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Connectivity-Guaranteed and Obstacle-Adaptive
Deployment Schemes for Mobile Sensor

Networks
Guang Tan, Stephen A. Jarvis, and Anne-Marie Kermarrec

Abstract—Mobile sensors can relocate and self-deploy into a network. While focusing on the problems of coverage, existing

deployment schemes largely over-simplify the conditions for network connectivity: they either assume that the communication range

is large enough for sensors in geometric neighborhoods to obtain location information through local communication, or they assume

a dense network that remains connected. In addition, an obstacle-free field or full knowledge of the field layout is often assumed.

We present new schemes that are not governed by these assumptions, and thus adapt to a wider range of application scenarios.

The schemes are designed to maximize sensing coverage and also guarantee connectivity for a network with arbitrary sensor

communication/sensing ranges or node densities, at the cost of a small moving distance. The schemes do not need any knowledge

of the field layout, which can be irregular and have obstacles/holes of arbitrary shape. Our first scheme is an enhanced form of the

traditional virtual-force-based method, which we term the Connectivity-Preserved Virtual Force (CPVF) scheme. We show that the

localized communication, which is the very reason for its simplicity, results in poor coverage in certain cases. We then describe a

Floor-based scheme which overcomes the difficulties of CPVF and, as a result, significantly outperforms it and other state-of-the-art

approaches. Throughout the paper our conclusions are corroborated by the results from extensive simulations.

Index Terms—Sensor Networks, Mobile, Deployment, Connectivity.

✦

1 INTRODUCTION

In a mobile sensor network the sensors are able to relo-
cate and self-organize into a network. The mobility and
self-management of sensors are desirable for many appli-
cation scenarios, including remote harsh fields, disaster
areas, or toxic urban regions, where manual operations
are unsafe or burdensome. In this paper we consider the
following self-deployment problem: Given a target sensing
field with an arbitrary initial sensor distribution, how should
these sensors self-organize into a connected ad hoc network
that has the maximum coverage, at the cost of a minimum
moving distance?

There have been a number of proposed solutions to
this problem, including that based on the concept of
potential fields [6] or virtual forces [21]. This approach
imitates the behavior of electro-magnetic particles: when
two electro-magnetic particles are too close in proximity,
a repulsive force pushes them apart. Applied to a sensor
network, this method helps move sensors from high
density to low density areas, thereby minimizing sensing
overlap and improving the overall network coverage.
Another commonly used approach relies on the use of
Voronoi Diagrams (VDs) [4] [5] to partition the field into
many sub-areas, one for each sensor, allowing sensors
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to move to maximize coverage in its own sub-area. A
combination of these two approaches is also possible;
see [14].

While existing methods prove to be effective under
certain models, they have several problems in prac-
tice. First, they assume that a sensor can easily detect
all (or most) of its Voronoi neighbors through local
communication. This assumption may not however be
satisfied in a real network, because the communication
range of a sensor may not be large enough to cover all
Voronoi neighbors. An incomplete view of the Voronoi
neighbors may result in very inaccurate VDs being con-
structed. Consequently, significant sensing overlaps or
voids among sensors may be ignored, leading to poor
network coverage. Figure 1 illustrates the impact of com-
munication range on the construction of Voronoi cells.
In Figure 1(a), O’s communication range is such that it
will detect all of its Voronoi neighbors, enabling it to
construct a correct Voronoi cell; in Figure 1(b) however,
the shorter communication range only covers four of the
Voronoi neighbors, yielding an incorrect Voronoi cell.

A second problem with existing studies is that when
concentrating on the motion planning of sensors, they
tend to assume that the network remains connected
throughout the process of sensor relocation. However,
the implicit assumption that the network connectivity
can be guaranteed by a high node density, or a large
communication range, does not hold in general; network
partitions can still occur in a dense network. As a critical
requirement for a network to function normally, connec-
tivity must be considered in protocol design. A third
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problem that we observe with existing schemes is that
when planning sensor relocation to increase coverage,
most existing studies assume that the sensing field is
obstacle-free (e.g., [13] [18]). This greatly simplifies the
motion planning and optimization problem, but in so
doing it is clear that many real-world environments (a
metropolitan area with buildings, or a rural environ-
ment with plants and water etc.) that naturally have
obstacles or holes, render such schemes ineffectual. This
significantly weakens the potential applicability of such
approaches.

In this paper, we present new schemes that are not
governed by the above simplifying assumptions, and
thus adapt to a much wider range of application scenar-
ios. While maximizing sensing coverage, our distributed
schemes also aim to achieve three additional goals: (1) to
achieve connectivity for a network with an arbitrary ini-
tial distribution, communication/sensing range, or node
density; (2) to minimize moving distance, which dom-
inates energy consumption in the deployment process;
(3) to be able to work without any knowledge of the
field layout, which can be irregular and have obstacles
of arbitrary shape. This is important for deployment
in an environment whose layout is not fully known in
advance. The lack of topological knowledge also makes
a central server-based deployment solution infeasible.

To the best of our knowledge, no published work ad-
dresses all these issues simultaneously. Optimization of
the multiple objectives (coverage and moving distance)
under the constraint of global network connectivity for
general network topologies is known to be a challenging
task; even sub-problems of this have been shown to be
difficult. For instance, Wang et al. show that introducing
a minimum number of sensors to completely cover a
target area is strongly NP-hard [15]. In view of the com-
plexity of the problem, our design is heuristic-based and
supported by comprehensive experimental evaluation.

Our first solution is called the Connectivity-Preserved
Virtual Force (CPVF) scheme, which is an enhanced form
of the virtual-force-based method with the additional
consideration of the connectivity requirements. We show
that the localized communication, which is the very
reason for its simplicity, results in poor coverage in
cases of small communication ranges and obstacles. We
then consider a Floor-based scheme (or FLOOR for short)
which divides the field into fixed-height floors and en-
courages sensors to maintain a particular floor-height
level. The coverage expansion process of FLOOR can
be regarded as being similar to the growth of a plant
from the Vitis genus (e.g. a common vine). Simulations
show that FLOOR overcomes all the difficulties of CPVF
and several previous algorithms, and significantly out-
performs them in terms of coverage, moving distance,
and convergence time.

The remainder of this paper is organized as follows.
Section 2 documents related work and Section 3 intro-
duces preliminaries of the proposed schemes. Section 4
presents the CPVF scheme in detail; Section 5 describes
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Fig. 1. Impact of communication range on the construc-

tion of Voronoi diagrams.

the FLOOR scheme.In Section 6 we evaluate the per-
formance of a number of different schemes through
extensive simulations. Finally, Section 7 concludes the
paper.

