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This paper exploits the idea that each individual brain region has a specific connection profile to create parcellations of the cortical
mantle using MR diffusion imaging. The parcellation is performed in two steps. First, the cortical mantle is split at a macroscopic
level into 36 large gyri using a sulcus recognition system. Then, for each voxel of the cortex, a connection profile is computed
using a probabilistic tractography framework. The tractography is performed from g-ball fields using regularized particle trajec-
tories. Fiber ODF are inferred from the g-balls using a sharpening process focusing the weight around the g-ball local maxima.
A sophisticated mask of propagation computed from a T1-weighted image perfectly aligned with the diffusion data prevents the
particles from crossing the cortical folds. During propagation, the particles father child particles in order to improve the sampling
of the long fascicles. For each voxel, intersection of the particle trajectories with the gyri lead to a connectivity profile made up of
only 36 connection strengths. These profiles are clustered on a gyrus by gyrus basis using a K-means approach including spatial
regularization. The reproducibility of the results is studied for three subjects using spatial normalization.
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1. INTRODUCTION

Diffusion magnetic resonance imaging is a probe allowing
noninvasive studies of the microscopic structure of brain tis-
sues. For instance, inside white matter, preferential orienta-
tions of fiber bundle axonal membranes induce anisotropy
of the local Brownian motion of water molecules. The fiber
orientation can be inferred from this anisotropy. Hence, one
of the most attractive applications of diffusion imaging is the
tractography of white matter fiber bundles and the inference
of brain connectivity.

Tractography has been developped first from diffusion
tensor imaging (DTI) [1], a technique indicating for each
voxel the direction of the highest amplitude of the diffu-
sion process. Assuming that this direction corresponds to the

main fiber orientation inside the voxel, some of the tracts
can be reconstructed step by step [2—4]. Unfortunately this
simplistic approach can not resolve fiber crossings, which are
numerous in the brain. The problem is partially overcome
with either preprocessing of tensor field [3, 5-9] or more so-
phisticated methods of tractography involving either regu-
larization of the bundle trajectories [10, 11] or probabilis-
tic strategies based on Monte Carlo sampling and models of
uncertainty about fiber orientations [12—14]. The fiber ori-
entation distribution function (ODF) inferred in each voxel
from DTI, however, is not sufficient to map successfully the
large-scale connectivity of the cortex because of the amount
of crossings involved [15].

The emergence of high angular resolution diffusion
imaging (HARDI) provides the opportunity to better model
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water mobility in fiber crossing. Hence, more reliable map-
ping of the corticocortical pathways can be achieved, which
is exploited in this paper. There is no consensus yet on the
best way to interpret HARDI data for tractography [16-23].
The main issue is the choice of the method used to build fiber
ODFs. In this paper, we explore the potential of g-ball imag-
ing, a method pushing further than DTI the idea that the
fiber directions can be inferred from the local maxima of the
amplitude of water molecule radial displacements [24, 25].

The network of anatomical connections linking the neu-
ronal elements of the human brain is still largely unknown
[26, 27]. Therefore, compiling the connection matrix or the
“connectome” of the human brain represents an indispens-
able foundation for basic and applied neurobiological re-
search [27]. One of the challenges faced by this research pro-
gram is that the structural elements of the human brain, in
terms of interesting nodes for the connection matrix, are dif-
ficult to define. Attempting to assemble the human connec-
tome at the level of single neurons is unrealistic and will re-
main infeasible at least in the near future. Nevertheless, a
higher scale of representation is more attractive: there is an
overwhelming evidence that human cognitive functions de-
pend on the activity of large populations of neurons in dis-
tributed network. Unfortunately, brain areas and neuronal
populations are difficult to delineate.

No single universally accepted parcellation scheme cur-
rently exists for the human brain. In the cerebral cortex, neu-
rons are arranged in an unknown number of anatomically
distinct regions and areas, perhaps on the order of 100 or
more [28]. The most standard parcellation, which has been
proposed by Brodmann one hundred years ago from cytoar-
chitectonic criterions, cannot be mapped in vivo. Anyway,
while cyto- and myeloarchitectonics are powerful methods to
highlight anatomical segregation, animal studies have shown
that further parcellations of architectonically homogeneous
areas can be obtained using connectivity [29]. Therefore,
the most promising avenue for parcellating the brain and
compiling the brain connectome originates from the notion
that individual brain regions maintain individual connec-
tion profiles [27]. What defines a segregated brain region
is that all its structural elements share highly similar long-
range connectivity patterns, and that these patterns are dis-
similar between regions. These connectivity patterns deter-
mine the region functional properties [30], and also allow
their anatomical delineation and mapping.

Tractography has been used previously to distinguish
thalamic areas using a lobar parcellation of the cerebral cor-
tex as input [31]. For this application, each thalamus voxel
was attached to the lobe with the strongest connection. The
idea that the whole patterns of connectivity can be used to
identify areal boundaries has been demonstrated in the hu-
man medial frontal cortex [32]. First, connection strengths
from voxels within the medial frontal cortex to all other vox-
els in the rest of the brain were obtained. Connection pro-
files were then used to calculate a cross-correlation matrix,
which was examined for the existence of distinct clusters of
voxels with shared connection patterns. The resulting clus-
ters matched an independent clustering of the same region
obtained from functional imaging. The robustness of the ap-

proach has been studied further in [33]. Another successful
local parcellation related to Broca’s area has been recently
achieved by another group in [34].

In this paper, we extend further the idea of parcellat-
ing the cerebral cortex using connectivity profiles. The main
difference with the works mentioned above is that we ad-
dress the parcellation of the complete cortical mantle. Fol-
lowing the approach of Oxford group [31-33], our pur-
pose would involve the difficult clustering of a huge cross-
correlation matrix. To overcome this problem, our parcel-
lation framework relies on an initial macroscopic parcel-
lation of the cortex into 36 large gyri performed with a
pipeline of processing [35] provided in brainVISA frame-
work (http://brainvisa.info). This initial parcellation is used
to reduce each voxel connectivity profile to a short vector of
36 values, namely the strength of connection to each of the
gyri. A second use of the gyral parcellation is to split the ini-
tial global clustering problem into 36 smaller problems: the
gyri are clustered one by one. The justification leading to the
use of a gyral parcellation to reduce the complexity of the
problem lies in the strong link between this large scale divi-
sion of the cortex and its functional and architectonic organi-
zations [36, 37]. An additional argument stems from the hy-
pothesis that the fiber bundle organization is deeply related
to the folding patterns of the cerebral cortex [38].

In the following, we provide first a brief overview of our
data, of the preprocessing steps and, of our choice for the
fiber ODFE. While this part of the paper is not detailed, it
should be noted that we deal with especially high-quality
datasets based on 200 directions of diffusion and a b value of
3000 s/mm? increasing the contrast between crossing bun-
dles. Moreover, a dedicated MR sequence and several steps
of distortion correction are used to achieve a perfect align-
ment between the diffusion data and the high-resolution T1-
weighted image used to compute the gyral parcellations. All
this care is mandatory to address the mapping of the cortic-
ocortical interareal pathways. This dataset is provided to the
community [39].

