the preferred channels. Then, it can be seem that for any set of

f contiguous channels, at least d f
2e of the channels have pad j

s (i) ≥ f
2c . Hence, each node can switch on

x ≥ d f
2e ≥

f
2 preferred channels. Also note that non-preferred channels only occur at the fringes of the

frequency band.
The probability that a node with block location i shares a channel with another randomly chosen node

is given by pad j(i) = (1+min{i−1, f−1}+min{c− f +1−i, f−1})
c− f +1 . Since block locations are chosen uniformly at

random from 1, ...,c− f + 1, the probability that two randomly chosen nodes share at least one channel

is given by:

pad j =
1

c− f +1

c− f +1

∑
i=1

pad j(i) (5)

It can be seen that min{ f ,c− f +1}
c− f +1 ≤ pad j(i) ≤ min{2 f−1,c− f +1}

c− f +1 . Thus, min{ f ,c− f +1}
c− f +1 ≤ pad j ≤

min{2 f−1,c− f +1}
c− f +1 .

A. Necessary Condition for Connectivity

An adaptation of the proof techniques used to obtain the necessary condition for connectivity in [17],

enables one to handle connectivity with adjacent (c, f ) assignment. The following lemma was stated and

proved in [17].

Lemma 6: (i) For any p ∈ [0,1]

(1− p) ≤ e−p
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(ii) For any given θ ≥ 1, there exists p0 ∈ [0,1], such that

e−θp ≤ (1− p),∀0 ≤ p ≤ p0

If θ > 1, then p0 > 0.

Proof: See Lemma 2.1 in [17].

Lemma 7: If πr2(n) =
(logn+b)

pn , then, for any fixed θ < 1:

n(1− pπr2(n))(n−1) ≥ θe−b (6)

for sufficiently large n.

Proof: The proof proceeds from the proof of Lemma 2.2 in [17] by replacing πr2(n) with pπr2(n)

everywhere. For the sake of clarity, the proof is elaborated in the appendix.

Theorem 5: With an adjacent (c, f ) channel assignment (when c = O(logn)), if p = min{ 2 f−1
c− f +1 ,1} ,

and πr2(n) = (logn+b(n))
pn , where b = lim

n→∞
b(n) < +∞ then:

lim
n→∞

infPr[ disconnection ] ≥ e−b(1− e−b) > 0

where by disconnection we imply the event that there is a partition of the network.

Proof:

The probability that two nodes in range of each other share a channel is min{ f
c− f +1 ,1} ≤ pad j ≤

min{ 2 f−1
c− f +1 ,1} Note that pad j(i) is different for different block locations i primarily because nodes with

locks at the fringes of the band are less likely to share channels with each other. Since, we are deriving a

necessary condition for connectivity, it is possible to make the following assumption for the purpose of this

proof: channel pairs (i,c− f + i+1),1≤ i≤ f −1 possess magical capabilities, such that communication on

channel i ends up being visible on channel c− f + i+1,and vice-versa. Thus, if a node has channel i, then

it can also communicate with a node that does not share any channel with it, but has channel c− f + i+1.

Another way to view this situation is that although nodes are assigned channels as per the adjacent (c, f )

model, at time of network operation, a node having channel c− f + i + 1,1 ≤ i ≤ f − 1 uses channel i

instead (i.e., c− f + i + 1 serves as an alias for i). Under this assumption, pad j(i) = min{ 2 f−1
c− f +1 ,1},∀i.
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(1) (2) (3)

x y x y x y

Fig. 1. Three Cases: Necessary Condition for Connectivity

If the network is disconnected under this assumption, then it must necessarily be so otherwise. This can

be seen thus: suppose we are given a network instance with nodes assigned adjacent channels as per

the adjacent (c, f ) model, and we then impose the assumption stated above. Suppose this network is

disconnected. Now the imposed assumption is removed, but the channel block assigned to each node

remains unchanged. Then, in the new scenario, some nodes that were earlier able to communicate, will

not be able to do so anymore; however those nodes that were incapable of communicating will preserve

their status quo. Thus, the necessary condition would remain valid.

This proof is an adaptation of a similar proof in [17]. We focus on the disconnection event where

singleton sets are partitioned from the rest of network. Recall that p = min{ 2 f−1
c− f +1 ,1}. When f ≥ c+2

3 ,

p = 1, i.e. any pair of nodes that are within range can communicate with each other, and the necessary

condition result from [17] applies directly. Thus we need to consider only f <
c+2

3 for which p = 2 f−1
c− f +1 .

Also note that:

πr2(n) ≤ 2logn
pn

≤ 2α log2(n)

n

(∵ p ≥ 1
c− f +1 >

1
c

and

c ≤ α logn for some constant α and

b(n) < logn for large n ∵ limsupb(n) < +∞)

(7)

The probability that a node x is isolated, i.e., cannot communicate with any neighbor is give by p1 =

(1− pπr2(n))(n−1). Consider the event that nodes x and y are both isolated. There are three different cases

for this (also see Fig. 1): (1) x and y lie within distance r(n) of each other, but do not share a common

channel (2) x and y do not lie within distance r(n) of each other, but have overlapping neighborhood

regions, i.e. lie within distance 2r(n) of each other (3) their neighborhood regions are disjoint, i.e., the

distance between them is greater than 2r(n).

Then, the probability that both x and y are isolated is given by the probability that they cannot

communicate with each other, and none of the other n−2 nodes can communicate with either of them.

Let us first consider case (1), i.e., the distance between x and y is d(n) ≤ r(n). We view it as two

sub-cases, viz., (i) y is at distance d(n) ≤ r′(n) =
(

16log logn
logn

)

r(n) of x, and (ii) y is at distance d(n) >
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r′(n) =
(

16log logn
logn

)

r(n) of x. Also, note that the probability a node z 6= x,y within range of both x and y

is capable of communicating with either one of x and y, given that they cannot communicate with each

other is q ≥ min{3 f−1,c− f +1}
c− f +1 (note that when f >

c
3 , q = 1, as it is impossible to have three disjoint blocks

of f channels each). Also, when f ≤ c+2
4 ,3 f −1 ≤ c− f +1, and q ≥ 3p

2 .

For sub-case (i) of case (1), the overlap area between the neighborhoods of x and y is at least (1−
δ)πr2(n) for any δ > 0 and large enough n, since the separation r′(n)≤

(

16log logn
logn

)

r(n). For our purpose,

it suffices to take δ = 1
5 , yielding an overlap area of at least 4πr2(n)

5 . Then the probability that a node can

communicate with either x or y or both is at least q times the probability of lying in the overlap area.

Thus, the contribution of subcase (i) of case (1) to the probability that both x and y are isolated is

upper-bounded as follows:

When f ≤ c+2
4 , q ≥ 3p

2 :

p21(i) ≤ πr′2(n)(1− p)

(

1−q
4πr2(n)

5

)n−2

< πr2(n)

(

1− 4qπr2(n)

5

)n−2

≤ πr2(n)

(

1− 6pπr2(n)

5

)n−2

≤ πr2(n)e−(n−2) 6
5 pπr2(n) from Lemma 6

≤ 2α log2 n
n

e−(n−2)
6(logn+b(n))

5n

≤ e−
6(logn+b(n))

5 +
12(logn+b(n))

5n +log2α+2log logn−logn

≤ e−
11log n

5 − 6b(n)
5 + 12(logn+b(n))

5n +log2α+2log logn

≤ e−
21logn

10 −b(n) for large n

(8)

When f >
c+2

4 , p = min{ 2 f−1
c− f +1 ,1}≥ 1

2 ,∀c ≥ 2. For this situation, we merely consider the probability that

one of the remaining n−2 nodes can communicate with one of x and y (say x) to obtain the upper bound

on both x and y being isolated:
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Fig. 2. First Case: Necessary Condition for Connectivity

p21(i) ≤ πr′2(n)(1− p)(1− pπr2(n))n−2

≤ 256(loglogn)2

log2 n
πr2(n)(1− pπr2(n))n−2

≤ 256(loglogn)2

log2 n
πr2(n)e−(n−2)pπr2(n) from Lemma 6

≤ 256(loglogn)2

log2 n

(logn+b(n))

pn
e−(n−2) (logn+b(n))

n

≤ 256(loglogn)2(2(2logn))

n log2(n)
e−(n−2)

(logn+b(n))
n

≤ e− logn−b(n)+
2(logn+b(n))

n +log256+log4−log n−log logn+2log loglogn

≤ e−2log n−b(n)− 1
2 loglogn for large n

(9)

Then, from Eqns. 8 and 9, for any f :

p21(i) ≤ e−2log n−b(n)− 1
2 log logn for large n (10)

For sub-case (ii), the situation is depicted in Fig. 2. The probability that some node can talk to either

x or y is lower bounded by the probability that it lies in range of x (πr2(n)) and shares a channel with

it (p), or it lies out of range of x but within range of y ( at least
√

3r(n)r′(n)
2 for large enough n 1 ), and

shares a channel with y (p). The contribution to the probability that both x and y are isolated is thus at

1The area within range of y but out of range of x is given by πr2(n)− overlap area ; where overlap area = 2 (area of quadrant subtending

angle 2θ− area of 4ABC) ≤ πr2(n)− r2(n)sin(2θ). Note that π
3 ≤ θ ≤ π

2 . Thus non-overlap area ≥ r2(n)sin(2θ) = r2(n)(2sin θcosθ) =

r2(n)2sinθ d(n)
2r(n) ≥ 2r2(n)sin π

3
r′(n)
2r(n) ≥

√
3r(n)r′(n)

2
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most:

p21(ii) ≤ (πr2(n)−πr′2(n))(1− p)(1− p(πr2(n)

+

√
3r(n)r′(n)

2
))n−2

≤ πr2(n)

(

1− p

(

πr2(n)+

√
3r(n)r′(n)

2

))n−2

≤ πr2(n)

(

1− pπr2(n)

(

1+

√
3r′(n)

2πr(n)

))n−2

≤ πr2(n)

(

1− pπr2(n)