2 RELATED WORK

Sensor deployment problems have been studied in a
variety of contexts. It is widely recognized that when
deploying sensor networks, coverage and connectivity
must be considered together. The authors in [17] provide
a geometric analysis of the fundamental relationship
between coverage and connectivity, and present pro-
tocols to achieve a desired degree of coverage while
maintaining network connectivity. They prove that when
the communication range rc is at least twice the sensing
range rs, then coverage implies network connectivity.
The assumption rc ≥ 2rs greatly simplifies the design of
coverage-oriented protocols (for instance, the location-
free coverage protocol [19] and obtaining tradeoffs be-
tween mobility and coverage [16]); at the same time this
assumption also limits the protocol’s applicability. Bai et
al. [1] first present a full picture of optimal deployment
patterns that achieve both coverage and connectivity for
general values of rc/rs. In particular, they show a strip-
based pattern that achieves asymptotically optimal cov-
erage with one-connectivity, and for two-connectivity,
some variants of the strip pattern are also proposed.
In [2], the authors consider the same problem with a
higher degree of connectivity. While these work provides
useful guidelines for real network deployment, their
analysis only considers an obstacle-free plane, therefore
the results do not apply to a field with holes of general
shape.

In a mobile sensor network, the mobility of sensor
nodes provides the possibility for the nodes to self-
organize to a network with desired properties from an
arbitrary initial distribution. Howard et al. [6] employ
the potential field method in sensor deployment, assum-
ing a line-of-sight connectivity; that is, a sensor is always
able to determine the location of nearby nodes. This
actually requires special sensing ability or alternatively,
a large communication range, in a non-dense network.
Zou. et al. [21] propose a VF-based deployment scheme,
which is centralized and only works for a small cluster
of sensors.
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In [14], Wang et al. present a set of VD-based schemes
to maximize coverage. The VDs are used by sensors
to detect coverage holes in their vicinities, and sensor
locations are adjusted round by round so that the cov-
erage is gradually improved. Other schemes that have
employed VDs include [15] [14] [4] [5]. As previously
described, this approach implicitly relies on a relatively
large rc/rs to guarantee the construction of a correct VD.
This condition concerning rc/rs is not always satisfied
in practical scenarios, where rc/rs could be any value.
Furthermore, their studies do not consider the problems
of connectivity and obstacles.

Yang et al. [18] use a grid-based network structure
to detect low density areas, and then maximize sensing
coverage through balancing the sensor distribution. The
same structure is also used in [13] to identify redundant
sensors. Unfortunately, a grid structure is feasible only
for networks with relatively high densities, which, again,
translate to a relatively large rc. In addition, both sets of
research require an obstacle-free field.

Liu et al. [10] study the dynamic coverage of a sensor
network. They show that while the mean coverage at
any given time instance remains unchanged, a larger
area will be covered during a time interval because of
sensor movement. A similar concept called sweep coverage
is studied in [3]. Our work differs from theirs in that we
consider only static coverage.

3 PRELIMINARIES

3.1 System assumptions

We assume that all sensors have the same communi-
cation range rc and sensing range rs. Both ranges are
modeled as an isotropic unit disk, and sensors within
rc of a sensor are called that sensor’s neighbors. As
is the case for many applications, a sensor can deter-
mine another sensor’s location only by communication.
(Relaxing this requirement only simplifies the design.)
At any given time, a sensor knows its own position
and can recognize the boundary of the obstacles within
its sensing range. All sensors are also aware of the
boundary of the sensing field. Sensors move in steps of
variable size (or distance). In each step, a sensor moves
in a straight line at a uniform speed for a fixed amount
of time (e.g., 2 seconds), which we term a period and
denote by T ; and at the end of that step, it decides
the direction and size of the next step, and so on. The
maximum moving speed is denoted by V .

We assume that the field is on a 2-D plane, which can
contain any number of obstacles of arbitrary shape, as
long as the field is connected; that is, any two points in
the non-obstacle areas of the field can be connected by a
continuous path. There is a reference point O known to
all sensors, where O could be the location of the base
station or some head sensor; all the sensors will try
to connect to O either directly or via multi-hop links.
Without loss of generality, we assume O is at (0, 0). The
base station knows the total number of sensors in the
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Fig. 2. An example of the BUG2 algorithm. The dashed

line shows the path of a sensor moving to the point R.

On its way to R, the sensor encounters two obstacles and

moves around them using the right-hand rule.

network while other sensors do not. Sensors do not have
a map of the sensor field.

3.2 Obstacle avoidance

We use Lumelsky and Stepanov’s path planning algo-
rithm [11] called BUG2 to help a sensor move from a
starting point Start to a destination point Target in
an environment with obstacles. Roughly speaking, this
algorithm works as follows. The sensor initially moves
along the straight line (Start, Target), which we call
the reference line, until it encounters an obstacle at some
hitting point H ; then, the sensor follows the boundary
of the obstacle using the right-hand rule (i.e., the right
hand maintains contact with the obstacle), until it gets
back to the reference line at some point. Now, if the
sensor finds that it is closer to the Target than from
H , and that it can make progress on the reference line,
then it resumes its straight line walk toward the Target;
otherwise it continues to navigate around the obstacle.
The above procedure repeats until the sensor reaches the
Target. BUG2 is shown to produce a path of length at
most D+

∑
i

nili

2
, where D is the distance between Start

and Target, ni is the number of times the reference line
crosses the ith obstacle, and li is the perimeter of the
ith obstacle. For convex obstacles, BUG2 is essentially
optimal. Figure 2 provides an example of this algorithm.

3.3 Lazy movement

With multiple hop communication, not all disconnected
sensors need to move to get connected. We use a lazy
movement strategy to reduce the unnecessary movement
as follows. At the end of each step, a sensor checks
its neighbors to see if there are any ahead of it (i.e.,
closer to its current destination); if so, then it chooses
the nearest neighbor as its candidate path parent. A sensor
with a path parent can stop moving for a period, in the
hope that the path parent can become connected, thereby
saving its own movement. A sensor can take a neighbor
as a real path parent, only when that neighbor is not
adopting the sensor itself as a path parent. When the
field is irregular or has obstacles, it may be the case that
two sensors are waiting for each other’s move indirectly.
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In our scheme, if a sensor has not moved for a certain
number of periods, it will check whether a loop exists. To
do this it sends a PathParentInquiry message once a
period to the parent path, which forwards the message
to its own path parent if available, and so on. If the
sensor finally receives such a message sent by itself, then
it knows that a loop has been formed, and it simply
resumes its suspended walk at the beginning of the next
step; the disregarded path parent will not be taken as its
path parent again. A sensor stops moving only when it
enters the communication range of a connected sensor,
at which time it takes the connected sensor as its parent
and changes its own state to connected.