The next part describes the different steps of our par-
cellation method. We first describe our “probabilistic” trac-
tography framework dedicated to g-ball fields and based on
regularized particle trajectories. Our method includes several
original refinements compared to its first introduction [40]:
(1) an algorithm initially dedicated to the detection of the
cortical sulci [41] is used to build a mask preventing the par-
ticles from spuriously crossing the cortical folds; (2) a local
sharpening of the g-ball ODF is performed to concentrate
the Monte Carlo sampling around the most probable fiber
directions; (3) a processus creating children fibers during the
tracking has been designed in order to improve the sampling
of long bundles. The behavior of these refinements is illus-
trated using virtual phantoms of crossing computed via sim-
ulation of the random walks of the water molecules in a re-
stricted geometric environment.

Then, we describe the method dedicated to the cluster-
ing of the voxels of the cortical mantle from the connectivity
profile provided by the probabilistic tractography. We first
rapidly recall the basic ideas underlying the computation of
our gyral parcellation [35]. Then we describe the clustering
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algorithm, which is based on a K-means framework includ-
ing a Markov random field regularization procedure. Finally,
the method is tested with three brains through the clustering
of 14 different gyri. We compare the connectivity matrices
obtained for the 14 gyri and study the reproducibility of the
clustering using a spatial normalization method.

2. METHOD
2.1. Fiber orientation distribution function

2.1.1.  Data acquisition

Diffusion-weighted and T,-weighted images were acquired
in three healthy subjects on a GE Healthcare Signa 1.5 Tesla
Excite II scanner provided with a 40 mT/m whole body gra-
dient coil, eight receiver channel acquisition system, and an
eight channel head surface coil.

T,-weighted anatomical images were acquired using fast
gradient echo with inversion recovery sequence (echo time
2 milliseconds, repetition time 9.9 milliseconds, inversion
preparation time 600 milliseconds, flip angle 10°, bandwidth
12.5kHz, FOV 24 cm, and repetition time 2 leading to a
15 minutes and 52 seconds scan time). Voxel size is 0.9375
X 0.9375 mm? with a slice thickness of 1.2 mm. We used 2
repetitions in order to get a very good contrast to noise ratio
simplifying grey/white classification.

Diffusion weighted data were acquired with HARDI
scheme. The sequence is a dual spin echo (echo time is
93.2 milliseconds, volume repetition time is 19000 millisec-
onds, flip angle is 90°, bandwidth is 200 kHz, FOV is 24 cm).
Voxel size is 1.98 x 1.98 mm? with a slice thickness of 2 mm.
The diffusion weighting was isotropically distributed along
200 directions using a b value of 3000 s/mm?. Along the
acquisition, 25 additional volumes without diffusion sen-
sitization were acquired and finally averaged to obtain a
T2-weighted image perfectly aligned with the diffusion-
weighted dataset. The scan time for this diffusion proto-
col was 72 minutes and 50 seconds. A phase map for dif-
fusion data was acquired using a 2D double gradient echo
sequence (echo time 4.5 milliseconds, slice repetition time
441 milliseconds, flip angle 60°, bandwidth 15kHz, FOV
24 c¢m, and the same slice location as for diffusion protocol
leading to a 3 minutes and 25 seconds scan time).

2.1.2.  Diffusion data preprocessing

The use of a twice refocusing diffusion module compensates
for the echoplanar distortions, due to eddy currents, at the
first order. However, two other kinds of geometric distortions
had to be corrected, related to the nonlinearities of the gradi-
ents and to the local static field inhomogeneities induced by
tissue/air interfaces. The first kind of distortions was over-
come during reconstruction using GE warping procedures.
The second kind related to susceptibility was corrected us-
ing the phase map [42, 43]. This method corrects intensity
variation and voxel shifts caused by the local field inhomo-
geneities. After these procedures, T1 and diffusion-weighted
datasets could be aligned perfectly using a rigid transforma-
tion. This transformation was computed by maximizing the

mutual information between the T1-weighted image and the
average T2-weighted image (cf. Figure 1).

2.1.3.  From g-ball to fiber ODF

In order to develop a probabilistic tractography algorithm,
HARDI datasets have to be converted into a fiber ODF in
each voxel. Numerous ideas have been proposed for this pur-
pose. The first class of approaches is based on models of
the signal observed with one single bundle. The model is
used to solve in each voxel a local inverse problem accord-
ing to different alternative frameworks [16-21, 23, 44-46].
The HARDI signal is then explained as a mixture of mod-
els. These approaches convert HARDI data into a fiber ODF
focusing on a small set of putative crossing fiber directions.
Hence, the local distribution around each of these directions
is an estimate of the uncertainty associated with the fiber ori-
entation. It is beyond the scope of this paper to provide a
comparison of all the existing approaches.

A second strategy consists in using iconic representations
of the diffusion process to build the fiber ODE. This point of
view does not rely on model fitting or deconvolution proce-
dures. This is supposed to alleviate the risk of misinterpret-
ing the MR data either because of some weaknesses of the
model or because of some failure of the method used to per-
form the local inverse problem. Diffusion spectrum imaging
(DSI), which provides for each voxel a 3D image of the wa-
ter displacement probability distribution, is at the origin of
this research direction [47]. DSI is based on sampling the 3D
Fourier space of the water displacement distribution, which
requires large pulsed field gradients. The radial projection
of the diffusion function, called the diffusion ODE, is sup-
posed to convey most of the information about the diffusion
process required to guess fiber orientations [48]. It has been
shown recently that the diffusion ODF can be approximated
from HARDI acquisitions using a spherical tomographic in-
version called the Funk-Radon transform, also known as the
spherical Radon transform [24, 25]. In this paper, we use the
ODF resulting from this numerical transform, which is called
g-ball. The most recent refinement leading to a robust an-
alytical reconstruction was not used here [22]. There is no
consensus yet on the comparison between the diffusion ODF
and the g-ball approximation for the accuracy of the fiber
direction estimation [49, 50].

The exact link between g-ball and fiber ODF is still un-
clear, but simple hypotheses lead to convert the g-ball into
interesting candidates for the fiber ODFE. Assuming that at
high b value most of the diffusion weight which stems from
intra-axonal water leads to considering the amplitude of the
radial displacement of water molecules a good marker of pu-
tative fiber directions. The simplest use of this idea consists
in associating the g-ball local maxima with the fiber orien-
tations, obtaining a small set of directions playing the same
role as the sets provided by the model-based methods men-
tioned above. This approach assumes the equivalence be-
tween the local maxima of the g-ball and the local maxima
of the fiber ODEF, which can be discussed [24]. It is known to
often fail when two fiber bundles cross with an angle of less
than 45 degrees.
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FIGURE 1: An illustration of the links between high b value diffusion-weighted data, Funk-Radon transform, diffusion ODF, and fiber ODF:
the slice cuts the corpus callosum, whose fibers approximately follow the X direction. The figure proposes the aligned T1- and T2-weighted
slices and a number of diffusion-weighted slices. When the diffusion gradient is not orthogonal to the fibers (unit vector under corresponding
slice), most of the MR signal is destroyed by water diffusion: the corpus callosum is black (row of slices at the bottom). When the diffusion
gradient is orthogonal to the fibers, water diffusion is restricted by the axonal membranes: some noisy signal survives in the corpus callosum.
Hence, the sum of the raw signal along the equator around the X axis leads to a peak of the g-ball indicating the fiber direction. In this figure,

the g-balls. are scaled according to their anisotropy.