(

1+
8
√

3loglogn
π logn

))n−2

≤ πr2(n)e−(n−2)pπr2(n)(1+ 4log logn
logn ) from Lemma 6(∵ π < 2

√
3))

≤ 2α log2 n
n

e−(n−2)pπr2(n)(1+ 4log logn
logn ) from Eqn. 7

≤ e−(n−2)pπr2(n)(1+ 4log logn
logn )+log2α+2log logn−logn

≤ e− log n−b(n)−4log logn+
2(logn+b(n))(1+

4log logn
logn )

n +log2α+2log logn−logn

≤ e−2log n−b(n)−log logn for large n

(11)

For case 2, the probability that some node can communicate with either x or y is lower bounded by

the probability that it lies in range of x (πr2(n)) and shares a channel with it (p), or it lies out of range

of x but within range of y (disjunction of the two circles in Fig. 1 (2) is at least 1
2πr2(n)), and shares

a channel with it. Thus the contribution of this case to the probability that both x and y are isolated is

upper bounded by:

p22 = (4πr2(n)−πr2(n))(1− 3
2

pπr2(n))n−2

≤ 3πr2(n)e−
3(n−2)pπr2(n)

2 from Lemma 6

≤ 3(logn+b(n)

pn
e−(n−2) 3(log n+b(n))

2n

≤ 6α log2 n
n

e−(n−2) 3(logn+b(n))
2n from Eqn. 7

≤ e−
3
2 logn− 3

2 b(n)+
3(log n+b(n))

n +log6α+2log logn−logn

≤ e−
9
4 logn−b(n) for large n

(12)
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For case 3, the probability that both x and y are isolated is upper bounded by:

p23 = (1−4πr2)(1− p(2πr2(n)))n−2

≤ (1−2pπr2(n))n−2

≤ e−2(n−2)pπr2(n) from Lemma 6

≤ e−2log(n)−2b(n)+ 4(log n+b(n))
n

(13)

Then, the probability p2 that nodes x and y are both isolated is given by:

p2 ≤ p21(i) + p21(ii) + p22 + p23 (14)

Let us first consider the case where b(n) = b is a constant.

Pr[ disconnection ] ≥ ∑
x

Pr[x is only isolated node]

≥ ∑
x

Pr[x isolated ]−∑
x,y

Pr[x and y both isolated ]

= np1 −n(n−1)p2

≥ n(1− pπr2(n))(n−1)

−n(n−1)
(

p21(i) + p21(ii) + p22 + p23
)

≥ θe−b −n(n−1)(e−2logn−b(n)− 1
2 log logn

+e−2log n−b−log logn

+e−
9
4 logn−b + e−2log n−2b+ 4(logn+b)

n )

≥ θe−b − (1+ ε)e−2b

for any θ < 1,ε > 0, and large n by Lemmas 6 and 7

(15)

Now, let us consider the case where b(n) is not constant, and limn→∞ b(n) = b. Then, for any ε > 0,

b(n)−b ≤ ε for large n. Since the probability of disconnection monotonically decreases in b(n), we can

take the following bound:

Pr[disconnection]≥ θe−(b+ε)− (1+ ε)e−2(b+ε)

( for large enough n)
(16)

Thus, if lim
n→∞

supb(n) < +∞, the network is asymptotically disconnected with some positive probability.
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Corollary 1: With an adjacent (c, f ) assignment, the necessary condition for connectivity is that r(n) =

Ω(
√

c logn
f n ), else the network is disconnected with some positive probability.

Proof: Whenever f ≥ c+2
3 , p = 1 <

3 f
c in Theorem 5, and the necessary condition require πr2(n) >

logn
n >

c logn
3 f n . Whenever, f <

c+2
3 , p = 2 f−1

c− f +1 ≤
3 f
c , and the necessary condition again requires that πr2(n) >

c logn
3 f n . Hence with adjacent (c, f ) assignment, connectivity requires that r(n) = Ω(

√

c logn
f n ). Note that this

can be viewed as r(n) = Ω(
√

logn
pad jn

).

B. Sufficient Condition for Connectivity

It can be shown that having r(n) = Θ(
√

logn
pad jn

) = Θ(
√

c log n
f n ) suffices for connectivity. This will be

evident from our lower bound construction for capacity, and the proof is hence not presented separately.

IX. ADJACENT (c, f ) ASSIGNMENT: CAPACITY UPPER BOUND

A. Upper Bound on Capacity

We proved that the necessary condition for connectivity implies r(n) = Ω(
√

c log n
f n ). Then by the

connectivity constraint mentioned in Section VII, the per flow throughput is limited to O(W
√

f
cn log n)

(recall that the disconnection events considered involved individual nodes getting isolated, and thus some

source node would be unable to communicate with its destination).

X. ADJACENT (c, f ) ASSIGNMENT: CAPACITY LOWER BOUND

We present a constructive proof that achieves Ω(W
√

f
cn log n). This construction has similarity to the

constructions in [7], [12], and [2], but must now handle the constraint that a node may not switch on all

channels. The surface of the unit torus is divided into square cells of area a(n) each. The transmission

range r(n) is set to
√

8a(n), thereby ensuring that any node in a given cell is within range of any other

node in any adjoining cell. Since we utilize the Protocol Model [7], a node C can potentially interfere with

an ongoing transmission from node A to node B, only if BC ≤ (1+∆)r(n). Thus, a transmission by A in

a given cell can only be affected by transmissions in cells with some point within a distance (2+∆)r(n)

from it, and all such cells must lie within a circle of radius O((1+∆)r(n)). Since ∆ is independent of n,

the number of cells that interfere with a given cell is only some constant (say β).

We choose a(n) = 100c log n
f n (i.e. r(n) =

√

800c log n
f n ). Then by Lemma 3, the number of nodes in any cell

lies between 50c log n
f and 150c log n

f w.h.p.

Lemma 8: If there are at least 50c log n
f nodes in every cell D, then with probability at least 1−O( 1

n2 ),

there are at least 12logn nodes in each cell on each of the preferred channels.
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Proof: Let us consider one particular cell D, with xD ≥ 50c log n
f nodes. Let Xi j = 1 if node j is

on channel i, and 0 else. Pr[Xi j = 1] = pad j
s >

f
2c if i is a preferred channel. Let Xi = ∑

i∈D
Xi j. Then

E[Xi] ≥ 25logn. By application of the Chernoff bound in Theorem 4 (with β = 1
2 ) , we obtain:

Pr[Xi ≤ 12logn] ≤ Pr[X j ≤
25
2

logn]

≤ exp(−25logn
8 ) ≤ 1

n
25
8

(17)

Since there are at most c = O(logn) preferred channels, the union bound yields that Pr[X j ≤
25logn for any preferred j] ≤ c

n
25
8

= O( logn

n
25
8

). Also, since there are 1
a(n) = f n

100c log n ≤ n cells, another

application of the union bound yields that:

Pr[Xi < 12logn in any cell ] = O(
1
n2 ) (18)

From Lemma 3, each cell has at least 50c log n
f nodes w.h.p. Thus, each cell has at least 12logn nodes

on every preferred channel w.h.p.

Lemma 9: If there are at least 50c log n
f nodes in every cell D, then with probability at least 1−O( 1

n2 ),

for all adjacent preferred channels i and i + 1, there are at least 12logn nodes in the cell having both

channels i and i+1.

Proof: Let us consider one particular cell D with number of nodes xD ≥ 50c log n
f . Let Xi j = 1 if

node j can switch on both channel i and i + 1 (where both i and i + 1 are preferred), and 0 else. Then

Pr[Xi j = 1] ≥ d f
2 e

c− f +1 ≥ f
2c . Let Xi = ∑

j∈D
Xi j. Then E[Xi] ≥ 25logn. By application of the Chernoff bound

from Theorem 4 (with β = 1
2 ) , we obtain:

Pr[Xi ≤ 12logn] ≤ Pr[Xi ≤
25
2

logn]

≤ exp(−25logn
8

) ≤ 1
n

25
8

(19)

Applying the union bound over the maximum possible c− 1 = O(logn) possibilities for i, we obtain

that Pr[Xi ≤ 12logn for any preferred i, i+1]≤ (c−1)

n
25
8

= O( logn

n
25
8

). Also, there are 1
a(n) = f n

100c log n < n cells,

and thus another application of the union bound yields that:

Pr[Xi ≤ 12logn in any cell] = O(
1
n2 ) (20)
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From Lemma 3, each cell has at least 50c log n
f nodes w.h.p. Thus, each cell has at least 12logn nodes

on every pair of adjacent preferred channels (i, i+1) w.h.p.

Lemma 10: If there are at least 50c log n
f nodes in every cell, and if i and i+x are both preferred channels,

where x ≤ b f
2 c, then with probability at least 1−O( 1

n2 ) there are at least 12logn nodes in the cell having

both channels i and i+ x.

Proof: A node can switch on both i and i + x, if its block location lies between i + x− f + 1 and

i. This probability is f−x
c− f +1 . Since x ≤ b f

2c, this probability is at least d f
2 e

c− f +1 ≥ f
2c . Thereafter the proof

argument is the same as that of Lemma 9.

A. Routing

Let us denote the source of a flow as S, the pseudo-destination as D’, and the actual destination as D.

If there were no constraints on switching, we could have used a routing strategy similar to that in [7], in

which a flow traverses the cells intersected by the straight line SD’, and thereafter needs to take at most

one extra-hop to reach the actual destination D, which must necessarily lie either in the same cell as D’

or in one of the 8 adjacent cells. If that were the case, it can be claimed that:

Lemma 11: The number of SD’D routes that traverse any cell is O(n
√

a(n)).

Proof: From Lemma 5 we know that the number of SD’ straight-lines traversing a single cell are

O(n
√

a(n)) We must now consider the number of routes whose last D’D hop may enter this cell. If D

is in the same cell as D’, there is no extra hop. Otherwise, the number of flows for which D’ lies in one

of the 8 adjacent cells is O(na(n)) w.h.p. from Lemma 3. Thus the total number of traversing routes is

O(n
√

a(n)).