4 THE CONNECTIVITY-PRESERVED VIRTUAL

FORCE (CPVF) SCHEME

The traditional virtual force method has the advantage of
local communication, coverage maximization capability,
and adaptability to obstacles. Therefore our first design
is based on this method. Our approach to achieving these
three goals is to first guarantee network connectivity
by having disconnected sensors move toward the base
station to establish connectivity, during which time we
try to minimize the moving distance; the virtual forces
method is then applied to maximize coverage.

4.1 Achieving connectivity

Initially, all sensors are required to decide their states
regarding connectivity. The sensors in the immediate
vicinity of the base station know that they are connected.
Those sensors then flood a message to the network, and
sensors receiving such a message, becoming aware that
they are also connected, further flood the message into
the network (each sensor sends the message only once).
After a certain period of time (for example, an estimate
of the maximum possible multi-hop transmission delay
between two sensors), if a sensor still has not received
such a message, it can decide that it is disconnected.
In this case, it will allow a small random time period
to elapse after which it starts to move using the BUG2
algorithm (with the lazy movement strategy) toward the
base station.

4.2 Maximizing sensing coverage

All sensors, upon becoming connected, start to move
under the influence of virtual forces (VF) in order to
maximize sensing coverage. Our goal is to preserve the
network connectivity throughout this stage.

The use of virtual forces in our protocol is essentially
the same as in previous work (e.g., [21]): the obstacles
and neighboring sensors exert repulsive forces onto a
sensor, and the sum of all forces determines the subse-
quent direction of that sensor. In fact, the VF method is
used in our scheme only for determining the direction
to move in; the selection of step size needs special care
in the interest of network connectivity and maximum

coverage: on the one hand, aggressive step sizes may
push sensors beyond the communication range and thus
cause network partitions; on the other hand, moving too
conservatively may result in sensors being distributed
far from evenly, which usually means poor coverage.
Considering this, we need a sensor to be able to de-
termine the maximum step size it can make without
disconnecting the network, or the maximum valid step
size, at the end of each step.

Suppose at time t, the beginning of some period,
a sensor s needs to check whether a planned move
will disconnect itself from a current neighbor s′, or
whether that move for s′ is valid. Since the network
is an asynchronous system, sensor s′ may be in the
middle of its own period, which we assume ends at time
t′ ≤ t + T . Sensor s first obtains the information of s′’s
current moving direction, moving speed and period end
time t′ by communication. We assert that if the planned
move satisfies the following two conditions, termed the
connectivity preserving conditions, then that move will not
by itself break the connection between s and s′ during
[t, t + T ]:

1) the distance between s and s′ at time t′ is no greater
than rc; and

2) the distance between s′’s position at t′ and s’s
position at t + T is no greater than rc.

In fact, as is proven in Appendix A, the first con-
dition can guarantee the connection being maintained
throughout [t, t′]. We consider [t, t + T ] and emphasize
the condition by itself because during [t′, t + T ], s cannot
(and need not) control s′’s motion, for s′ may choose to
abandon their connection in order to join a new (parent)
sensor. If s′ does wish to keep the connection with s, then
it is s′’s responsibility to find an appropriate step size
following the above conditions. However, s still needs
to guarantee that the connection remains, in case s′ does
not move in its next period; it is for this reason that the
second condition must be satisfied.

With the validity criterion for a step size, a sensor
can approximately determine the maximum valid step
size by checking a set of possible values; for example,
V T, 0.9 × V T, . . . , 0.1 × V T, 0, for a certain connection.
Nevertheless, there remains an issue of which connec-
tions it needs to maintain. The simplest strategy for a
sensor is to retain its connections to its current parent
and all children all of the time. However, our experimen-
tal results show that allowing sensors to change parent
provides more freedom for sensors to move around
and thus provides more opportunities for the uncovered
areas to be explored.

To allow a sensor to connect to a new parent, care
needs to be taken not to create loops in the tree. Suppose
sensor s wishes to connect to a new parent p, it first
needs to “lock” the tree rooted at itself. It sends a
LockTree request down the tree. If a receiving node
is in the middle of a period or has just decided not to
change parent in its next step, then it accepts the request
and forwards the request down the tree (or up the tree in
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the case of a leaf node); at the same time it is “locked”,
meaning that it cannot change parent unless it receives
further instructions. In other cases the receiving node
rejects the request and sends an UnLockTree message
back, which travels up the tree, unlocking all the nodes
on the way, until it reaches s.

If s receives the LockTree message from all its direct
children, it knows that the tree has been successfully
locked and it can further pursue joining p, otherwise it
gives up and waits for a period. When joining p, s first
asks p if p is locked by s; if not, then it begins to join p,
otherwise it again abandons the task. After joining p, s
sends a UnLockTree message down the tree to unlock
all the nodes.

There is a time limit for a sensor to determine its next
step. If for any reason the above procedure takes longer
than that time limit, s simply cancels its movement
for the next period. Considering the message overheads
of locking trees, we allow a sensor to change parent
connection only when it cannot move under its current
parent.

4.3 Coverage of CPVF

We have developed an event-based simulator using C++
to evaluate the performance of CPVF. In this section we
report a set of results showing the coverage ability of
the scheme in several typical settings. These results are
only intended to motivate our further exploration; more
detailed discussion will be given in Section 6.