Pushing further the hypothesis of a strong equivalence
between both ODFs, one can consider that the shape of the
g-ball around a local maximum provides a good estimation
of the uncertainty related to the orientation of the underly-
ing fibers. This is the strategy chosen in this paper to sample
the fiber directions during the probabilistic tractography. We
will not address here the validity of this hypothesis, which
requires a crucial research program based on physical phan-
toms of fiber crossing [51-53] and a better understanding of
the physics of diffusion in biological tissues (choice of the
b value, membrane permeability, number of compartments,
etc.). This program, however, needs time to deliver some an-
swers, which should not stop the development of tractog-
raphy algorithms. These algorithms, indeed, have the pos-
sibility to use contextual knowledge, namely the neighbor-
hood of a voxel, in order to tackle locally the inverse problem.

Therefore, they can overcome some of the weaknesses of the
current fiber ODFs and provide meaningful neuroscience re-
sults.

In the following, g-ball data are visualized according to
the following rules. Each g-ball is represented by a spheri-
cal mesh. Each node of the mesh is moved outward accord-
ing to the amplitude y of the water molecule displacement
(more precisely the result of the radial summation of the dif-
fusion function). In order to maximize the information pro-
vided by this deformation process, this move is computed as
(v —ming(y))/(maxs(y) — ming(y)), where S is the sampled
sphere of the current voxel. To improve visualization further,
each node is given a color related to its orientation relative
to the image axis: red for x axis (left-right), green for y axis
(frontal-occipital), and blue for z axis (top-down), interpo-
lated in between. Finally, the resulting mesh is sometimes
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scaled according to the g-ball anisotropy in order to high-
light the regions with the largest influence on tractography
(cf. Figure 1).

2.2. Probabilistic regularized tractography in
q-ball fields

The probabilistic tractography framework used in this pa-
per is an extension of a method described before [40]. This
method has been designed in order to remain as simple as
possible. It should be considered as a first attempt to explore
the potential of the new generation of high-quality data re-
cently provided by our MR physicists. Hence, this method
aims at paving the way for more sophisticated developments
[15]. The initial algorithm was based on regularized particle
trajectories used to perform the Monte Carlo sampling of the
white matter geometry. Validation has been provided using a
crossing phantom made up of sheets of parallel haemodialy-
sis fibers and through the successful tracking of the primary
auditory tract in the human brain [40]. This last achievement
was especially impressive because of the problematic crossing
of this tract with a thick orthogonal pathway. However, the
shortness of this tract and the simple geometry of the phan-
tom were too favorable configurations to consider these first
experiments as warrant of success with long cortico-cortical
pathways. Therefore, in the following, after describing briefly
the initial method (1, 2), three important refinements are
proposed (3, 4, 5).

2.2.1. Particles with inertia

Each origin voxel is spatially sampled in order to define the
starting points of n particles. These particles move inside a
continuous g-ball field defined by linear interpolation. The
particles are given an initial speed in the direction corre-
sponding to the maximum of the local g-ball. This g-ball is
sampled in the 400 = 2x200 directions of acquisitions.
Then, each particle moves with constant speed according
to a simplistic sampling scheme: let us note p(i) the location

of the particle at time i, and v(i) the direction of the particle
speed at time i:

p(i+8t) = p(i) + v(i)*t. (1)

The behavior of the particle speed direction can be under-
stood from a simple mechanical analogy: at each step of the

trajectory sampling, the new speed v(i + §t) results from a

tradeoff between inertia (v(i)) and a force stemming from
the local g-ball (17(;) (see Figure 2):

v(i+6t) = avy + (1 — a)v(i), )

where « is a parameter ranging between 0 and 1 that will be
described latter. The orientation v, of the force acting on
the particle is chosen randomly inside a half cone defined

from the inertia direction @ The probability distribution

F,(v(i)) driving this drawing corresponds to the restriction

Isotropic voxel

FIGURE 2: The normalized standard deviation of the g-ball provides
a measure of anisotropy « that is used to weight the influence of the
g-ball on the particle trajectories: particle inertia increases for low
anisotropy g-balls.

of the g-ball to this half cone. This distribution, called fur-
ther the restricted fiber ODE, is build after renormalizing the
g-ball values within the half cone. The renormalization and
the drawing are performed among the sampled directions of
the g-ball belonging to the half cone. Therefore, the maxi-
mum of the g-ball inside the half cone has the highest prob-
ability to influence the particles.

The weight « is the standard deviation of the g-ball nor-
malized by its maximum in the field, computed after remov-
ing the 5% highest values to prevent the influence of spurious
extreme values resulting for instance from motion artifacts.
Hence, this weight depends on the location in the g-ball field.
In fact, « is a measure of anisotropy [54]. A slice of « can
be visualized in Figure 7(b) For isotropic voxels, & parame-
ter is small and the algorithm favors inertia direction; while
for anisotropic voxels, « parameter is large and the algorithm
favors g-ball distribution (see Figure 2). Hence, the particles
have a tendency to proceed further in the initial direction in
voxels where the diffusion peaks are not reliable.

The particle trajectory regularization depends on three
parameters:

(i) the half-cone angle is used to discard the diffusion
peaks leading to high curvature of the trajectory;
(ii) the g-ball standard deviation (& parameter) tunes the
weight of the inertia;
(iii) the constant sampling &t provides another level of tun-
ing: increasing the trajectory sampling decreases cur-
vature regularization.

In this paper, the influence of these ad hoc parameters is
not explored. In the following, we use a half-cone angle of
30 degree and a constant sampling equal to half the minimal
voxel size, namely 1 mm.

2.2.2. Validation on a fiber crossing phantom

The lack of knowledge about the white matter organization
of the human brain is a huge handicap for the community
developing fiber tracking algorithms. Considering the com-
plexity of the MR diffusion signal, it is rather difficult to vali-
date such algorithms using only simulated data. Therefore,
the development of phantoms with known geometry is in
our opinion crucial for a better understanding of the algo-
rithm behaviors [51].
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A phantom
of haemodialysis fibers

(a) "

FIGURE 3: I: a phantom of fiber crossing. II: a slice of the 512 di-
rections g-ball acquisition with a zoom on the crossing area. g-balls
are superimposed on a T2-weighted MR image whose intensity is
related to water amount. g-balls and MR data have been slightly ro-
tated in order to simplify the reading of the g-ball 3D color code.
Green and blue rectangles denote the regions of interest at the ori-
gin of fiber tracking. III: slices of the number of particles crossing
each voxel at the end of the fiber sampling (left: blue bundle, right:
green bundle). IV: trajectories selected by a threshold on the particle
density map for each bundle. A T2-weighted slice of the phantom
crossing the bundles is used as a background and hides some trajec-
tories.