We shall hereafter refer to this routing as straight-line routing, as it basically comprises a straight-line

except for the last hop.

Lemma 12: No node is the destination of more than O(na(n)) flows.

Proof: From Lemma 3, each cell has Θ(na(n)) nodes. Thus, a node can only be the nearest to the

pseudo-destination of a flow if the chosen pseudo-destination lies within its own cell or in one of the 8

adjcaent cells. Again from Lemma 3, the number of pseudo-destinations lying in 9 cells of area a(n) each

is O(na(n)). Thus the result proceeds.

In case of adjacent (c, f ) assignment, we cannot stipulate that all flows be routed along the (almost)

straight-line path SD’D. This is because the flow is required to traverse a minimum number of hops to

be able to guarantee that it can switch from source channel to destination channel. We elaborate further

on this issue.
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Fig. 3. Illustration of detour routing

Channel Selection and Transition Strategy: Initially, after each source has chosen a random

destination, the flows are sequentially processed and each is assigned an initial source channel, as well

as a target destination channel. The destination channel may be chosen from amongst the f channels

available at destination D in any manner, e.g., it may be the one with the smallest number of incoming

flows assigned to it so far.

The flows are processed sequentially. Suppose the source S of a flow is assigned channel set (i, ..., i+

f −1), while the destination D has ( j, ..., j+ f −1). The flow chooses one of the x ≥ f
c preferred channels

available at the source uniformly at random. Let us denote it by l. It also chooses one of the y ≥ f
2

preferred channels available at the destination (let us call it r) as the channel on which the flow reaches

the destination. The destination channel choice may be made in any manner, e.g., it may be the preferred

channel available at the destination with the smallest number of incoming flows assigned to it so far.

We assume, without loss of generality, that l ≤ r. Suppose r− l = k′b f
2c+ m(0 ≤ m < b f

2c). Thus k′ =
r−l−m
b f

2 c
≤ c−1

f−1
2

=
2(c−1)

f−1 ≤ 4c
f . Note that given two preferred channels l and r all channels l ≤ i ≤ r must also

necessarily be preferred. Then, from Lemma 10, it is always possible to transition from l to r in at most

k′ + 1 ≤ steps: l → l + b f
2c, l + b f

2c → l + 2b f
2c, ..., l + k′b f

2c → l + k′b f
2c+ m = r. Thus, the route passes

through a sequence of nodes x1,x2, ...xk such that x1 and x2 share channel l, x2 and x3 share channel

l + b f
2c and so on. When l ≥ r, the transitions are of the form l → l −b f

2c, ...,r.

Thus, we stipulate that the straight-line path be followed if either the chosen source and destination

channels are the same, or if the straight-line segment SD’ comprises h ≥ 4c
f intermediate hops. If S and

D’ (hence also D) lie close to each other, the hop-length of the straight line cell-to-cell path can be much
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smaller. In this case, a detour path is chosen. Consider a circle of radius cr(n) centered at S. Choose a

point on this circle, say P. In the considered c = O(logn) regime, P can be any point on the circle 2. Then

the route is obtained by traversing cells along SP and then PD’D. This ensures that the route has at least

the minimum required hop-length (provided by segment SP). This situation is illustrated in Fig. 3.

A non-detour-routed flow is initially in a progress-on-source-channel mode, and keeps to the source

channel till there are only 4c
f intermediate hops left to the destination. At this point, it enters transition

mode, and starts making channel transitions along the remaining hops, till it has transitioned into its

chosen destination channel. Thereafter, it remains on that channel. When a flow enters a cell in progress-

on-source-channel mode, amongst all nodes in that cell capable of switching on that channel, it is assigned

to the node which has the least number of flows assigned to it on that channel so far.

A detour-routed flow is always in transition mode.

Lemma 13: Given that Lemma 8 holds, suppose a flow is on preferred source channel i and needs

to finally be on preferred destination channel j. Then after having traversed h ≥ 4c
f +1 cells (recall that

2 ≤ f ≤ c) , it is guaranteed to have made the transition.

Proof: By Lemma 10, each cell has at least 12logn nodes on each pair of preferred channels (i,x),

for all x ≤ b f
2c. Thus, given that the chosen source channel is l, the flow packets are transmitted on l on

those hops where the flow is in progress-on-source-channel mode. When the flow moves into transition

mode, the first relay node in this phase chooses as first hop a node having channel pair (l, l + b f
2c) in

the next cell, and transmits flow packets to it using channel l. This node then chooses a next hop having

channel pair (l +b f
2c, l +2b f

2c), and sends packets to it over channel l +b f
2c, and the process continues till

the flow has found a transition into the chosen destination channel r. This requires at most 4c
f intermediate

hops, which are obtained by traversing at most 4c
f +1 cells. Once the transition to destination channel r

is done, flow packets are transmitted on channel r for the remaining hops (if any) to the destination.

Lemma 14: The length of any route increases by only O( c
f ) =⇒ O(logn) hops due to detour routing.

The average route length increases by O(logn) hops.

Proof: The proof proceeds directly from the detour routing strategy.

Lemma 15: If the number of distinct flows traversing any cell is x in case of pure straight-line routing,

2We are currently working on extending this work to larger values of c. In that regime it may be beneficial to choose P as per some

specific rule, e.g. point of intersection of circle and horizontal line through S
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it is at most x+O(n c2

f 2 r2(n)) =⇒ x+O(log4 n) even with detour routing 3.

Proof: Since the detour occurs only upto a circle of radius 4c
f r(n) around the source, the extra detour-

routed flows that may pass through a cell (compared to straight-line routing) are only those whose sources

lie within a distance 4c
f r(n) from this cell. Thus all such possible sources fall within a circle of radius

(4c
f + 1)r(n), and hence area ac(n) = π(4c

f + 1)2r(n)2. Then from Lemma 4, with high probability, any

circle of this radius will have O(nac(n)) nodes, and hence at most O(nac(n)) sources. Thus the number of

detour-routed flows that traverse the cell is O(nac(n)), and the total number of flows is x+O(n c2

f 2 r2(n)) =⇒
x+O(log4 n) w.h.p.

Lemma 16: The number of distinct flows traversing any cell is O(n
√

a(n)) even with detour routing.

Proof: Note that nac(n) = O(log4 n). Since the number of flows passing through cell C in the

straight-line routing case is O(n
√

a(n)) = O(
√

cn logn
f ), the number of flows through a cell C is at most

O(
√

cn log n
f )+O(log4 n) = O(

√

cn logn
f ) = O(n

√

a(n)).

Lemma 17: The number of flows traversing any cell in transition mode is O(log4 n) w.h.p.

Proof: First let us account for the SD’ stretch of each flow, without considering the possible additional

last hop. We account for it explicitly later in this proof.

By our construction, a non-detour routed flow enters the transition mode only when it is 4c
f intermediate

hops away from its destination. All such flows must have their pseudo-destinations within a circle of radius

Θ( c
f r(n)) centered in the cell. The number of destinations that lie within a circle of radius Θ( c

f )r(n) from

the cell is Θ(n( c
f )

2r2(n)) =⇒ O( c3

f 3 logn) w.h.p., (by suitable choice of α(n) = O( c3

f 3 ) in Lemma 4). Thus

the number of non-detour routed flows that may traverse a cell is O( c3

f 3 logn).

A detour-routed flow is always in transition mode. By Lemma 15, there are O(log4 n) such flows

traversing any cell. Each such flow can only traverse a cell twice along the SD’ stretch. This yields

O(log4 n) detour-routed flows (including repeat traversals).

Also, the cell may be re-traversed by some flows on their additional last hop. By an argument similar to

Lemma 12, there are O(na(n)) pseudo-destinations in the adjacent cells, and thus O(na(n))= O( c logn
f ) =⇒

O(log2 n) such last hop flow traversals. Thus the number of flows transitioning in any cell is O( c3

f 3 logn))+

O(log4 n)+O(log2 n). Also c = O(logn). Hence all channels have O(log4 n) transitioning flows in the cell

w.h.p.

3This is a loose upper bound. The actual number of detour-routed flows traversing a cell is much smaller.
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B. Balancing Load within a Cell

Per-Channel Load: Recall that each cell has O(na(n)) nodes w.h.p., and O(n
√

a(n)) flows traversing

it w.h.p. Since nodes are contrained in terms of channel switching, the assignment algorithm of [2] does

not apply here.

Lemma 18: The number of flows that enter any cell on any single channel is O(
n
√

a(n)
c ) w.h.p.

Proof: A flow may be on a channel i in the cell if (1) the flow’s source channel is i and it is

progress-on-source-channel mode, or (2) it is in transition mode, and transitioning through i or the flow’s

destination channel is i, and it has already made a transition.

Note that from our construction, and by our choice of a(n), each flow initially stays on its chosen source

channel, and when within c hops of the destination, makes one transition in the right direction (up or

down in frequency) at each hop till it transitions into its destination channel. Thus a flow is on its source

channel in a given cell if its destination is more than c hops away. Since each source chooses a block of f

contiguous channels in an i.i.d. manner, and thereafter chooses one channel uniformly from x ≥ d f
2e ≥

f
2

preferred channels in this channel block, the probability that a non-transitioning flow is on a particular

preferred channel i is at most
(

2
f

)(

min{ f ,c− f +1,i,c−i+1}
c− f +1

)

≤
(

2
f

)(

min{ f ,c− f +1}
c− f +1

)

= 2
max{ f ,c− f +1} ≤

4
c .

Thus, we know that flows in the progress-on-source channel mode (i.e. non-transitioning flows) are on a

given preferred channel with probability at most 4
c and at least 1

c . Also, there are O(n
√

a(n)) = O(
√

cn log n
f )

flows that traverse the cell. Note that if the number of non-transitioning flows traversing the cell is

m = O(
n
√

a(n)
c ), then trivially in this cell no channel can have more than so many non-transitioning flows.