In the experiments, a total of 240 sensors are initially
randomly distributed in a sub-area {(x, y) : 0 ≤ x ≤
500m, 0 ≤ y ≤ 500m} of a target field {(x, y) : 0 ≤ x ≤
1000m, 0 ≤ y ≤ 1000m}; the base station is located at
(0, 0). Sensors have rc and rs varying between 30-60m;
they first move to gain connectivity, and then adjust their
positions to maximize network coverage. The maximum
moving speed is 2m/s, and the period length is 1 sec-
ond; the simulation runs for 750 seconds, after which
the sensor layout becomes quite stable. We define the
metric coverage as the fraction of area that is covered
by at least one sensor. In the first scenario (Figure 3(a)),
sensors have rc = 60m and rs = 40m and move in an
obstacle-free field. It can be seen that CPVF distributes
the sensors quite evenly, producing a coverage of 78.8%.
When rc reduces to 30m (Figure 3(b)), the situation is
very different: the smaller rc makes the sensors cluster
together, producing a much smaller coverage of 28.7%.
We can see that significant overlap of sensing disks
(depicted by the circles) exists in the network, yet most
sensors are unaware of this due to their poor ability
to contact the sensors in their vicinities. Although the
connected network provides the possibility for a sensor
to find those whose sensing disks overlap with its own,
the geography-based search is a non-local process and
requires extra support from the protocol. Even if they can
manage to make contact, significant coordination among
many sensors may be needed to achieve an agreement

of movement that leads to a good layout. The impact of
poor coordination is further demonstrated by the poor
coverage (37.8%) in Figure 3(c), where rc = 60m, the
same as in Figure 3(a), but two rectangular obstacles are
now present in the field, leaving three exits to the large
vacant area. It turns out that the sensors have consider-
able difficulty circumventing the obstacles: while a few
can make their way out of the two top exits, no sensors
can escape from the narrower exit at the bottom of the
field. Increasing the run time does not help the sensors
disperse: many of them only oscillate infinitely around
their centers without being able to expand coverage.

4.4 Convergence of CPVF

During the experiments, we have observed another
problem with CPVF: that the sensor layout does not
converge easily. For many sensors, after a certain point
in time, they start moving in a near cyclic way, without
being able to move forward or stabilize. This problem
is especially serious in a field with obstacles that form
narrow or bumpy passages. The reason behind this is
that every sensor makes movement decisions based only
on the information of its neighbors. While the neighbor-
hood changes, a sensor has to move; its move results in
further change to the neighborhood, which forces other
sensors to move – the constant change of virtual forces
imposed on each sensor thus causes the sensors to move
indefinitely.

A similar observation has also been made by Koren
et al. [8]. In particular, they point out that oscillation
happens very often in an irregular field which will
significantly increase the overhead in terms of moving
distance. We discuss this issue in Section 6.

In conclusion, while the VF-based approach has often
been adopted in the planning of robotic movement and
in mobile sensor deployment [14] [21] [9] [12], our ex-
periments suggest that under the connectivity constraint,
it delivers good performance only in very restrictive
scenarios; an ideal field model as in Figure 3(a) thus
conceals its drawbacks. These facts suggest that it is
difficult, if not impossible, to remedy the VF method’s
weaknesses without significantly compromising its lo-
calized communication, which is the very reason for its
popularity. This motivates us to look for alternative ways
to improve the performance of a deployment scheme.

5 THE FLOOR-BASED SCHEME

In the CPVF method, the sensors move in a greedy fash-
ion to establish connectivity; this can result in arbitrary
overlaps of the sensors’ sensing ranges. When rc/rs is
small, the sensors lack information that can guide them
to move apart in a coverage-maximizing way. A common
situation is depicted in Figure 4(a), where the large
circles represent sensing ranges, and the small circles
represent communication ranges; rc/rs is assumed to be
0.5. It can be seen that despite the significant overlap
of sensing ranges between the two groups (green and
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(a) rc = 60m, rs = 40m, coverage = 74.5% (b) rc = 30m, rs = 40m, coverage = 26.4% (c) rc = 60m, rs = 40m, coverage = 37.1%

Fig. 3. Sensor layouts under CPVF for varying rc and rs. The green circles represent sensors’ sensing ranges. The

1000 × 1000m2 field is obstacle-free in (a) and (b), and has two obstacles in (c), shown as grey areas. There are 240

sensors that can move at a speed of no greater than 2m/s, with a period length of one second.

(a) CPVF (b) FLOOR

floor line

floor line

(0,0)

2rs

inter-floor line

rc

rs

Fig. 4. Examples of sensor layout under CPVF and

FLOOR. The large circles represent sensing ranges,

and the small circles represent communication ranges;

rc/rs = 0.5.

yellow) of sensors, these sensors are unaware of this
because of their short communication ranges.

The key idea of our floor-based method is to divide the
field into floors of common height 2rs, and to encourage
sensors to stay at the central floor lines of those floors, as
shown in Figure 4(b). Now that sensors are separated
by floors, the overlap of the sensing ranges is much
reduced, and so the global network coverage can be
improved.

5.1 A high-level view

In FLOOR, sensors move in two patterns that bear a
resemblance to the growth of a plant from the Vitis genus
(e.g., a common vine) over a framework. The framework
is composed of field/obstacle boundary lines and floor
lines. In the first instance, nodes may expand along the
field/obstacle boundaries, following possibly irregular
paths; in the second instance, nodes may expand along
the straight floor lines. If the floor lines are appropriately
spaced, then beginning at some root, we would expect
that using these two techniques good coverage will
eventually be attained.

floor-line guided

expansion
boundary guided

expansion

Fig. 5. Coverage expansion in a field. The grey areas

represent obstacles. rc = rs.

Figure 5 illustrates the two expansion patterns in a
field with two irregular obstacles. The arrows show the
directions in which sensors move along the boundary
or floor lines. In the formal description, the first pat-
tern is termed boundary-guided expansion, and the second
pattern floor-line-guided expansion. These two patterns are
performed in parallel. The first pattern is responsible for
introducing sensors to the front end of every floor, while
the second pattern is responsible for filling in the floors.
We can expect that if enough sensor nodes are provided,
then the field in Figure 5 will eventually be well covered.
Moreover, the sensing overlap will be small due to the
floor lines. The floor-based scheme is implemented in
three phases:

1) achieving connectivity,
2) identifying movable sensors, and
3) expanding coverage.

In the first phase, sensors move toward the reference
point to establish connectivity, following a different tra-
jectory from that in CPVF for the sake of sensing overlap
reduction. In the second phase, a class of nodes termed
the fixed nodes are determined, and the remaining nodes,
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termed the movable nodes, are provided the freedom to
relocate for coverage expansion (from high-density to
low-density areas). In the third phase, movable nodes
expand their coverage following the expansion patterns
introduced above.