For this purpose, we have designed a phantom corre-
sponding to two intersecting fiber bundles. It consists of
sheets of parallel haemodialysis fibers (Gambro, Polyflux
210 H) with an inner diameter of 200 micrometers and an
outer diameter of 250 micrometers. Sheets of two different
orientations intersecting at 90 degrees were stacked on each
other in an interleaved fashion [51]. Crossing thickness is
above 2 cm. Fibers are suspended and hold by two arms as
seen in Figure 3. Fibers are permeable to water. They are
dived in pure water mixed with gadolinium.

We performed DW-MRI acquisitions on a 1.5 Tesla Signa
Excite II MRI system (GE Healthcare, Milwaukee) with max-
imal gradient intensity of 40 mT m~!. Acquisitions were per-
formed with spin-echo EPI sequence and Stejskal and Tanner
diffusion gradient [55]: b value is 700 s/mm~2, equivalent to
2000 s/mm~2 for diffusion in brain white matter, 512 orien-
tations of the diffusion gradient (HARDI), matrix 64 X 64,
in-plane voxel resolution 3.75 X 3.75mm, slice thickness
2.0 mm, TE 66.6 milliseconds, TR 3000 milliseconds, 1 shot,
field of view 24 cm. Spatial distortions of the diffusion-
weighted images induced by eddy currents were corrected
before estimating the g-ball field. This correction relies on
a slice-by-slice affine geometric model and maximization of
mutual information with the diffusion free T2-weighted im-
age [56].

FIGURE 4: (a) A slice of the normalized standard deviation of the
g-ball («). (b) Particle trajectories in the initial g-ball field (T2-
weighted image behind). (c) Particle trajectories in the field where
the g-balls of the crossing area have been rotated around the z-axis
(20 degrees). A lot of trajectories are bended which shows that the
algorithm is not overregularized.

A slice of the g-ball field is shown in Figure 3. Unfortu-
nately, because of a difficult positioning of the phantom due
to the shape of its container, the two crossing bundles are not
parallel to the slice axes. To clarify the visualization of the
g-ball data based on color encoding, a rotation around the
z-axis has been applied to the data before visualization. Then
the orientation of each bundle corresponds to a pure color
in the g-ball meshes (green and red). A zoom on the cross-
ing area highlights the additional information provided by
the g-ball compared to a tensor model. The diffusion peaks,
however, would provide a better angular discrimination with
higher b value (q).

For each bundle, the tracking algorithm is fed with a ROI
made up of 3 voxels, using 3 x 130 particles. The particles
propagate throughout a mask defined from the T2-weighted
image. This mask corresponds to the part of the field of
view including the artificial fibers. It was defined from a high
threshold on intensity (the voxels including fibers contain
less water, which leads to less signal), followed by a morpho-
logical closing in order to fill up spurious holes. A slice of
the two resulting particle density maps is shown in Figure 3.
A threshold of 5 particles is applied to these maps in order
to create a mask used to select reliable trajectories. The re-
maining trajectories do not include any spurious fork in the
crossing area.

A second experiment was performed to check that the
successful result was not only due to the fact that the phan-
tom bundles have a straight geometry. With such a geometry,
indeed, curvature regularization is sufficient for the particles
to pass through the crossing area without trouble. For this
second experiment, a 20 degree rotation around the z-axis
was applied to the g-balls of the crossing area correspond-
ing to the zoom of Figure 3. Then the tracking algorithm was
triggered with the same set of particles as for the first experi-
ment using first the initial g-ball field and second the modi-
fied field. However, the particles could propagate throughout
the whole field (no mask) and no filtering of the trajectories
was applied using the particle density map. The results shown
in Figure 4 prove that the curvature regularization does not
prevent the particle to follow the rotated fiber direction in-
dicated by the g-balls of the crossing area. This observation
means that the g-balls of the crossing area are anisotropic
enough to oppose the particle inertia.
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2.2.3. The mask of propagation

The particles propagate throughout a mask and trajectories
stop only when they leave this mask. Thanks to the perfect
alignment between the high resolution T1-weighted image
and the diffusion dataset, a first refinement of our initial
method could be designed: a mask preventing the particle
from crossing the cortical folds. This can be achieved us-
ing a pipeline of processing dedicated to T1-weighted images
and proposed by BrainVISA. A mask of the brain is first de-
fined through bias correction, histogram analysis, and math-
ematical morphology [57, 58]. Then an homotopic chain of
processing is providing a hole-proof skeleton of the cere-
brospinal fluid that can be viewed as a negative mold of the
brain filling up the folds [41]. A dilation is applied to this
skeleton through the addition of its 26-connected neighbors
in order to create a wall that particles cannot cross whatever
their trajectory. The dilated skeleton is finally removed from
the brain mask in order to yield the mask of propagation.
A slice of this mask is proposed in Figure 7(a). Because of
the 1 mm resolution of T1-weighted images and the minimal
2 mm thickness of the cortex on both sides of the folds, this
dilated sleketon does not include any white matter voxel. In
fact the mask is made up of the white matter and of a thin
layer of cortical grey matter.

2.2.4. Sampling of long fascicles

Let us consider a long fascicle of 5 cm. Let us consider also a
particle traveling step by step along this fascicle with 1 mm
jumps. Let us assume that the g-balls located along this fas-
cicle always present a very strong peak in the direction of the
fascicle. This means that at each step, the sampling of the re-

stricted fiber ODF F,(v(i)) providing the next direction to
follow has a very high chance to select the actual fascicle di-
rection. However, for the particle to reach the end of the fas-
cicle, this event has to occur 50 times in a row, which is al-
most impossible except with g-ball close to Dirac distribu-
tions. Therefore, even with a very large number of particles,
our probabilistic tractography is highly biased toward short
range connections. Two refinements of our sampling strategy
have been introduced to improve the situation:

(i) a processus creating child particles while sampling
long fascicles supported by high probabilities when
drawing from the restricted fiber ODFs;

(ii) a sharpening of the restricted fiber ODFs: the drawing
weight is concentrated around the maximum of the g-
ball in the underlying half cone.

The creation of child particles follows an intuitive heuris-
tics, tuned by a threshold on the probability drawed from the
restricted fiber ODFs. At each step, the threshold is defined as

a percentage of the maximum of F,;(v(i)). A mother particle
fathers a child at each jump as long as the series of proba-
bilities drawed since the beginning of its trajectory remains
above the threshold. The mother particle becomes sterile af-
ter the first drawing under the threshold. The children are
not fertile. Their initial speed is the same as the mother’s one.
The process is illustrated in Figure 5 using artificial g-ball

fields computed from a random walk simulator briefly de-
scribed in the appendix [59]. From these simulated crossing
bundles, we perform tracking from a ROI located at the left
extremity of one of the bundles using different thresholds.
For each experiment, a density map is computed: each voxel
reports the number of times it has been intersected by a tra-
jectory. Without child birth, the density drops down rapidly
with the distance from the initial ROI: most of the particles
rapidly quit the bundle. With the child creation process, it is
possible to find a threshold compensating the particle lost.