So we shall focus on the case where the number of traversing non-transitioning flows is m = ω(
n
√

a(n)
c ) =

ω(
√

n logn
c f ). Let m be ω(

n
√

a(n)
c ) and O(n

√

a(n)). Let Xi j be an indicator variable which is 1 if flow j

enters the cell on channel i, and is 0 else. We know that 1
c ≤ Pr[Xi j = 1] ≤ 4

c . Then Xi = ∑ j Xi j denotes

the number of non-transitioning flows that enter the cell on channel i, and m
c ≤ E[Xi] ≤ 4m

c . The Xi j’s are

i.i.d. random variables for a given i, as each flow’s source channel is chosen in an i.i.d. manner (though

they may not be independent for different i, since Xi j = 1 =⇒ Xik = 0 ∀k 6= i). Hence we may still apply

the Chernoff bound from Lemma 3 (with β = 1), and obtain that:

Pr[Xi ≥
8m
c

] ≤ Pr[Xi ≥ 2E[Xi]] ≤ exp(−E[Xi]

3 ) ≤ exp(− m
3c

) (21)

Taking the union bound over the maximum possible c preferred channels, the probability that any channel

has more than 8m
c flows is at most cexp(− m

3c) ≤ exp(−ω(
n
√

a(n)
c )

3c + logc) = exp(−
ω(
√

n logn
c f )

3c + logc) =

exp(−ω(
√

n logn
c3 f )) < exp(−ω(

√

n
log3 n

)). Taking union bound over all 1
a(n) = f n

100c log n cells, this probability
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is less than f n
100c log nexp(−ω(

√
n

log3 n
)) = exp(−ω(

√
n

log3 n
)). We have thus proved that the number of non-

transitioning flows that enter any cell on a given channel is O(
n
√

a(n)
c ).

We now need to account for the fact that some of these flows may be in the transition mode, and

may either be transitioning through an intermediate channel or may have transitioned to the destination

channel. From Lemma 17 the number of such flows traversing the cell is O(log4 n) w.h.p.

Hence the per-channel load in all cells is at most O(
√

n logn
c )+ O(log4 n) = O(

√

n logn
c ) = O(

n
√

a(n)
c )

w.h.p.

Lemma 19: The number of flows that leave any given cell on any single channel is O(
n
√

a(n)
c ) w.h.p.

Proof: The flows that leave a cell fall into two categories (1) those that originate at some node in

the cell (2) those that entered the cell but did not terminate there (i.e. were relayed through the cell). The

former can be no more than the number of nodes in the cell, i.e. Θ(na(n)) = Θ( c logn
f ) = Θ(log2 n). For

the latter, note that the flows that leave the cell, must then enter one of the 8 adjacent cells. Thus, the

former can be no more than 8 times the maximum number of flows entering a cell on any one channel,

which has been established as O(
n
√

a(n)
c ) = O(

√

n logn
c f ) in Lemma 18. Hence, the total number of flows

leaving any given cell on a given channel is O(
n
√

a(n)
c ) w.h.p.

Per-Node Load:

Lemma 20: The number of flows that are assigned to any one node in any cell is O(
n
√

a(n)
c ) w.h.p.

Proof: A node is always assigned the single flow for which it is the source. A node is also assigned

flows terminating in that cell and for which it is the destination, and there are at most D(n) = O( c logn
f ) =⇒

O(log2 n) such flows for any node w.h.p.(from Lemma 12). Besides, a node may be assigned flows that

are in the transition mode, and for which it provides the required adjacent channel pair, or (for flows that

have completed the transition) the destination channel. From Lemma 17 there are O( log5 n
log logn) such flows

in a cell w.h.p. Thus a node has O( log5 n
log logn) assigned flows in transition mode.

We now consider the flows that are in progress-on-source-channel mode and do not originate in the cell.

We have already established in Lemma 18, that the number of flows that are routed on a given channel in

any cell is O(
n
√

a(n)
c ) w.h.p. Also, non-transitioning flows are necessarily on a preferred channel. From

Lemma 8, there are at least 12logn nodes on each preferred channel in each cell w.h.p. When a flow

needs to enter a cell on a certain channel, from amongst all nodes capable of switching on that channel,

it is assigned to the node which has the least number of flows assigned on that channel so far. Thus, no

node can have more than O(
n
√

a(n)
c logn ) non-transitioning flows assigned on any single channel, and no more

than O(
f n
√

a(n)
c log n ) and hence O(

n
√

a(n)
c ) non-transitioning flows assigned overall (recall that c = O(logn)).
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Thus, the resultant number of assigned flows per node is 1+D(n)+O(log4 n)+O(
n
√

a(n)
c ) = O(

n
√

a(n)
c ).

C. Transmission Schedule

We noted earlier that each cell can face interference from at most a constant number β of nearby cells.

Thus, if we consider the resultant cell-interference graph, it has a chromatic number at most 1 + β. We

can hence come up with a global schedule having 1 + β unit time slots in each round. In any slot, if a

cell is active, then all interfering cells are inactive. The next issue is that of intra-cell scheduling. We

need to schedule transmissions so as to ensure that at any time instant, there is at most one transmission

on any given channel in the cell. Besides, we also need to ensure that no node is expected to transmit or

receive more than one packet at any time instant. We use the following procedure to obtain an intra-cell

schedule:

We construct a conflict graph based on the nodes in the active cell, and its adjacent cells (note that

the hop-sender of each flow shall lie in the active cell, and the hop-receiver shall lie in one of the

adjacent cells), as follows: we create a separate vertex for each flow traversing the cell. Since the flow

has an assigned channel on which it operates in that particular hop, each vertex in the graph has an

implicit associated channel. Besides, each vertex has an associated pair of nodes corresponding to the

hop endpoints. Two vertices are connected by an edge if (1) they have the same associated channel, or

(2) at least one of their associated nodes is the same. The scheduling problem thus reduces to obtaining

a vertex-coloring of this graph. If we have a vertex coloring, then it ensures that (1) a node is never

simultaneously sending/receiving for more than one flow (2) no two flows on the same channel are active

simultaneously. Thus, the number of neighbors of a graph vertex is upper bounded by the number of

flows entering/leaving the active cell on that channel, and the number of flows assigned to the flow’s two

hop endpoints (both hop-sender and hop-receiver). Thus, it can be seen from Lemmas 18, 19 and 20 that

the degree of the conflict graph is O(
n
√

a(n)
c )+O(

n
√

a(n)
c ) = O(

n
√

a(n)
c ). Since any graph with maximum

degree d is colorable in at most d +1 colors, the conlict graph can be colored in O(
n
√

a(n)
c ) colors.

Thus the cell-slot is divided into O(
n
√

a(n)
c ) = O(

√

cn logn
f

c ) equal length subslots, and all traversing flows

get a slot for transmission. This yields that each flow will get Ω(W
√

f
cn logn) throughput.

We thus obtain the following theorem:

Theorem 6: With an adjacent (c, f )-channel assignment, the network capacity is Θ(W
√

f
cn log n) per

flow.
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XI. THE CASE OF UNTUNED RADIOS

The untuned channel model is as follows: each node possesses a transceiver with carrier frequency

uniformly distributed in the range (F1,F2), and admits a spectral bandwidth B. Let c = bF2−F1
B c. Then c is

the maximum number of disjoint channels that could be possible. However the channels are untuned and

hence partially ovelapping, rather than disjoint. As per the assumption in [1], two nodes can communicate

directly if the carrier frequency of one is admitted by the other, i.e., if there is at least 50% overlap

between two channels, communication is possible. We consider the issue of capacity of a randomly

deployed network of n nodes, where each node has an untuned radio, and each node is the source of one

flow, with a randomly chosen destination.

Even though each node only possesses a single radio and stays on a single sub-band, due to the partial

overlap between sub-bands, it is still possible to ensure that any pair of nodes will be connected via some

path. Contrast this to the case of orthogonal channels, where we argued in Section VII that when f = 1,

and c > 1, some pairs of nodes are disconnected from each other because they do not share a channel.

It is possible to map the partial overlap feature of the untuned channel case to adjacent (2c + 2,3) and

(4c+1,2) assignment. Note that f = 2 allows for all nodes to be connected, even with orthogonal channels.

Note that the probability that two nodes with untuned radios can directly communicate is 1
c (as also

observed in [1]). With adjacent (2c+1,2) assignment, this probability is at least 2
2c = 1

c . Thus, intuitively,

the necessary condition for connectivity for the adjacent (2c + 1,2) assignment should hold for untuned

radios. However, to make the argument more precise, let us consider a mapping to a (2c+2,3) assignment.

We perform a virtual channelization of the band (F1,F2) into 2c orthogonal sub-bands. We add an

additional (virtual) sub-band of the same width at each end of the band, to get 2c+2 orthogonal channels,

numbered 1, ...,2c+2. Thus 1 and 2c+2 are the artificially added channels. If a radio’s carrier frequency

lies within virtual channel i, it is associated with virtual channel block (i−1, i, i+1), and i−1 is called

its primary virtual channel. Thus the primary channel can only be one of 1,2, ...,2c (since the carrier

frequency can only fall in 2, ..,2c + 1). If a node’s primary channel is i, it is capable of communicating

with all nodes with primary virtual channel i− 2 ≤ j ≤ i + 2 in the virtual channelization. In the actual

situation, the node with the untuned radio would be able to communicate with some subset of those

nodes. Thus, if a pair of nodes cannot communicate directly in the virtual channelization, they cannot

do so in the actual situation either, and disconnection events in the former are preserved in the latter.

The probability that a node has virtual channel block j, j + 1, j + 2 is 1
2c , i.e., the same as for adjacent

(2c + 2,3) assignment, and the necessary condition for the (virtual) (2c + 2,3) assignment continues to

hold for the corresponding untuned radio case. This yields an upper bound on capacity of O(W
√

1
cn log n).
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It can be shown that a schedule constructed for an adjacent (4c+1,2) assignment can be used almost

as-is with untuned radios (except that the number of subslots in the cell-slot must increase by a factor of

7 to avoid interference due to overlap).