5.2 Achieving connectivity

In this phase, a sensor does not move toward the
base station in a straight line, as is the case in CPVF.
Instead it is required to pass through two intermediate
destinations. Suppose the initial location of the sensor
is (x, y), then it first moves toward point D1, the
projection point of (x, y) on its nearest floor line, using
the BUG2 motion planning algorithm. Upon reaching
D1 or hitting some obstacle, it takes D1 as a new
starting point, and starts moving toward point D2, the
projection of D1 on the y axis. Upon reaching D2 (or on
collision with an object), the sensor takes D2 as a new
starting point and begins moving toward (0, 0). During
the algorithm, the lazy movement strategy is used,
and the sensor stops once it enters the communication
range of a connected node, which then becomes its
parent. Note that in FLOOR, the distance between
a sensor and its parent is min(rc, 2rs), and the y
axis is regarded as a wall-like obstacle. A more formal
description of the above process is given in Algorithm 1.

Algorithm 1: FLOOR’s motion planning algorithm.

input : Current location (x, y) and a connected field
with unknow topology

symbols: FloorLine(y): the y coordinate of the nearest
floor line to the point (x, y)

start ← (x, y);1

target ← (x,FloorLine(y));2

Execute BUG2(start, target) until becoming connected, or3

reaching target, or hitting an obstacle. If connected then
terminate the algorithm;
start ← (x,FloorLine(y));4

target ← (0,FloorLine(y));5

Execute BUG2(start, target) until becoming connected, or6

reaching target, or hitting an obstacle. If connected then
terminate the algorithm;
start ← (0,FloorLine(y));7

target ← (0, 0);8

Execute BUG2(start, target) until becoming connected, or9

reaching target.

In Figure 6, sensor s1 moves to (0, 0) after changing
direction twice and without encountering any obstacles;
sensor s2 meets two obstacles, thus preventing it from
reaching the locations Dest1 and Dest2. By following
Algorithm 1, it finally reaches location (0, 0).

5.3 Identifying movable sensors

After a sensor becomes connected, it reports to the base
station, and waits for a response from the base station.
The response message will reach the sensor carrying the
IDs of all the sensor’s ancestors, which will be kept in the
sensor’s memory. The base station initiates the second

(0,0)

floor line

y=FloorLine(y1)

�
Dest2

s1 (x1,y1)
s2 (x2, y2)

floor line

y=FloorLine(y2)

Dest1
Dest2

� �
Dest1

Fig. 6. Sensors’ moving paths toward (0, 0) under

FLOOR.

phase after all sensors have reported their arrival, or
after a certain time (e.g., an estimate of the maximum
time for a sensor to arrive at the base station) has
elapsed, whichever is earlier.

The purpose of the second phase is to identify sensors
that can move without partitioning the network, and
whose move is expected to increase network coverage.
The former condition requires a sensor to help all of
its children to find new parents. This can be done as
follows. It first obtains a list of neighbors within two
hops of itself, and then tries to find for each child a new
parent. For a particular child, it needs to check if the
child joining some candidate parent will cause a loop,
which can be done by simply checking the candidate
parent’s ancestor list. If all the children can find parents
without creating loops, then it means that the sensor
can safely move away. To become movable, a sensor
also needs to decide whether its move is worthwhile in
terms of coverage: it estimates the area currently covered
exclusively by itself using the location information of its
neighbors; only when such an area is below a certain
threshold does it become movable.

To ensure state consistency, the procedure of identi-
fying movable sensors needs to be serialized. This can
be coordinated by a message traversing the tree in, for
example, a depth-first manner. Such a message can be
initiated by the base station at the start of this phase.

5.4 Determining the coverage status of a point

A sensor often needs to determine whether a point in
its vicinity is covered by others, so that it can decide
whether it needs to invite some movable sensor to fill
that uncovered area. As demonstrated earlier, local com-
munication is inherently limited in its ability to detect
the coverage status of a point beyond a sensor’s sensing
range, especially when rc/rs is small; thus some method
of non-local communication is inevitable.

With the field divided into floors, we are able to
implement a simple scheme that solves this problem. We
define a floor header node as the node with the smallest
x-coordinate in a floor. (Ties can be resolved using the
nodes’ IDs.) Each floor header node maintains a data
structure that records the locations of the nodes in its
floor. Since many fixed nodes are linked with the same
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(or approximately the same) inter-node intervals, and
thus share the same y-coordinate (i.e., they reside on
the same floor line), their locations can be summarized
in a compact form: given a sequence of such nodes,
only the first and the last nodes’ x-coordinates need
to be recorded. For instance, in the layout shown in
Figure 8(a), the floor header nodes need to record only
a small amount of information concerning the nodes
locations on their floor lines. When a node s needs to
determine whether a point p beyond its sensing range
is already covered, it firsts checks whether any of its
neighbors covers that point; if not, it then calculates the
possible floors that may contain a node whose sensing
range can reach p. s then sends a query message to the
floor header nodes corresponding to those floors. Those
floor header nodes can in turn determine whether p is
covered by any sensor in their own floors, and send back
their responses, from which s can determine p’s coverage
status. Note that this task need not be done with perfect
accuracy, since strict performance optimality is not our
goal.

Every node in the tree records the floor header nodes
in the sub-tree rooted at itself, so the query messages
can be easily routed on the tree. Given a field of fixed
width and a fixed rc, there will be a constant number of
floor header nodes, therefore the memory overhead will
be bounded.

5.5 Expanding sensing coverage

With all movable sensors identified, we can now ex-
pand the network’s coverage by having those sensors
move to uncovered areas. In Section 5.1 we provide a
high-level description for floor line guided expansion
(FLG-expansion) and boundary line guided expansion
(BLG-expansion). We will also describe a third type of
expansion, termed inter-floor line guided expansion (IFLG-
expansion).

For each type of operation, a sensor first needs to find
an expansion point (EP) on its expansion circle, defined
as the circle of radius min(rc, rs) centered at its current
location, after which it invites some movable sensor to
relocate to the EP. When searching for expansion points,
we only consider the environment consisting of fixed
nodes. A formal description of this process is given in
Algorithm 2.

5.5.1 Finding expansion points

• FLG-expansion. A sensor s tries to obtain a floor
line segment covered by its sensing range (see
Figure 7(a)). If such a segment exists, it picks one
endpoint of that line segment that is farthest to the
y-axis. Such a point is called a frontier point. Next,
s determines whether that frontier point is covered
by other sensors using the method introduced in
Section 5.4. If s can find an uncovered frointer point,
it calculates the intersection between its expansion
circle and the line segment from s’s current location

B

C

O

(a)

(d)

(b)

inter-floor line

floor line

A

B

C

A

O

(c)

(a)

C

A

B
O

floor line

A'

Fig. 7. Illustration of coverage expansion. (a, b, c) BLG-

and FLG-expansion; (d) IFLG-expansion. The grey irreg-

ular areas represent obstacles. rc = rs.

to the frontier point; the intersection point is the
desired EP.