2.2.5. Sharpening the q-ball

Working with g-ball fields raises the issue of the optimal b
value for g-ball acquisitions. Increasing the b value, indeed,
sharpens the Bessel kernel and increases the ability to resolve
distinct diffusion peaks but at the cost of a lower signal-to-
noise ratio. The 3000 s/mm? b value used in this paper leads
to a very low signal-to-noise with our scanner, that is fortu-
nately compensated by the 200 directions of diffusion sensiti-
zation. The resulting g-balls are not focused enough around
the putative fiber direction to be used safely as fiber ODE.
Therefore, we propose to sharpen the g-ball restriction in in-
ertia half cones in order to build the restricted fiber ODEF. For
this purpose, F,;(v(i)) is defined further as
—_= 1 1 d) — Ymin
RO = gep(ght—tm) g
where § is the sharpening parameter, Y¥max and ¥min are the
extrema of the g-balls in the inertia half cone, and N is
a normalizing factor. As S tends to 0, the restricted ODF
gets closer to a Dirac function putting most of the sampling
weight around the local maximum of the g-ball supposed
to indicate the most reliable trajectories. An illustration of
the effect of sharpening applied to the g-balls is proposed
in Figure 6 thanks to the diffusion simulator described in
Appendix. Simulated data with a weighting in diffusion of
b = 700 s/mm~2, can be compared to simulated data with
higher b value. Decreasing the sharpening parameter, as well
as increasing the b value, tends to refine the g-balls to their
maxima. It should be noted that our naive sharpening ap-
proach will have to be improved, because it is not robust to
large differences in the amplitudes of the peaks of the g-ball
ODGF. A very attractive candidate based on spherical deconvo-
lution has been recently proposed by Descoteaux et al. [23].

Figure 7 shows also the global sharpening of the g-ball on
our human diffusion data. It should be noted that our sharp-
ening approach preserves the shape of the g-ball around a
local maximum. For instance, a fan of fibers should lead to
a crest of high probability, therefore preserving more of the
information provided by the fiber ODF than the simple se-
lection of the local maximum. The tuning of the sharpening
parameter mixed up with the child creation process is illus-
trated with simulated data (cf. Figure 8).

In conclusion, this set of refinements improve the behav-
ior of our framework relative to long fibers. In the follow-
ing, the child creation threshold and the sharpening param-
eters have been set following our experiment with simulated
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(a) (b)

(d) (e)

FiGure 5: Tuning the child particle creation process. Tracking is performed from a ROI of 5 X 3 voxels located at the left extremity of one
of the bundles of the simulated crossing with 4 particles per voxel and different tunings. For each experiment, a density map is computed:
each voxel reports the number of times it has been intersected by a trajectory. For one slice of the phantom: (a) g-ball, (b) no child particles.
For other experiments, each initial particle fathers a child particle at each step as long as the restricted ODF probability remains above a
percentage of the local maximum. (c) Birth threshold of 97%, (d) birth threshold of 95%, (e) birth threshold of 90%.

Sharpening

..+“ (b)

FiGure 6: Influence of the sharpening parameter on g-balls. Simu-
lated crossing (90 degrees). Top: (a) native meshes, b = 700 s/mm~2.
(b) Sharpened meshes with S = 0.2. (c) Sharpened meshes with
S = 0.1. (d) Sharpened meshes with § = 0.002. Bottom: simulated
data with high b values. (a) Native meshes b = 2000 s/mm~2. (b)

Native meshes, b = 4000 s/mm 2.

phantoms. We are well aware, however, that more careful
studies have to be carried on for a better tuning of these pa-
rameters in noisy situations. Nevertheless, it should be noted
that the most noisy g-balls occur inside grey-matter, where
anisotropy is low. Therefore, they should not be able to stand
strongly against the particle inertia. It should be noted that
the g-ball field visualizations provided in this paper do not
always scale the g-ball according to anisotropy (cf. Figure 1).
Hence, the grey matter g-balls visibility is sometimes higher
than their influence on the tracking process.

2.3. Connectivity-based parcellation

The tractography method introduced above is used to com-
pute the connectivity profiles of all the voxels of the cortical
mantle. Similarities between these profiles are used to parcel-
late the cortex into areas with stable profiles. The parcellation
is computed in two steps. The cortex is first parcellated into
large gyri, then each gyrus is parcellated into smaller entities
according to the profiles of connectivity to the gyral parcella-
tion.

Projecting a parcellation from one anatomical struc-
ture toward another using tractography-based connectivity
is bound to become a very powerful tool for neuroscience.
Its potential has been shown for instance to project a corti-
cal lobar parcellation toward the thalamus [31] or toward the
corpus callosum [60]. A very attractive extension of the same
idea will consist in projecting areas mapped with functional
imaging. Another variant of the idea described in this paper
is the “feedback” projection: our clustering aims at parcellat-
ing further the initial parcels.

For the two pioneer applications mentioned above, the
projection is performed from the parcel with the maxi-
mum connectivity strength. In this paper, this “maximum
connectivity-strength-" type of projection is used to initialize
anon supervised clustering algorithm with a more ambitious
objective: the clustering is performed according to similar-
ities between vectors made up of the connectivity-strength
with each of the parcels. This objective is mandatory to ad-
dress the cortex parcellation, because what defines a cortical
area is not one but a set of connections [27].

2.3.1.  Gyral parcellation

The gyral parcellation used by our method has been com-
puted from the T1-weighted image, using pipelines of pro-
cessing embedded in BrainVISA framework. The cortical
folds are first extracted one by one [61], then a pattern-
recognition system made up of 500 multilayer perceptrons
gathers the elementary folds to identify the main sulci [62].
For the three brains of this paper, a human expert checked
the result of this recognition and performed some manual
corrections. Finally, a last pipeline of processing uses the
sulci to perform an automatic parcellation of the cortical sur-
face into gyri [35]. This parcellation of the cortical surface is
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FIGURE 7: Propagation mask and tuning of inertia. (a) A slice of the propagation mask superimposed with the gyral parcellation. (b) Alpha
map: alpha is a measure of anisotropy increasing the influence of the g-ball versus the particle inertia. (c) Zoom on the g-ball of the yellow
area. (d) Zoom on the g-ball of the yellow area with a global sharpening focusing the distribution weight around the g-ball maximum
S = 0.1 (it should be noted that during the tracking, the sharpening is performed locally inside a half cone of directions defined by the

particle inertia).

projected to the whole cortical mantle using standard tech-
niques of mathematical morphology. A set of views describ-
ing the gyral parcellations obtained for the three brains is
presented in Figure 9. The result is relatively stable across
subjects and hemispheres, although the large variability of
the folding patterns and some weaknesses of our system lead
to some differences. The color code labelling the 36 gyri is
used further in the rest of the paper to describe the projected
parcellations.