We perform a virtual channelization of the band (F1,F2) into 4c+1 orthogonal sub-bands. If a radio’s

carrier frequency lies within virtual channel i, it is associated with virtual channel block (i, i + 1), and

i is called its primary virtual channel. Note that if a node’s primary channel is i, it is capable of

communicating with all nodes with primary virtual channel i− 1 ≤ j ≤ i + 1, but we will pretend that

it can only communicate with those having i or i + 1. Thus, if a pair of nodes share a channel in the

virtual channelization, then they are always capable of direct communication in the actual untuned radio

situation. The probability that a radio has virtual channel block (i, i + 1) is 1
4c , same as for adjacent

(4c+1,2) assignment. In the adjacent (4c+1,2) assignment, all channel are orthogonal and can operate

concurrently. With untuned radios, we assume two nodes can interfere if there is some spectral overlap.

Thus, a transmission by a node on carrier frequency F can interfere with transmissions by nodes with

carrier frequency in the range (F −B,F +B). Hence, the transmission schedule for untuned radios must

follow the additional constraint that if a node with primary virtual channel i is active then no node with

primary channel i− 3 ≤ j ≤ i + 3 should be active simultaneously. This would decrease capacity by a

factor of 7, but would not affect the order of the asymptotic results. Also, in the actual network involving

untuned radios, a transceiver can use upto B = F2−F1
c spectral bandwidth, while in the adjacent (4c+1,2)

case, it would be F2−F1
4c+1 , leading to the possibility of having a higher transmission rate in the former, given

the same transmission power, modulation, etc. However this can only be a difference of a factor between

1 to 4. Thus the capacity results obtained from the virtual channelization may underestimate capacity by

a constant factor of at most 4, which does not affect asymptotic results.

In the adjacent (4c + 1,2) case, our construction performs transitions involving nodes on channels

i, i + 1 and i + j, i + j + 1 communicating over j ≤ 4c hops. The probability that a node has a channel

pair i + k, i + k + 1 at the k-th hop is at least 2
2(4c+1−2+1) = 1

4c (see proof of Lemma 9) and suffices for

transitioning in O(c) hops. In the untuned radio case, transitioning is done through nodes that provide the

required virtual channel pair, and the same transition strategy as for (4c + 1,2) assignment continues to

work.

We re-emphasize that even though f = 1, the untuned nature of the radios allows for a progressive shift

in the frequency over which the packet gets transmitted, thereby allowing a step-by-step transition from the

source’s carrier frequency to a frequency admitted by the destination. The adjacent (c, f ) model captures

this progressive frequency-shift characteristic, and is thus able to model the untuned radio situation.
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Hence the capacity with untuned radios when c = O(logn) is Θ(W
√

1
cn log n) per flow.

XII. RANDOM (c, f ) ASSIGNMENT

In this assignment model, a node is assigned a subset of f channels uniformly at random from the set

of all possible channel subsets of size f . Thus the probability that a node is capable of switching on a

given channel i is prnd
s (i) = f

c = prnd
s ,∀i, and the probability that two nodes share at least one channel is

given by prnd = 1− (1− f
c )(1− f

c−1)...(1− f
c− f +1).

Lemma 21: For c = O(logn), and 1 < f ≤ c, the following holds:

cprnd

f
≤ min{ c

f
,2 f} (22)

Proof: Since prnd ≤ 1, we obtain that cprnd
f ≤ c

f .

If f ≥
√ c

2 , then cprnd
f ≤

√
2c ≤ 2 f follows from the observation that prnd ≤ 1. Hence, we focus on the

case f <
√ c

2 .

1− pcomm = (1− f
c
)(1− f

c−1
)...(1− f

c− f +1
)

≥ (1− f
c− f +1) f

> (1− 2 f
c

) f ≥ 1− 2 f 2

c

∴ prnd ≤ 2 f 2

c

∴
cprnd

f
≤ 2 f

(23)

Thus, cprnd
f ≤ min{ c

f ,2 f}.

Lemma 22: min{ c
f ,2 f} ≤

√
2c

Proof: For a given c, we have 2 ≤ f ≤ c. Thus, given c, c
f is a monotonically decreasing function

of f , while 2 f is a monotonically increasing function of f . c
f = 2 f =

√
2c at f =

√ c
2 . For f ≤

√ c
2 ,

min{ c
f ,2 f} = 2 f ≤

√
2c, and for f >

√ c
2 , min{ c

f ,2 f} = c
f ≤

√
2c. Thus min{ c

f ,2 f} ≤
√

2c.

A. Necessary Condition for Connectivity

Theorem 7: With a random (c, f ) channel assignment (when c = O(logn)), if πr2(n) = (logn+b(n))
pn ,

where p = prnd = 1− (1− f
c )(1− f

c−1)...(1− f
c− f +1), and c = O(logn), and b = lim

n→∞
b(n) < +∞ then:

lim
n→∞

infPr[ disconnection ] ≥ e−b(1− e−b) > 0

where by disconnection we imply the event that there is a partition of the network.

Proof: This proof follows arguments similar to the corresponding proof for adjacent (c, f ) assignment.

We focus on the disconnection event where singleton sets are partitioned from the rest of network. We
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first make the following observation:

p ≥ f
c

(24)

πr2(n) ≤ 2c logn
f

≤ 2α log2(n)

n

∵ c ≤ α logn and for some constant α

and b(n) < logn for large n ∵ limsupb(n) < +∞

(25)

The probability that two nodes in range of each other share a channel is p = prnd where 1− prnd =

(1− f
c )(1− f

c−1)...(1− f
c− f +1). Note that for f >

c
2 , p = prnd = 1, as any two nodes are guaranteed to have

at least one common channel. The probability that a node x is isolated, i.e., cannot communicate with any

neighbor is give by p1 = (1− pπr2(n))(n−1). Consider the event that nodes x and y are both isolated. There

are three different cases for this, as also considered for the adjacent (c, f ) assignment (Fig. 1): (1) x and

y lie within distance r(n) of each other, but do not share a common channel (2) x and y do not lie within

distance r(n) of each other, but have overlapping neighborhood regions, i.e. lie within distance 2r(n) of

each other (3) their neighborhood regions are disjoint, i.e., the distance between them is greater than 2r(n).

Of these, for case (1), consider two sub-cases, viz., (i) y is at distance d(n) ≤ r′(n) =
(

16log logn
logn

)

r(n)

from x, and (ii) y is at distance d(n) > r′(n) =
(

16log logn
logn

)

r(n) from x. Also, note that the probability a

node z 6= x,y within range of both x and y is capable of communicating with either one of x and y, given

that they cannot communicate with each other is given by q = 1− (1− 2 f
c )(1− 2 f

c−1)...(1− 2 f
c− f +1 ≥ p.

Then, it can be seen that

1− p
1−q

=
(1− f

c )(1− f
c−1)...(1− f

c− f +1)

(1− 2 f
c )(1− 2 f

c−1)...(1− 2 f
c− f +1)

=

(

1+
f
c

1− 2 f
c

)(

1+

f
c−1

1− 2 f
c−1

)

...

(

1+

f
c− f +1

1− 2 f
c− f +1

)

≥ 1+
f
c

1− 2 f
c

+

f
c−1

1− 2 f
c−1

+ ...+

f
c− f +1

1− 2 f
c− f +1

≥ 1+
f
c

+
f

c−1
+ ...+

f
c− f +1

≥ 1+
f 2

c

(26)
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Hence:

q ≥ p(1+

1
p −1
c
f 2 +1) ≥ p(1+

c
2 f 2 −1

c
f 2 +1 )( from Lemma 21)

≥ p(1+

c
2 f 2 (1− 2 f 2

c )

c
f 2 (1+ f 2

c )
)

(27)

For sub-case (i) of case (1), the overlap area between the neighborhoods of x and y is at least (1−
δ)πr2(n) for any δ > 0 and large enough n, since the separation r′(n)≤

(

16log logn
logn

)

r(n). For our purpose,

it suffices to take δ = 1
16 , yielding an overlap area of at least 15πr2(n)

16 . Then the probability that a node

can communicate with either x or y or both is at least q times the probability of lying in the overlap area.

Thus, when f
c ≤ (log logn)3

logn , then from Eqn. 27:

q ≥ p(1+

c
2 f 2 (1− 2 f 2

c )

c
f 2 (1+ f 2

c )
)

≥ p(1+
1
3) =

4p
3 for f

c
≤ (loglogn)3

logn
and large n

(28)

Resultantly, the contribution of subcase (i) of case (1) to the probability that both x and y are isolated is

upper-bounded as follows:

p21(i) ≤ πr′2(n)(1− p)(1−q
15πr2(n)

16 )n−2

< πr2(n)(1− 15qπr2

16
(n))n−2 ≤ πr2(n)(1− 5

4
pπr2(n))n−2

for f
c
≤ (loglogn)3

logn

≤ πr2(n)e−
5
4 (n−2)pπr2(n) from Lemma 6

≤ 2α log2(n)

n
e−

5
4 (n−2)pπr2(n)

≤ e−
5
4 logn− 5

4 b− 5(logn+b)
2n −logn+log2α+2log logn

≤ e−
17
8 logn− 5

4 b for large n

(29)

For sub-case (i) of case (1), when f
c >

(log logn)3

logn , we lower bound the probability of a node being able

to communicate with either of x and y by the probability that it is able to communicate with one of them

(say x). Thus the probability that both x and y are isolated is at most:
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p21(i) ≤ πr′2(n)(1− p)(1− pπr2(n))n−2

πr′2(n)(1− pπr2(n))n−2

≤ 256(loglogn)2

log2 n
πr2(n)(1− pπr2(n))n−2

≤ 256(loglogn)2(logn+b(n))

pn log2 n
(1− pπr2(n))n−2

≤ 256(loglogn)2 logn(logn+b(n))

n(loglogn)3 log2 n
(1− pπr2(n))n−2

( as p ≥ f
c

>
(loglogn)3

logn
)

≤ 256(loglogn)2(2log2 n)

n(loglogn)3 log2 n
(1− pπr2(n))n−2

≤ 512
n loglogn

e−(n−2)pπr2(n) from Lemma 6

≤ e− logn−b(n)+
2(log n+b)

n −logn+log512−loglog logn

≤ e−2log n−b(n)− 1
2 loglog logn for large n

(30)