• BLG-expansion. A sensor s tries to obtain a set
of boundary line segments covered by its sensing
range (see Figure 7(a)). If any such line segments ex-
ist, it randomly picks a segment, say Γ, and chooses
a random point on Γ and moves the point along Γ
following the left-hand rule1, until the point reaches
the sensing circle; this new location is the frontier
point for Γ. After determining the frontier point, s
calculates the EP following the same procedure as
in the FLG-expansion.

• IFLG-expansion. This type of expansion is used for
filling coverage holes left by neighboring sensors in
the same floor (see Figure 7(d)). A sensor and its
child can jointly determine if there is a coverage hole
between themselves and an inter-floor line, which
is defined as that at the middle of two neighboring
floor lines. If a hole is found, then the parent checks
if the intersection point of their expansion circle at
the side of the hole is already covered by other
sensors. If it is not, then the intersection point is
taken as an EP.

With an EP determined, s can start inviting movable
sensors over. After a movable sensor has agreed to such a
move, the above process is repeated. Figure 7 illustrates
the three types of expansion. In Figure 7(a), the sensor
centered at O detects three line/curve segments (the
thick lines) in its sensing range: one from the floor line,
and two from the two obstacles. Using the left-hand rule,
it can obtain three frontier points, A, B, and C. Suppose
s has just discovered that A is uncovered, it then takes

1. The left-hand rule, as opposed to the right-hand rule used by
the sensors to establish connectivity, can help sensors disperse into
unexplored areas more quickly.
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A as an EP and invites a movable sensor to relocate to it,
resulting in the layout shown in Figure 7(b). Afterwards,
s can continue to find movable sensors to relocate to
B and C. At the same time, the newly arriving sensor
centered at A can determine its own EP A′ and invite
sensors to move to that EP; see Figure 7(c). An example
of IFLG-expansion is provided in Figure 7(d).

Algorithm 2: Coverage expansion.

———- Pseudo-code of fixed node thread 1 (discovering EPs)1

while there exists at least one EP do2

Let p be one of the EPs;3

Send a random-walk Invitation message carrying4

the location and type of p, along with a TTL;
end5

———- Pseudo-code of fixed node thread 2 (handling messages)6

while true do7

Wait for a message m to come through;8

p← the EP that m corresponds to;9

msrc ← the source node of m10

if p is covered by a fixed or virtually fixed node then11

Send a reject message to msrc;12

else13

Send an Acknowledge message to msrc;14

Construct a virtual fixed node for msrc;15

Send a message to the root on behalf of the virtual16

node to update the ancestors’ location information;
end17

end18

———- Pseudo-code of movable node19

while true do20

Wait until having collected a certain number of21

Invitation messages, at the same time forwarding
received random-walk messages;
Pick the highest-priority message m (and smallest22

Euclidean distance when ties occur), with source msrc;
Send an AcceptInvitation message back to msrc;23

Wait for an Acknowledge message with a timeout;24

if an Acknowledge message is accepted then25

Move to the EP contained in m following BUG2;26

Mark itself to be fixed;27

Exit;28

end29

end30

Generally, FLG-expansion provides more
improvement in coverage per operation, so it is
assigned the highest priority in the protocol; BLG-
expansion is ranked second, and IFLG-expansion has
the lowest priority.

5.5.2 Inviting movable sensors

The sensors check the sensing coverage and obstacles in
their surrounding areas once per period, and determine
whether there is any chance for expansion. If a sensor
finds no expansion points on its expansion circle, then
it stops the checking process. Otherwise, it sends an
Invitation message containing an EP to the network.
This message has a TTL value and walks randomly
in the network. When a movable sensor has collected
a certain number of invitations, it picks the one with
the highest priority (and smallest Euclidean distance
when ties occur). It then sends an AcceptInvitation

message to the inviter, which acknowledges the message
if it has not found any other movable sensor for that EP,
or rejects it otherwise. In the former case, the movable
sensor can start to relocate; at the same time the inviting
sensor constructs a virtual place-holding fixed node in
the tree, and sends a message to the root on behalf of
the invited sensor to update the location information
maintained by its ancestors. If the AcceptInvitation
message is rejected or no response has been received, the
movable sensor simply continues to collect Invitation
messages and responds to an inviter when appropriate.

Once a movable sensor moves to an EP, it becomes
fixed and can start searching for expansion opportunities
around itself. It is possible that two movable sensors re-
locate to the same (or very near) positions, thus wasting
coverage. However, the chance of such an occurrence
will be small as long as the communication latency is
much smaller than the length of a period. The wasted
coverage is thus insignificant.

5.6 Coverage of FLOOR

We conduct simulations for FLOOR using exactly the
same settings as in Figure 3, and show the sensor layout
in Figure 8. When the field is obstacle-free (Figure 8(a)),
the coverage achieved by FLOOR is 78.8%, which is
slightly higher than that of CPVF (74.5%). When rc

decreases to 30m (Figure 8(b)), FLOOR produces a much
higher coverage than CPVF (46.2% vs. 26.4%). This is
because FLOOR can separate sensors using floor lines,
thus reducing coverage overlap in the vertical direction
to minimum. This example clearly demonstrates the
advantage of FLOOR over CPVF in adapting to varying
rc. Another advantage of FLOOR can be seen from Fig-
ure 8(c), where two obstacles are present in the field. In
contrast to CPVF, FLOOR has no difficulty expanding the
coverage beyond those obstacles, producing a coverage
of 72.5%, nearly twice that of CPVF.

In FLOOR, once a movable sensor relocates to a certain
location it stabilizes, and so the convergence time of the
protocol is bounded.