2.3.2.  Connectivity profiles

The parameters of the tractography are the following: the
threshold controlling the child creation is 5% and the sharp-
ening parameter is 0.1. For practical reasons, only four
mother particles are triggered from each voxel of the corti-
cal mantle defined at the resolution of the T1-weighted im-
age. For a given voxel, the four mother particles father an
average of 80 children, and a maximum of 250 children. The

number of voxels making up a gyrus is variable: 25000 voxels
for a typical superior parietal gyrus and 45000 for a typical
superior frontal gyrus. For practical reasons, the tractogra-
phy was performed for only 14 of the gyri, covering the ex-
ternal part of frontal and parietal lobes in each hemisphere.
The whole computation took four days on a network of 14
computers. For each voxel, we count the number of particles
reaching each of the 36 gyri, including mothers and children,
in order to build the connectivity profiles. The number cor-
responding to the gyrus including the voxel is set to zero to
discard suspicious particles propagating mainly throughout
grey matter.

Considering a gyrus of n voxels, the whole information
is gathered into a p X n connectivity matrix C. The columns
of the matrix are normalized for the number of particles in
order to get comparable profiles. Hence, a connectivity pro-
file looks like a probability distribution. It is fairly impossi-
ble to visualize globally the matrix obtained for one gyrus.
We observed that a lot of voxels are connected to more than
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F1Gure 8: Influence of sharpening parameter on g-ball meshes and tracking. Top: no sharpening. Middle: § = 0.2. Bottom: S = 0.1. (a) g-ball
zoom on crossing, (b) slice of g-ball simulated data, (c) no child fibers, (d) threshold birth of 3%, (e) threshold birth of 5%.

Subject 1 Subject 2 Subject 3

FIGURE 9: External views of the gyral parcellation of the two hemi-
spheres of the three subjects. The color code is used in most of the
following figures about connectivity-based parcellation.

one gyrus, which justifies the idea of basing the clustering on
the connectivity profiles. To provide a global overview of the
tractography, each matrix was averaged to a mean column
vector. Gathering the resulting vectors leads to the connec-
tivity matrix of the gyri. The matrices obtained for the three
subjects are proposed in Figure 10. They present a lot of sim-
ilarities across subjects and hemispheres.

A careful observation leads to discovering a specificity of
this matrix: the symmetric connectivity strengths estimated

for a pair of gyri, when they are computed, are not necessarily
identical. In fact, this is not necessarily a failure of the system.
Indeed, these two strengths should be identical only if the
connections between both gyri are symmetrical.

2.3.3.  Clustering

The nonsupervised clustering approach used to gather vox-
els with similar profiles is based on the classical K-means
algorithm associated with a spatial regularization provided
by a Markov random field model [63]. In order to stabilize
the K-means approach, which is known for its high depen-
dence on initialization, we use the maximum connectivity
strength idea mentioned above [31, 60]. Hence, the gyrus
is first split in potentially 35 areas, each voxel being associ-
ated with the gyrus corresponding to the highest value in its
profile. Usually, the actual number of areas is much lower,
which can be understood considering the average profile of
each gyrus (see Figure 10). The resulting parcellation is espe-
cially noisy, which can be visualized in the example provided
in Figure 11(b). This observation calls for several possible ex-
planations.

(1) The poor sampling of white matter performed during
the tractography (only four mother particles) could
lead to a weak estimation of the maximum strength.

(2) Many voxels turn out to have several important con-
nections of equivalent strength; hence, in a group of
nearby voxels with similar profiles, the winner gyrus
could switch randomly between the competing gyri.

(3) The initial tracking directions provided by the g-balls
of cortical grey matter could often be spurious, either
because of noise or because of some microstructures of
the cortical layers corresponding to tangential myeli-
nated fibers.
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FIGURE 10: Global connectivity matrix of the gyri implied in the tractography (subjects 1, 2, and 3).

These difficulties would benefit a lot from the addition of
contextual knowledge in the clustering process, which is done
further using a simple model of spatial regularization stem-
ming from the domain of Markov random fields. Further-
more, the second difficulty could be largely overcome by the
use of the complete connectivity profiles during the clus-
tering, which is done further by the K-means algorithm.
The K largest areas of the maximum connectivity parcel-
lation are used to compute the K initial centroids of the
K-means.

Let us note Y = (yi,...,yn) the observable set corre-
sponding to the data: the normalized connectivity profiles of
the n voxels of the gyrus. Let us note X = (x1,...,%,) the
unobservable (hidden) set corresponding to the cluster as-
signments of the voxels. Each hidden variable x; denotes the
cluster label of the point i and takes values from the set of
cluster indices (1,...,K). Finally, let M = (u1,...,ux) de-
note the cluster centroids. When considering the conditional
probability p(- | x = h), the probability of generating a pro-
file from the hth cluster, we restrict our attention to probabil-
ity densities from the exponential family, where the expecta-
tion parameter corresponding to the hth cluster is yj,. Using
this assumption and the bijection between regular exponen-
tial distributions and regular Bregman divergences [64], the

conditional density for observed data, which corresponds to
data attachment, can be represented as

p(ys | xs)aexp (= D(ys ). (4)
In the following, D is the Euclidean distance, but it would
be of interest to compare with results obtained using KL-
divergence.

The Markovian prior probability of our clustering meth-
od is the standard Potts model, which penalizes the number
of adjacencies between clusters. This is minimizing the area
of each cluster interface hence leading to spatially smooth
clusters. This probability is a Gibbs distribution based on po-
tentials acting on the set of cliques of order 2 called C;:

U2 (xr)xs) = _ﬁ
UZ(xr:xs) = +ﬁ

if x, = x,,

(5)

if x, # x;.

In the following f3 is fixed to 0.05.
The a posteriori energy whose minimum is the target of
the clustering is finally

Z UZ (xryxs)- (6)

(r$)€[1,n]

Ulx | y) = > D(ysps) +

se(1,n]
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(c) (d)

FIGURE 11: Slice results in a precentral right gyrus. (a) Slice location. Precentral gyrus is in light green color, (b) max of connectivity results
for the same slice, (c) clustering results for the same slice, (d) clustering result for the same slice with the labelization of the most connected
gyrus. Light pink: inferior parietal gyrus, yellow: inferior frontal right gyrus, blue: superior frontal right gyrus, purple: medial frontal, gray:
postcentral right gyrus. (e) 3D projection of the clustering with labeling of the most connected gyrus.

This energy is minimized alternating the standard ICM algo-
rithm and the centroid update. The initial centroids are the
average profiles of the K largest areas of the max-connectivity
parcellation.

(i) Initialize the k clusters centroids M = (y1,.. ., px).

(ii) Repeat until convergence.

(a) Given centroids M = (y1,..., px), reassign clus-
ter labels to minimize U using ICM.

(b) Given cluster labels, recalculate centroids M.