Thus, in sub-case (i), for all f , and large enough n:

p21(i) ≤ e−2log n−b(n)− 1
2 log log logn (31)

For sub-case (ii), the situation is depicted in Fig. 2. The probability that some node can talk to either

x or y is lower bounded by the probability that it lies in range of x (πr2(n)) and shares a channel with

it (p), or it lies out of range of x but within range of y (at least
√

3r(n)r′(n)
2 for large enough n 4 ), and

4The area within range of y but out of range of y is given by πr2(n)− overlap area ; where overlap area = 2 (area of quadrant subtending

angle 2θ− area of 4ABC)≤ πr2(n)− r2(n)sin(2θ). Note that π
3 ≤ θ≤ π

2 . Thus non-overlap area ≥ r2(n)sin(2θ) = r2(n)(2sin θcos theta) =

r2(n)2sinθ d(n)
2r(n) ≥ 2r2(n)sin π

3
r′(n)
2r(n) ≥

√
3r(n)r′(n)

2
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shares a channel with y (p). The probability that both x and y are isolated is thus at most:

p21(ii) ≤ (πr2(n)−πr′2(n))(1− p)(1− p(πr2(n)

+

√
3r(n)r′(n)

2 ))n−2

≤ πr2(n)

(

1− p

(

πr2(n)+

√
3r(n)r′(n)

2

))n−2

≤ πr2(n)

(

1− pπr2(n)

(

1+

√
3r′(n)

2πr(n)

))n−2

≤ πr2(n)

(

1− pπr2(n)

(

1+
8
√

3loglogn
π logn

))n−2

≤ πr2(n)e−(n−2)pπr2(n)(1+ 4log logn
logn ) from Lemma 6(∵ π < 2

√
3))

≤ 2α log2 n
n

e−(n−2)pπr2(n)(1+ 4log logn
logn ) from Eqn. 7

≤ e−(n−2)pπr2(n)(1+ 4log logn
logn )+log2α+2log logn−logn

≤ e− log n−b(n)−4log logn+
2(logn+b(n))(1+

4log logn
logn )

n +log2α+2log logn−logn

≤ e−2log n−b(n)−log logn for large n

(32)

For case 2, the probability that some node can communicate with either x or y is lower bounded by

the probability that it lies in range of x (πr2(n)) and shares a channel with it (p), or it lies out of range

of x but within range of y (disjunction of the two circles in Fig. 1 (2) is at least 1
2πr2(n)), and shares

a channel with it. Thus the contribution of this case to the probability that both x and y are isolated is

upper bounded by:
p22 ≤ (4πr2(n)−πr2(n))(1− 3

2 pπr2(n))n−2

≤ 3πr2(n)e−
3
2 (n−2)pπr2(n) from Lemma 6

≤ e−
3
2 logn− 3

2 b+
3(logn+b)

n −logn+log6α+2log logn

≤ e−
9
4 logn− 3

2 b for large n

(33)

For case 3, the probability that both x and y are isolated is upper bounded by:

p23 ≤ (1−4πr2)(1−2pπr2(n))n−2

≤ (1−2pπr2(n))n−2

≤ e−2(n−2)pπr2(n) from Lemma 6 ≤ e−2log n−2b+
2(logn+b)

n

(34)

Then, the probability p2 that nodes i and j are both isolated is given by:

p2 = p21(i) + p21(ii) + p22 + p23 (35)
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Let us first consider the case where b(n) = b is a constant.

Pr[ disconnection ] ≥ ∑
x

Pr[x is only isolated node]

≥ ∑
x

Pr[x isolated ]−∑
x,y

Pr[x and y both isolated ]

= np1 −n(n−1)p2

≥ n(1− pπr2(n))(n−1)

−n(n−1)(p21(i) + p21(ii) + p22 + p23)

≥ θe−b −n(n−1)(e−2logn−b(n)− 1
2 loglog logn

+e−2log n−b− log logn
6 logn

+e−
9
4 logn− 3

2 b

+e−2log n−2b+
2(logn+b)

n )

≥ θe−b − (1+ ε)e−2b

for any θ < 1,ε > 0, and large n by Lemmas 6 and 7

(36)

Now, let us consider the case where b(n) is not constant, and limn→∞ b(n) = b. Then, for any ε > 0,

b(n)−b ≤ ε for large n. Since the probability of disconnection monotonically decreases in b(n), we can

take the following bound:

Pr[disconnection]≥ θe−(b+ε)− (1+ ε)e−2(b+ε)

( for large enough n)
(37)

Thus, if lim
n→∞

supb(n) < +∞, the network is asymptotically disconnected with some positive probability.

Corollary 2: With a random (c, f ) assignment, the necessary condition for connectivity is that r(n) =

Ω(
√

logn
prndn), else the network is disconnected with some positive probability.

B. Sufficient Condition for Connectivity

Theorem 8: With random (c, f ) assignment, if πr2(n) = 800π log n
prndn , then:

Pr[ network is connected ] → 1

Proof: We present a construction based on a notion of per-node backbones. Consider a subdivision

of the toroidal unit area into square cells of area a(n) = 100log n
prndn . Then by setting α(n) = 1

prnd
in Lemma 3

there are at least 50log n
prnd

nodes in each cell with high probability. Set r(n) =
√

8a(n). Then a node in any
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given cell has all nodes in adjacent cells within its range. Within each cell, choose 2logn
prnd

nodes uniformly

at random, and set them apart as transition facilitators (the meaning of this term shall become clear later).

This leaves at least 48logn
prnd

nodes in each cell that can act as backbone candidates.

Consider any node in any given cell. The probability that it can communicate to any other random node

in its range is prnd . Then the probability that in an adjacent cell, there is no backbone candidate node

with which it can communicate is less than (1− prnd)
48logn

prnd ≤ 1
e48logn = 1

n48 . The probability that a given

node cannot communicate with any node in some adjacent cell is thus at most 8
n48 (as there are upto 8

adjacent cells per node). By applying the union bound over all n nodes, the probability that at least one

node is unable to communicate with any backbone candidate node in at least one of its adjacent cells is

at most 8
n47 .

We associate with each node x a set of nodes B(x) called the primary backbone for x. B(x) is constituted

as follows. Throughout the procedure, cells that are already covered by the under-construction backbone

are referred to as filled cells. x is by default a member of B(x), and its cell is the first filled cell. From

each adjacent cell, amongst all backbone candidate nodes sharing at least one common channel with

x, one is chosen uniformly at random is added to B(x). Thereafter, from each cell bordering a filled

cell, of all nodes sharing at least one common channel with some node already in B(x), one is chosen

uniformly at random, and is added to B(x); the cell gets added to the set of filled cells. This process

continues iteratively, till there is one node from every cell in B(x). From our earlier observations, B(x)

eventually covers all cells with probability at least 1− 8
n47 . Now consider any pair of nodes x and y. If

B(x)∩B(y) 6= φ the two are obviously connected, as one can proceed from x on B(x) towards one of

the intersection nodes, and thence to y on B(y), and vice-versa. Suppose, the two backbones are disjoint.

Then x and y are still connected if there is some cell such that the member of B(x) in that cell (let us call

it qx) can communicate with the member of B(y) in that cell (let us call it qy), either directly, or through

a third node. qx and qy can communicate directly with probability 1 if they share a common channel.

Thus the case of interest is one in which no cell has qx and qy sharing a channel. If they do not share a

common channel, we consider the event that there exists a third node amongst the transition facilitators

in the cell through whom they can communicate.

Note that, for two given backbones B(x) and B(y), the probability that in a network cell, given qx and

qy that do not share a channel, they can both communicate with a third node z that did not participate in

backbone formation and is known to lie in the same cell, is independent across cells. Therefore, the overall

probability can be lower-bounded by obtaining for one cell the probability of qx and qy communicating

via a third node z, given they have no common channel, considering that each cell has at least 2log n
prnd
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possibilities for z, and treating it as independent across cells. We elaborate this further.

Let qx have the set of channels C(qx) = {cx1, ...,cx f }, and qy have the set of channels C(qy) =

{cy1 , ...,cy f }, such that C(qx)∩C(qy) = φ. Consider a third node z amongst the transition facilitators in the

same cell as qx and qy. We desire z to have at least one channel common with both C(qx) and C(qy). Then

let us merely consider the possibility that z enumerates its f channels in some order, and then inspects

the first two channels, checking the first one for membership in C(qx), and checking the second one for

membership in C(qy). This probability is
(

f
c

)(

f
c−1

)

>
f 2

c2 . Thus qx and qy can communicate through z

with probability pz >
f 2

c2 = Ω( 1
log2 n

). There are 2logn
prnd

possibilities for z within that cell, and all the possible

z nodes have i.i.d channel assignments. Thus, the probability that qx and qy cannot communicate through

any z in the cell is at most (1− pz)
2logn
prnd , and the probability they can indeed do so is pxy > 1−(1− pz)

2logn
prnd .

Thus, the probability that this happens in none of the 1
a(n) = prndn

100log n cells is at most (1− pxy)
prnd n

100logn <

(1− pz)
2logn
prnd

prnd n
100logn < (1− 1

c2 )
2logn
prnd

prndn
100logn → e

−Ω( n
log2 n

) (recall that c = O(logn)). Applying union bound over

all
(n

2
)

<
n2

2 node pairs, the probability that some pair of nodes are not connected is at most n2e
−Ω( n

log2 n
)

2 <

1
2e

−Ω( n
log2 n

)+2logn → 0. Thus the probability of a connected network converges to 1.

Remark: The constant in the sufficient condition for connectivity can be made much smaller than

the value 800 that we have used in Theorem 8.

XIII. RANDOM (c, f ) ASSIGNMENT: CAPACITY UPPER BOUND

Since the necessary condition for connectivity requires that r(n) = Ω( logn
prndn), the per flow capacity is

O(W
√

prnd
n log n) from the discussion on the Connectivity Upper Bound in Section VII.