6 COMPREHENSIVE PERFORMANCE EVALUA-
TION

In this section we conduct a more comprehensive per-
formance evaluation of the proposed schemes. Besides
coverage, we also consider the moving distance of sen-
sors, which dominates energy consumption in the de-
ployment process. A further energy consumption fac-
tor that we investigate is the message overhead. The
same settings of field, sensor movement patterns, and
the ranges of rc and rs as in Section 4.3 are used.
We consider a clustered initial sensor distribution, in
which sensors are randomly distributed in a sub-area
{(x, y) : 0 ≤ x ≤ 500, 0 ≤ y ≤ 500} of the whole field
{(x, y) : 0 ≤ x ≤ 1000, 0 ≤ y ≤ 1000}. This distribution is
intended to test how sensors move apart from a clustered
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(a) rc = 60m, rs = 40m, coverage = 78.8% (b) rc = 30m, rs = 40m, coverage = 46.2% (c) rc = 60m, rs = 40m, coverage = 72.5%

Fig. 8. Sensor layout using FLOOR for varying rc and sensing ranges rs. The field is obstacle-free in (a) and (b), and

has two obstacles in (c), shown in grey.

distribution to maximize network coverage. We have
also tested an initial distribution in which sensors are
placed in the field uniformly at random; the results are
consistent with the clustered case, so we mainly report
on the former.

6.1 Coverage in obstacle-free fields

Assuming an obstacle-free field, we compare the cover-
age performance of five schemes:

1) CPVF, described in Section 4;
2) FLOOR, described in Section 5;
3) The optimal scheme (OPT) described in [1]. This

centralized scheme achieves provably optimal cov-
erage with guaranteed connectivity (applicable
only to obstacle-free regular fields);

4) VOR, an Voronoi Diagram (VD) based scheme, in-
troduced in [14]. In VOR, nodes move in rounds; in
each round, every node moves toward its farthest
Voronoi polygon vertex, under the constraint of a
maximum moving distance of rc/2;

5) Minimax, also an VD-based scheme, introduced
in [14]. Like VOR, nodes move in rounds; in each
round, every node moves to the point that has the
smallest distance to its farthest Voronoi polygon
vertex.

These schemes include state-of-the-art techniques for
our deployment task: CPVF represents the VF-based
approach, while VOR and Minimax represent the VD-
based approach. (In [14] the authors also propose a
third scheme but since it performs no better than VOR
and Minimax we ignore this case.) Note that VOR and
Minimax are connectivity-ignorant.

6.1.1 Comparison between CPVF, FLOOR and OPT

Figure 9 shows the coverage of CPVF and FLOOR for
varying numbers of sensors. The results confirm previ-
ous findings from Figures 3 and 8: FLOOR outperforms
CPVF in all cases, especially for a moderate or small
rc/rs. For instance, for 240 sensors with rc = 20m

and rs = 60m, the coverage of CPVF (20%) is only
46% of FLOOR’s coverage (46%). As rc/rs increases,
the gap becomes smaller. For example, with rc = 60m
and rs = 20m, the coverage of CPVF and FLOOR are
24% and 28%, respectively (not shown in the figure).
Generally, in an obstacle-free field, when rc ≪ rs, the
advantage of FLOOR is most pronounced; when rc ≫ rs,
the two schemes come very close in coverage.

Figure 9 also plots the results of OPT. As can be
seen, FLOOR is only surpassed by OPT by a small to
moderate margin, with the largest difference occurring
at rc = rs = 60 with 120 sensors, where the coverage
of FLOOR is 26% lower than the optimal. As rc and the
number of sensors grows, FLOOR’s coverage becomes
quite close to the optimal. For instance, for rc = rs = 60
with more than 200 sensors, FLOOR’s coverage is only
4% lower than the optimal. Further increase of sensors
(≥ 300) brings diminishing gains in coverage as the field
gradually becomes saturated (expect under the case of
CPVF with rc = 40m and rs = 60m).

The difference between FLOOR and OPT is mainly
due to some sensors that are located at the boundary
of the field. Here the coverage holes are smaller than
those found at the interior of the field, and therefore
the coverage gains are smaller than average. In a system
where a central coordinator is absent, achieving a perfect
(and strict) pattern will require more sensor relocations,
which leads to increased energy consumption. It is
FLOOR’s choice to trade a small amount of coverage
for a saving in energy consumption. This point will be
further demonstrated in the next section.

6.1.2 Comparison between FLOOR, VOR and Minimax

In a VD-based scheme, the connectivity and coverage
prove to highly depend on rc/rs. Figure 10 compares the
coverage of the three schemes for rs = 60 and rc/rs ∈
[0.8, 4]. Above the bars, labels “Disconn.” and “Incorrect
VD” indicate network disconnection and the failure to
generate all correct VD cells, respectively. One can make
several observations from this figure:
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Fig. 9. Coverage of CPVF, FLOOR, and OPT.

Fig. 10. Coverage of CPVF, VOR, and Minimax, rs = 60.

• Neither VOR nor Minimax achieves connectivity for
rc/rs ≤ 2, which suggests they rely on a large rc/rs

to generate a fully functional network; nevertheless,
even if rc/rs is large, there is no guarantee of con-
nectivity from the principle of VOR and Minimax;

• VOR and Minimax start generating correct VD cells
only when rc/rs ≥ 3 and rc/rs ≥ 4, respectively. The
improving coverage with increasing rc/rs implies
the significant impact of correct VD generation on
coverage performance. In particular, the Minimax
scheme is extremely sensitive to rc/rs: when the
ratio is smaller than 1, the resulting network is very
unreasonably deployed, producing a coverage of
only 4.5%;

• If rc/rs is large enough (≥ 2.5 in our case), both VOR
and Minimax perform well in terms of coverage. In
some cases, they are very close to the optimal and
slightly outperform FLOOR. The reason is that they
do not consider connectivity and thus have more
freedom for coverage maximization.

6.2 Moving distance in obstacle-free fields

We compare the moving distance of sensors for six
schemes, including CPVF, FLOOR, VOR, Minimax, and
two other schemes.

Fig. 11. Average moving distance.

Fig. 12. Effect of oscillation avoidance on moving dis-

tance (left y-axis) and coverage (right y-axis).

When the sensors are initially densely deployed within
a sub-area of the field, as is the case for our first distri-
bution setting, VOR and Minimax need an “explosion”
procedure to disperse the sensors into an approximately
random distribution, and then VD-based coverage im-
provement can begin. We let this stage take a minimum
total moving distance, which can be calculated as fol-
lows. We assume that the resulting random distribution
is already known, then choosing a destination point in
this distribution for each sensor can be modelled as a
classic minimum weighted bipartite matching problem (or
an assignment problem), where the objective is to find the
assignment that requires the minimum matching cost.
This problem can be solved in polynomial time using
the well-known Hungarian algorithm [7]. Calculating a
minimum value for VOR and Minimax gives us a base-
line as to how they perform in terms of moving distance
in the best case. After the initial explosion process, we
let VOR and Minimax run for 10 rounds, after which the
coverage stabilizes.