Voxels with no starting particles or whose particles end their
trajectory in the starting gyrus have no data attachment and
do not contribute to centroid computation. For the sake of
simplicity, for all the results presented in this paper, each
gyrus has been split using a K-means with ten clusters. The
spatial regularization term sometimes reduces the final num-
ber of clusters. The fact that a frequent profile including more
than one strong connection may be split into two clusters
during initialization and merged back during the K-means
can also reduce the final number of clusters. But we have
no reason to expect that our procedure systematically per-
forms a successful split and merge, which will be discussed
further later on. Exploring techniques to adapt the number
of initial clusters to each of the gyrus is difficult and be-
yond the scope of the paper. Number ten was chosen be-
cause it was larger than the number of significant parcels
obtained by the max-connectivity clustering for most of the
gyri. An additional motivation was the fact that standard ar-
chitectonic parcellations do not split the gyri of our macro-
scopic parcellation into more than ten areas. The denoising

of the max-connectivity parcellation obtained by our non-
supervised regularized clustering is illustrated in Figure 11.

3. RESULTS
3.1. Color coding the parcellation

In the following, we illustrate the method developed in this
paper through a study of the reproducibility of the parcel-
lation across three subjects. The seven gyri parcellated in
each hemisphere are the three elongated gyri of the external
part of the frontal lobe, called superior, medial, and inferior
(F3, F2, and F1 in monkey literature), the precentral (motor)
and postcentral (somesthesic) gyri, the superior and inferior
parts of the external parietal lobes. The results of such a 3D
parcellation are especially difficult to visualize or compare.
To simplify the comparison across subjects, we have decided
to label each cluster with the color of the most connected
gyrus, using the color code introduced in Figure 9. This color
code has some limitations: some cluster boundaries are hid-
den, either because the stereotype profile of two neighboring
clusters share the same maximum, or because two neighbor-
ing clusters belong to two different gyri.

3.2. 3D projections

The second choice has been to develop a method to present
the results in 3D. For this purpose, a spherical mesh rep-
resenting the grey/white interface is computed using Brain-
VISA [41]. This mesh is slightly inflated in order to preserve
only the largest folds corresponding to the main boundaries
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FIGURE 12: Projection of the parcellation with cluster colors corre-
sponding to the most connected gyrus.

between the macroscopic gyri. Then the node of the mesh is
colored with the label of the closest parcellation voxel. This
projection provides an interesting glimpse of the global par-
cellation but hides a lot of information when several clusters
compete to color a mesh node. This method has been applied
to the three subjects to build the Figure 12. The similarities
observed across subjects are relatively encouraging, but some
severe differences are observed for some clusters. We will see
further that these differences result from weaknesses of our
color coding, when a stereotype profile includes two equiva-
lent strong connections.

3.3. Spatial normalization

While the method described in this paper aims at develop-
ing structural representations of the cortex supposed to over-
come some weaknesses of the standard spatial normalization
framework, we have tried to support the comparison of sub-
jects using brain alignment. Affine transformation aligning
the T1-weighted image of each of the subjects toward a cor-
responding template was computed using SPM2 [65]. These
transformations were applied to the parcellations of the cor-
tical mantles using a nearest neighbor interpolator. Finally,
for each pair of subjects and for the triplet of subjects, the in-
tersections of the parcellations were computed. The result of
such an intersection includes only voxels with the same colors
in the compared parcellations. Each of these intersections are
projected on one of the compared brains in Figure 13. This
figure highlights a lot of similarities when comparing 2 sub-
jects, and a sharp decline with three subjects (cf. Figure 13).
This decline is partly due to nonperfect spatial normaliza-
tion, but also largely to the color-code problem already men-
tioned above.

Subject 1-2

Subject 1-3 | Subject2-3 | Subject 1-2-3

FIGURE 13: Intersection of the color-coded parcellations after affine
spatial normalization.

To help the decoding of the anatomical information em-
bedded in our color code, we collected the list of connections
surviving after the intersection of the three subjects.

Frontal projections

Frontal superior gyri project in inferior frontal, in precen-
tral, in orbital frontal, and in cingular gyri of the same hemi-
sphere and in frontal superior gyrus of the other hemisphere
via corpus callosum. Furthermore, right superior frontal
gyrus projects in right middle frontal gyrus. Medial frontal
gyri project in inferior and superior frontal gyri and in pre-
central gyrus of the same hemisphere. Inferior frontal gyri
project toward superior frontal and orbital frontal gyri of
the same hemisphere. Right inferior frontal gyrus has addi-
tional connections in right lingual and right superior tempo-
ral gyrus. Left inferior frontal gyrus project in precentral left

gyrus.

Precentral projections

Precentral gyri project in superior and medial frontal and in
postcentral gyri. Right precentral gyrus has additional con-
nections in right inferior frontal, right inferior parietal, and
right precentral gyri. Left precentral gyrus projects in left in-
ferior temporal gyrus and in right precentral gyrus via the
corpus callosum.

Postcentral projections

Postcentral gyrus projects toward inferior parietal, superior
temporal, and precentral gyri of the same hemisphere. Right
postcentral gyrus projects in right inferior frontal, left post-
central gyrus projects in left superior parietal gyrus.

Parietal projections

Right superior parietal gyrus projects in occipital lateral and
precentral gyri of the same hemisphere and in left supe-
rior parietal gyrus via corpus callosum. Left superior parietal
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gyrus connects cingular, postcentral and inferior parietal of
the same hemisphere and right superior parietal via cor-
pus callosum. Right and left inferior parietal gyri have main
connections in superior parietal and precentral gyri of the
same hemisphere. Furthermore, right superior parietal gyrus
has connections in occipital lateral and middle temporal
gyri of the right hemisphere; left inferior parietal gyrus
has also connections in left inferior and superior temporal

gyri.
3.4. Matching clusters across subjects

We mentioned already that the simple-color coding pro-
posed above to compare the parcellations has some flaws
with profiles including several strong connections. We will
now illustrate this aspect with two examples. Let us first con-
sider the top of the right precentral gyrus in the internal face
presented in the second row of Figure 12. We observe a large
dark violet cluster for subject 1. For the two other subjects,
however, we observe a large light violet cluster, surrounded
by a few dark violet points. To understand this configura-
tion, we computed the matrix of profiles of the right pre-
central gyrus for each of the subjects (cf. Figure 14). Since
this gyrus is made up of more than 30000 voxels, the snap-
shots expose only a few profiles picked up randomly. The
profiles are ranked according to the result of the clustering.
The ten clusters of subject 1 are underlined. The five dark
and light violet clusters mentioned above are highlighted in
the profile matrices. It can be observed that the profiles of
these five clusters are very similar, presenting several strong
connections with the same gyri. The most connected gyrus,
however, is not the same for each of the subjects. This ob-
servation can be confirmed quantitatively by comparing the
average profiles across subject using the dual KL divergence,
a measure of distance between probability distributions. The
charts provide the distances of the violet clusters of subjects
2 and 3 to each cluster of subject 1. The dark violet clus-
ter of subject 1 turns out to be each time the closest one,
which shows that the five clusters should be matched as cor-
responding to the same anatomical entity. The main connec-
tions of this entity are the gyrus located above corpus callo-
sum, the left postcentral gyrus and the left superior frontal

gyrus.