XIV. RANDOM (c, f ) ASSIGNMENT: CAPACITY LOWER BOUND

We present a constructive proof that achieves Ω(W
√

f
cn logn). This construction is quite similar to that

for adjacent (c, f ) assignment. The surface of the unit torus is divided into square cells of area a(n) each.

The transmission range is set to
√

8a(n), thereby ensuring that any node in a given cell is within range

of any other node in any adjoining cell. As discussed for the adjacent assignment case, the number of

cells that interfere with a given cell is only some constant (say β). We choose a(n) = 100c log n
f n (resultantly

r(n) =
√

800c log n
f n ).

Lemma 23: If there are 50c log n
f nodes in every cell, then with probability at least 1−O( 1

n4 ), there are

at least 25logn nodes in each cell on each of the c channels.
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Proof: Let us consider one particular cell D. Let Xi j = 1 if node j is on channel i, and 0 else. Thus

Pr[Xi j = 1] = f
c . Let Xi = ∑

j∈D
Xi j.Then E[Xi]≥ 50logn. By application of the Chernoff bound in Theorem

4 (with β = 1
2 ) , we obtain:

Pr[X j ≤ 25logn] ≤ exp(−50logn
8

) <
1
n6 (38)

Since there are c = O(logn) channels, the union bound yields that Pr[Xi ≤ 25logn for any i ∈ 1,2, ...,c]≤
c

n6 = O( logn
n6 ) =⇒ O( 1

n5 ). Also, there are 1
a(n) = f n

100c log n < n cells, and thus another application of the

union bound yields that:

Pr[ less than 25logn nodes per channel in any cell] ≤ O(
1
n4 ) (39)

A. Routing

Recall Lemmas 11 and 12 stated and proved in Section X for SD’D routing that are applicable here

to. In case of (c, f ) random assignment, as with adjacent assignment, we cannot stipulate that all flows

be routed along the (almost) straight-line path SD’D. This is because the flow is required to traverse a

minimum number of hops to be able to guarantee that it will find an opportunity to make the switch from

source channel to destination channel.

Channel Selection and Transition Strategy: Initially, after each source has chosen a random

destination, the flows are sequentially processed and each is assigned an initial source channel, as well

as a target destination channel. The source channel for a flow originating at node S is chosen according

to the uniform distribution from the f channels available at S. The destination channel may be chosen

from amongst the f channels available at destination D in any manner, e.g., it may be the one with the

smallest number of incoming flows assigned to it so far.

We stipulate that a non-detour-routed flow is initially in a progress-on-source-channel mode, and keeps

to the source channel till there are only d 4c
25 f e intermediate hops left to the destination. At this point, it

enters a ready-for-transition mode, and actively seeks opportunities to make a channel transition along the

remaining hops. It makes use of the first opportunity that presents itself, i.e., if a node in a on-route cell

provides the source-destination channel pair, the flow is assigned to that node for relaying (it enters the

node on the source channel, and leaves it on the destination channel). Once it has made the transition into

the destination channel, it remains on that channel. During the progress-on-source-channel phase, the next

hop node is chosen to be the node in the next cell which has the smallest number of flows assigned so

far on that channel, amongst all nodes that can switch on the source channel. In the ready-for-transition
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phase, it may be assigned to any eligible node that provides either the transition opportunity, or the

source channel (for flows yet to find a transition), or the destination channel (for flows that have already

transitioned into their destination channel).

A detour-routed flow is always in ready-for-transition mode.

Lemma 24: Suppose a flow is on source channel i and needs to finally be on destination channel j.

Then after having traversed h ≥ d 2(c−1)
( f−1) e distinct cells (recall that 2 ≤ f ≤ c, an hence h = O(logn)), it

will have found an opportunity to make the transition w.h.p.

Proof: Let us consider a given flow. From Lemma 3, each cell has at least 50c log n
f nodes w.h.p. The

probability that there is no node with both channels i and j in a given cell along the flow’s route is at

most (1− f ( f−1)
c(c−1) )

50c logn
f (since nodes are assigned channels in an i.i.d. manner). Thus the probability of not

finding such a node after h hops is at most (1− f ( f−1)
c(c−1) )(

50hc logn
f ). If h ≥ d 2(c−1)

25( f−1)e, then after traversing h

distinct cells, the probability of not finding such a node is at most (1− f ( f−1)
c(c−1) )

4c(c−1) logn
( f ( f−1) ≤ exp(−4logn)≤

1
n4 . Then, by applying the union bound over all n flow, the probability that this should happen for even

one flow is less than 1
n3 . Hence all flows will have be able to make the required transition w.h.p. after

traversing h ≥ d2(c−1)
( f−1) e distinct hops. Also h = O(logn), and so O(logn hops suffice for transition w.h.p.

Note that 2(c−1)
25( f−1) ≤

4c
25 f . Thus, the (almost) straight-line SD’D path is followed if either source and

destination channels are the same, or if the straight-line segment SD’ provides h ≥ d 4c
25 f e intermediate

hops. If S and D’ (hence also D) lie close to each other, the hop-length of the straight line cell-to-cell

path can be much smaller. In this case, a detour path is chosen. Consider a circle of radius d 4c
25 f er(n)

centered at S. Choose any point on this circle, say P, so long as P does not lie in the same cell as D (this

guarantees at least one intermediate hop even if 4c
25 f ≤ 1). Then the route is obtained by traversing cells

along SP and then PD. This ensures that the route has at least the minimum required hop-length (since

the segment SP always provides at heast d 4c
25 f e distinct hops(cells). This situation is illustrated in Fig. 3.

The need to perform detour routing for some source-destination pairs does not have any substantial

effect on the average hop-length of routes or the relaying load on a cell.

Lemma 25: The length of any route increases by at most O( c
f ) hops. The average route length increases

by at most O( c
f ) hops.
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Proof: The proof proceeds directly from the detour routing strategy. Recall that the area of a cell is
100c log n

f n , i.e. the side of each cell is 10
√

c log n
f =

r(n)√
8 . The distance SP is at most d 4c

25 f er(n)≤ (1+ 4c
25 f )r(n)

(radius of circle), yielding O( c
f ) additional hops while PD is at most 2(d 4c

25 f e)r(n) (diameter of circle)

yielding another O( c
f ) additional hops. This increases route length by at most O( c

f ) hops.

Lemma 26: If the number of distinct flows traversing any cell is x in case of only straight-line routing,

it is at most x+O(n
(

c
f

)2
r(n)2) =⇒ x+O(log4 n) even with detour routing5.

Proof: The detour occurs only when the straight-line route has less than d 4c
25 f e intermediate hops,

and the new route lies entirely within a circle of radius d 4c
25 f er(n) around the source. Thus the extra

flows that may pass through a cell (compared to straight-line routing) are only those whose sources lie

within a distance d 4c
25 f er(n) from some point in this cell. Thus all such possible sources fall within a

circle of radius (1 + d 4c
25 f e)r(n), and hence area ac(n) = π

(

1+ d 4c
25 f e

)2
r2(n). By Lemma 4, any circle

of this area has at most O(nac(n)) nodes, and hence at most O(nac(n)) sources. Thus the number of

extra flows that traverse the cell due to detour routing is O(nac(n)), and the total number of flows is

x+O(n
(

c
f

)2
r(n)2) =⇒ x+O(log4 n) w.h.p.

Lemma 27: The number of distinct flows traversing any cell is O(n
√

a(n)) even with detour routing.

Proof: Note that nac(n) = O(log4 n). Since the number of flows passing through cell C in the

straight-line routing case is O(n
√

a(n)) = O(
√

cn logn
f ), the number of flows through a cell C is at most

O(
√

cn log n
f )+O(log4 n) = O(

√

cn logn
f ) in this case too.

Lemma 28: The number of flows traversing any cell in ready-for-transition mode is O(log4 n) w.h.p.

Proof: We first account for the flowss traversing the cell along SD’, and shall explicitly account

later for the possible additional D’D hop.

By our construction, a non-detour-routed flow enters the ready-for-transition mode only when it is

Θ( c
f ) hops away from its destination. All such flows must have their pseudo-destinations within a circle

of radius Θ( c
f r(n)) centered in the cell. The number of pseudo-destinations that lie within a circle of

radius Θ( c
f r(n)) from the cell is Θ(n c2

f 2 r2(n)) = O( c3

f 3 logn) =⇒ O(log4 n) w.h.p. (by suitable choice of

α(n) = O( c3

f 3 ) ≥ 1 in Lemma 4, and by observing that c = O(logn)).

A detour-routed flow is always in ready-for-transition mode. From Lemma 26, there are at most

O(log4 n) such flows, and they traverse a cell at most twice, yielding O(log4 n) traversals.

We now account for the fact that all the above routed flows could have an additional last hop that may
5This is a loose upper bound. The actual number of detour-routed flows traversing a cell is much smaller.

37



re-traverse a cell, and needs to be counted separately. This yields at most O(na(n))= O c logn
f =⇒ O(log2 n)

additional traversals. Hence all channels have O(log4 n) transitioning flows in the cell w.h.p.

B. Balancing Load within a Cell

Per-Channel Load: Recall that each cell has O(na(n)) nodes w.h.p., and O(n
√

a(n)) flows traversing

it w.h.p. Due to constrained channel switching, the assignment algorithm of [2] does not apply here.

Lemma 29: The number of flows that enter any cell on any single channel is O(
n
√

a(n)
c ) w.h.p.

Proof: A flow may be on a channel i in the cell if (1) the flow’s source channel is i and it is

progress-on-source-channel mode, or it is in ready-for-transition mode, but is yet to find a transition into

the destination channel (2) the flow’s destination channel is i, and it has already made a transition. A

flow’s source channel can be any of 1,2, ...,c with equal probability, and the source channels for different

flows are independent. However, the destination channels of flows are not necessarily independent, since

two flows with the same destination are more likely to have the same destination channel.

Thus in a given cell, if a flow is in progress-on-source-channel mode, it is equally likely to be on any

channel, i.e., Pr[ flow is on channel i] = 1
c ,∀1 ≤ i ≤ c. Note that if the number of such (non-transitioning)

flows traversing the cell is m = O(
n
√

a(n)
c ), then trivially in this cell no channel can have more than so

many flows. So we shall focus on the case where the number of traversing non-transitioning flows is

m = ω(
n
√

a(n)
c ) = ω(

√

n logn
c f ).