4. DISCUSSION AND CONCLUSION

The method exposed in this paper is still largely exploratory,
relying on several parameters whose influence should be
studied. However, the new opportunities for neuroscience
provided by the connectivity-based parcellation paradigm
are very attractive [31, 32, 34, 60] and we need to push the
exploration as far as possible before tuning the method. It is
too early to decide if the connectivity matrices and the par-
cellations inferred from our framework are meaningful, but
their level of reproducibility across subjects is impressive. It
should be noted that according to anatomical knowledge, ar-
chitectonic areas can double or triple in size from one subject
to another [28]. Therefore, there is no simple way to quantify

the reproducibility of our parcellations. The mandatory ap-
proach will be a correlation of such connectivity-based par-
cellations with mappings obtained from functional imaging
or postmortem anatomical studies [27, 32].

In our opinion, despite our care to improve the sampling
of long bundles, an important weakness of our framework is
the bias of our probabilistic tractography for the short tracts,
which could explain the small amount of inter-hemispheric
connections. This bias stems from the way we introduced
the trajectory regularization in our framework, requiring the
particles to follow the fascicles from the beginning to the
end. Some local regularization could be designed to over-
come the problem, extending the method initially introduced
by Behrens et al. [12], or using the spin glass framework in-
troduced by our group [10, 15]. Another solution could be
provided by the normalization of the connectivity strength
relative to the path length [34] or using more sophisticated
models of the length dependence [66].

An alternative to the probabilistic framework for the
computation of the connectivity profiles lies in the meth-
ods based on front propagation assimilating the tracts to
geodesics [67—69]. While these methods seem prohibitively
expensive for the computation of the one million connectiv-
ity profiles used in this paper, they do not suffer from the
sampling weaknesses of our particle-based approach. Fur-
thermore, the sampling used in this paper for cortical mantle
is unrealistic relative to the spatial resolution of the diffusion
data. Therefore, dealing with a more reasonable sampling of
the cortex is one of the key future refinements of our method.
Considering that the current spatial resolution of diffusion
data cannot give access to the myeloarchitecture of the corti-
cal layers, an attractive solution would be to address the par-
cellation of a spherical model of the cortical surface [28], fol-
lowing the approach proposed in [70] to align connectivity
matrices. The surface-based approach would largely reduce
the number of connectivity profiles to be clustered. Surface-
based analysis would overcome the piling up of different clus-
ters orthogonally to the cortical surface. A surface-based 2D
model for Markovian regularization would be more reliable
than our 3D approach depending on the sampling of the cor-
tical mantle in the direction orthogonal to the surface. The
initial starting speed could be defined by the surface normal,
and the visualization of the parcellation would be straightfor-
ward. Finally, this approach would fit the current knowledge
of the columnar organization of the cortex: the large scale
connectivity is shared by small groups of neurons organized
orthogonally to the cortical surface [27, 71].

Our framework for clustering requires an input parcel-
lation whose influence on the result can be discussed a lot.
However, whatever the weaknesses of the input parcellation,
we would like to advocate that basing the clustering on sim-
ilarities between profiles of connectivity with a parcellation
rather than the whole brain, like in the work of the Oxford
group mentioned in the introduction, can lead to two very
different almost orthogonal results [32]. This is illustrated
by Figure 15, which depicts a synthetic system of three areas
linked by a retinotopic-like network of connections. A clus-
tering based on the profiles of connectivity with the whole
brain will gather voxels with similar retinotopic coordinates.
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FIGURE 14: Matching clusters of the precentral gyrus across subjects using distance between mean connectivity profiles provided by dual KL

divergence (see text).

In return, if the three retinotopic areas belong to differ-
ent parcels of the initial large scale parcellation, a clustering
based on the profiles of connectivity with this parcellation
will split the system into the three areas (areas blue, yellow,
and red). This example illustrates the richness of the world
of possibilities offered by the connectivity-based parcellation
paradigm.

Following the previous discussion, the dependence of the
output parcellation on the input parcellation, provided that
this one can be defined in a reproducible way across sub-
jects, is a richness rather than a problem. It should be noted
also that the idea of performing a feedback projection from
one parcellation to itself can be iterated. This could be in-
teresting to perform some hierarchical parcellation. Adding
a merging step between each iteration, in order to gather
neighboring clusters with similar profiles, could help to re-
duce the influence of the initial parcellation. For instance,
it could be used to overcome some inadequations of the
macroscopic parcellation relatively to the actual architecture.
It could also correct some failures of the process defining
the gyri occurring for subjects with unusual cortical fold-
ing patterns. Finally, this iterative process would turn into
a split and merge principle famous in the field of computer
vision.

The split and merge approach may be the perfect tool to
improve the robustness of the parcellation framework. But
the real challenge for the future will be to design a split and
merge processus acting on a group of brains, defining the
clusters across subjects or matching the individual clusters
according to their similarities, as performed above using the
dual KL divergence. Group analysis, indeed, seems to be the
only way to discard the various bias and artifacts disturbing
the tractography and the clustering of the profiles. In our
opinion, the usual spatial normalization paradigm will not

FIGURE 15: A synthetic retinotopic-like network of three areas and
its connectivity matrix. A clustering based on the profiles of connec-
tivity with the whole brain will gather voxels with similar retino-
topic coordinates (light colors with light colors, dark colors with
dark colors). In return, if the three retinotopic areas belong to dif-
ferent parcels of a large scale parcellation, a clustering based on the
profiles of connectivity with this parcellation will split the system
into the three areas.

be sufficient to perform this kind of group analysis: dealing
with brain architecture requires a group analysis performed
at a structural level [72]. For this purpose, the ideal units
relatively to the human brain connectome [27] could cor-
respond to the connectivity-based clusters described in this

paper.
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APPENDIX [9] Z. Wang, B. C. Vemuri, Y. Chen, and T. Mareci, “Simultane-

ous smoothing and estimation of the tensor field from dif-
SIMULATED RANDOM WALK

We have developed a simulation environment limited to tis-
sue made up of tubular fibers and water molecules mov-
ing inside and outside fibers [59]. Water molecules follow a
Brownian motion and when a particle meets a fiber mem-
brane, it reflects elastically against its surface. This numerical
phantom is built from 82 layers of 82 parallel fibers form-
ing two bundles crossing at 90 degrees (diameter 5 ym, in-
terspace 2 ym). The distance between two consecutive ran-
dom displacements is set to 1 ym with a duration of 82.5 mi-
croseconds. Particles are submitted to a Stejskal-Tanner dif-
fusion sensitizations (§ = 17.2 milliseconds, A = 26.4 mil-
liseconds) with a gradient magnitude of 40 mT/m and a b
value of 700 s/mm~2. With this simulator we get g-ball with
single fiber population along x- and y-axes and crossing g-
ball with both fiber population (3 X 3 X 3 dimension data).
We duplicate these data in order to build a 18 X 15 x 5 dataset

with a resolution of 1 X 1 X 1 mm?.
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