Let m be ω(
n
√

a(n)
c ) and O(n

√

a(n)). Viewing this situation as that of m balls being thrown into c

bins, we know from Lemma 2 that the probability of having more than 2m
c flows on a channel is at most

c·exp(− m
3c)≤ exp(−

ω(
√

n logn
c f )

3c + logc) = exp(−ω(
√

n logn
c2 f

))< exp(−ω(
√

n
log2 n

)). Taking union bound over

all 1
a(n) = f n

100c log n cells, the probability that this happens in any cell is less than f n
100c log n exp(−ω(

√
n

log2 n
)) =

exp(−ω(
√

n
log2 n

)). Since m = O(n
√

a(n)), this proves the load-balance of non-transitioning flows in all cells.

We now need to account for the fact that some of these flows may be in the ready-for-transition mode.

From Lemma 28 there are O(log4 n) flows traversing the cell in this mode w.h.p. Thus, the additional

transitioning overhead per channel is O(log4 n) w.h.p.

Hence, the per-channel load in all cells is at most O(
n
√

a(n)
c )+O(log4 n) = O(

n
√

a(n)
c ) w.h.p.

Lemma 30: The number of flows that leave any given cell on any single channel is O(
n
√

a(n)
c ) w.h.p.

Proof: The proof follows the same argument as that for Lemma 19.

Per-Node Load:
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Lemma 31: The number of flows that are assigned to any one node in any cell is O(
n
√

a(n)
c ) w.h.p.

Proof: A node is always assigned the single flow for which it is the source. A node is also assigned

flows terminating in that cell and for which it is the destination, and there are at most D(n) = O( c logn
f ) =⇒

O(log2 n) such flows for any node w.h.p. (from Lemma 12). Besides, a node may be assigned to relay

flows that are in the ready-for-transition mode: for some it may provide the required channel pair to

facilitate a transition, and for some it may provide the source channel (flows yet to find a transition) or

destination channel (flows that have already transitioned). From Lemma 28, there are O(log4 n) such flows

w.h.p. Thus a node or channel can only have O(log4 n) transitioning flows assigned for relaying.

We now consider the flows that are in progress-on-source-channel mode, and do not originate in the

cell. We have already established in Lemma 29, that the number of flows that enter on a given channel in

any cell is O(
n
√

a(n)
c ) w.h.p. By construction, we have chosen cell sizes such that there are at least 25logn

nodes on each channel in each cell w.h.p. Also c = O(logn). A flow is always assigned to the node with

least load on that channel so far (from amongst all nodes capable of switching on that channel). Then

from Lemma 29, and the fact that each node can switch on only f channels, the number of such flows

that are assigned to any one node is O(
f n
√

a(n)
c logn ) and hence O(

n
√

a(n)
c ) w.h.p.

Thus, the resultant number of assigned flows per node is 1+D(n)+O(log4 n)+O(
n
√

a(n)
c ) = O(

n
√

a(n)
c ).

C. Transmission Schedule

The transmission schedule is obtained in the same manner as for adjacent (c, f ) assignment, by first

obtaining a global inter-cell schedule (recall that the cell-interference graph has chromatic number at most

1+β), and then constructing a conflict graph for intra-cell scheduling. Thus, it can be seen from Lemmas

29, 30 and 31 that the degree of the conflict graph is O(
n
√

a(n)
c )+O(

n
√

a(n)
c ) = O(

n
√

a(n)
c ). Thus the graph

can be colored in O(
n
√

a(n)
c ) colors.

Thus the cell-slot is divided into O(
n
√

a(n)
c ) = O(

√

cn logn
f

c ) equal length subslots, and all traversing flows

get a slot for transmission. This yields that each flow will get Ω(
√

f
cn lognW ) throughput. We thus obtain

the following theorem:

Theorem 9: With a random (c, f ) channel assignment, the described simple protocol achieves through-

put of Ω(W
√

f
cn log n) per flow.
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XV. CAPACITY WITH RANDOM (c, f ) ASSIGNMENT: A CONJECTURE

The upper and lower bounds that we have proved for random (c, f ) assignment are not tight. We

conjecture that the upper bound actually constitutes a tight bound, and that the network capacity should

indeed be Θ(W
√

prnd
n logn). The proof for this conjecture is ongoing work.

XVI. DISCUSSION

The lower bound constructions for the two assignment models yield some interesting insights. As is

intuitive, when all nodes cannot switch on all channels, the transmission range needs to be larger (or

alternatively, the network density must be higher) to preserve network connectivity. This leads to a loss

of capacity compared to the case of unconstrained switching. Also, it may no longer be possible to use

the shortest route towards the destination, and a flow may need to take a circuitous path (detour routing)

in order to ensure that the destination is reached. However, when the number of channels is much smaller

than the number of nodes, the increase in the length of the routes is not asymptotically significant, and

only affects the capacity by a constant factor. Taking all factors into account, when c = O(logn), given

a sufficiently dense network, it is beneficial to attempt to use all channels by assigning different channel

subsets to different nodes, rather than follow the naive approach of using the same f channels at all

nodes. In the latter case, the per-flow capacity would be reduced to Θ(W f
c
√

n log n
). Thus the use-all-

channels approach outperforms the f-common-channels approach by a factor of
√

c
f . As an example, even

when f = 2, utilizing all channels yields a capacity of the order of
√

c channels.

It is also to be noted that when f = c, our models reduce to the unconstrained switching model in [2]

with a single interface per node. For this case, our per-flow capacity results yield Θ(
√

W
n log n), as also

obtained in [2] for c
m = O(logn). However, we are able to achieve the optimal capacity by using a much

simpler flow-channel mapping.

Another interesting insight is yielded by the results for random (c, f ) assignment. Note that a

transmission range of Θ(
√

logn
prndn) is both necessary and sufficient for connectivity. However, at this

transmission range, it is possible that some cells may have some channels missing. Thus, the subgraph

induced by a certain channel (obtained by retaining only nodes capable of switching on that channel, and

assuming this is the only channel they can use) may not necessarily be connected, but the overall network

graph is always connected at this transmission range. This may perhaps sometimes make it necessary (due

to connectivity concerns) to schedule different links of a flow on different channels, even if the source

and destination share a channel. Note that if we set r(n) = Θ(
√

c log n
f n ), then a source-destination pair that

share a channel always have a route with all links using that channel (though it may not necessarily be
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capacity-optimal to use it), since each channel is available on some nodes in each cell.

XVII. APPLICABILITY OF CAPACITY CONSTRUCTIONS TO FIXED DETERMINISTIC ASSIGNMENT

CASE

While the capacity constructions presented in this paper were devised for the proposed constrained

channel assignment models, they can potentially be adapted and applied to a wider range of scenarios.

One particular scenario arises when nodes are equipped with two interfaces, which may each be assigned

a channel deterministically, but the interfaces must then remain fixed on those channels, i.e., no switching

is allowed thereafter (see [6]). For c = O(logn), it is possible to use a modified semi-deterministic variant

of the random (c,2) assignment to achieve per-flow capacity of Θ( W√
n log n

). We briefly outline this as

follows: The network is divided into cells of area a(n) =
100max{logn,c}

n and r(n) is set to
√

8a(n). The

first interface of each node is termed the relay interface. It is assigned a channel deterministically to ensure

that in each cell at least one node has each channel i (this is possible because of the chosen cell sizes).

The second interface is assigned a channel uniformly at random from 1,2, ...,c, and this is termed the

random channel. A flow is assigned the random channel of its source as its source channel; this ensures

that flows have i.i.d. source channels. The routing strategy is similar to that for random (c,2) assignment

and involves detour routing to ensure a route length of at least Θ(c logn) hops. Flows initially progress

on their source channel, and are relayed by nodes whose relay interface is assigned their source channel

(there is always at least one such node in each cell by construction). Flows start seeking opportunities to

transition when they are within Θ(c logn) hops of the destination (i.e. a flow starts checking if the random

channel of the relay node is the same as its destination channel; if it is, the flow makes a transition).

A minor modification of the proofs for random (c, f ) assignment would yield that obtainable per-flow

capacity is Θ( W√
n logn

).

Thus, for c = O(logn), there is no asymptotic loss in capacity (compared to the case of unconstrained

switching with one interface [2]), if each node is equipped with two interfaces that may be assigned

channels deterministically once, but cannot switch thereafter. Thus, channel switching costs can be

eliminated without affecting asymptotic capacity, when the number of channels is not too large. The reader

is referred to [2] and [6] for further details on the impact of channel switching costs, and deterministic

fixed channel assignments.

XVIII. CONCLUSION

In this paper we have presented a case for the study of multi-channel networks with channel switching

constraints. We introduced some models for channel switching constraints, and studied connectivity and
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asymptotic transport capacity of a randomly deployed wireless network for two such models.
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APPENDIX

Proof of Lemma 7

This is basically the proof of Lemma 2.2 from [17], as presented in [17], with the minor change that

πr2(n) is replaced with pπr2(n). Taking the log of the L.H.S. and using the Taylor Series expansion, we

have:

logL.H.S. = logn+(n−1) log(1− pπr2(n))

= logn− (n−1)
∞

∑
i=1

(pπr2(n))i

i

= logn− (n−1)

(

2
∑
i=1

(logn+b)i

ini + ε(n)

)

where ε(n) =
∞

∑
i=3

pπr2(n))i

i
=

∞

∑
i=3

(logn+b)i

ini

≤ 1
3

∞
Z

i=2

(

logn+b
n

)x

dx

≤ 1
3

(

logn+b
n

)2

for large n

Then, substituting, we get:

logL.H.S. ≥ logn− (n−1)

(

logn+b
n

+
5(logn+b)2

6n2

)

≥−b− (logn+b)2 − (logn+b)

n
≥−b−δ

Setting δ = ln 1
θ , and taking exponents on both sides will yield that L.H.S. ≥ θe−b for large n.
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