Using the Hungarian algorithm, we also implement
two optimal schemes with respect to two final network
layouts. The first network layout is the optimal pattern
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proposed in [1], and the second is the one produced
by FLOOR itself. The first optimal scheme shows the
minimum moving distance for achieving an optimal
coverage, while the second scheme shows how much
FLOOR deviates from the lower bound with its own
coverage.

Figure 11 shows the average moving distance of these
six scheme. Comparing FLOOR with VOR and Minimax,
one can see that FLOOR performs significantly better.
The main source for VOR and Minimax’s long moving
distance is the explosion process, despite the optimized
moving arrangement. Without this process, VOR and
Minimax will suffer from the same problems as VF-based
scheme: a long convergence time and motion oscillation.
This reflects VOR and Minimax’s reliance on a good
initial sensor distribution.

Comparing FLOOR with the optimal schemes, one
can also see that the moving distance of FLOOR is
lower than that required by the optimal pattern. This
is so because when planning node movement, FLOOR
takes a more comprehensive consideration of coverage
and moving distance – if a sensor finds that its move
brings only a small gain in coverage, then the sensor
remains fixed. Although sacrificing a certain amount of
coverage, this strategy can effectively reduce the moving
distance. In contrast, the optimal pattern only consid-
ers total coverage, thus potentially involves more node
movement. These results again demonstrate FLOOR’s
choice in striking a balance between maximum coverage
and minimum energy consumption.

It can also be observed that FLOOR has a moving
distance 15.6-38% higher than the optimal for achieving
its own coverage. This is no surprise since in FLOOR, the
matching between coverage holes and movable sensors
is performed in a distributed and greedy manner.

Comparing FLOOR with CPVF, one can see that CPVF
generally requires more than two times the average
moving distance of FLOOR. The reason behind this is
that frequent oscillation occurs in CPVF, that is, many
sensors move back and forth under the drive of virtual
forces, requiring a large number of unnecessary moves
on the way to their destinations.

The disadvantage of CPVF in terms of moving dis-
tance is also found in the case where sensors are ini-
tially distributed uniformly at random. Although it is
the case that when connectivity is established, FLOOR
requires all the sensors to try to pass two intermediate
destinations, which causes more movement compared
with CPVF’s straight-line movement, the oscillation of
CPVF in the coverage maximization phase cancels out
this advantage and leads to increased moving distance.

6.3 Oscillation avoidance for CPVF

We consider two oscillation avoidance techniques for
reducing unnecessary movement in CPVF, in an attempt
to remedy its drawbacks while retaining its strengths. In
the first technique, called one-step oscillation avoidance, a

sensor cancels its movement for the next step if it finds
that the next step size is smaller than V T/δ, where V T is
the maximum step size and δ is a parameter called the
oscillation avoidance factor. This is intended to eliminate
small perturbations and force the system to enter an
equilibrium state earlier; see [6] for a similar strategy. In
the second technique, called two-step oscillation avoidance,
a sensor compares its future location at the end of the
next step with its past location at the end of the previous
step; if the distance between them is smaller than V T/δ,
then it cancels its movement plan for the next step.
A similar approach has been used in [14]. Figure 12
shows the impact of varying the δ value on the moving
distance (the left y-axis) and coverage (the right y-axis)
of both schemes. It can be observed that δ does have
the effect of reducing the moving distance; however,
this comes at the cost of reduced coverage. When δ gets
smaller, it is more likely that a step will be regarded as
an unnecessary or repeated move, thus more steps are
cancelled. On the other hand, the conservative moving
of sensors prevents them from exploring the uncovered
areas effectively, resulting in poor coverage. We have also
tried oscillation avoidance based on a longer movement
history, and have found similar trends. The difficulty of
avoiding oscillation without reducing coverage is that
some seemingly unnecessary steps are actually effective
moves that can potentially push the frontier of coverage
forward, yet it is very hard to detect which of these
moves are effective, so that we can decide when to start
the oscillation avoidance and when to stop it. The failure
of reducing oscillations by local decisions again reflects
the limitation of the VF-based approach.

6.4 Fields with random obstacles

We next consider sensor deployment in a field with
obstacles. In this setting, the previously discussed op-
timal and VD-based schemes no longer apply, so we
only consider CPVF and FLOOR. We randomly select
between 1 and 4 rectangular obstacles of random size;
these obstacles may overlap with one another, however
we maintain the condition that the obstacles do not
partition the field.

A total of 300 runs of the simulation are executed, and
the coverage and moving distance of the two schemes
are recorded. Figure 13 depicts the cumulative distri-
bution function of coverage and average distance. In
this general obstacle setting, it can be seen that FLOOR
outperforms CPVF significantly in terms of both cover-
age and moving distance. For instance, while the mean
coverage of FLOOR is more than 20% higher than that
of CPVF, the mean moving distance is less than half that
of CPVF.

6.5 Message overhead

We examine the message overheads of FLOOR by vary-
ing the TTL values used in the sensor invitation process,
and recording the number of protocol messages that are
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(a) CDFs of coverage

(b) CDFs of moving distance

Fig. 13. Comparison of CPVF and FLOOR in coverage

and moving distance under random obstacles.

transmitted during the simulation. Table 1 shows the
total (and average) number (×1000) of protocol messages
for varying numbers of sensor nodes N , and TTL as
a fraction of N , under the non-obstacle environment,
as well as the two-obstacle environment as shown in
Figure 3(c).

We can see that the per-node message overhead during
the 750 seconds is quite moderate. For instance, for
N = 200 and TTL = 0.2 × N = 40, the overhead is
3.1 × 1000 = 3100 messages per node, which translates
to approximately 4 messages per node per second. These
messages are all short query messages. This is unlikely
to be a high bandwidth requirement for current sen-
sor hardware. When the network grows, more message
transmissions will be incurred. In this case, the periods
could be prolonged to guarantee that the bandwidth
requirement does not exceed the limit of sensor nodes.

It should be noted that the energy consumption for
message transmissions is usually very small compared
with the energy consumption required for mechanical
movement. Besides, the deployment process is often very
short in comparison with the expected network lifetime
(e.g., hours vs. weeks). We thus believe that the message
overhead of FLOOR is acceptable for many of today’s
applications.

TTL as a fraction of N

0.1N 0.2N 0.3N 0.4N

non-obstacle environment
N = 120 225 (1.9) 306 (2.6) 388 (3.2) 470 (3.9)
N = 160 325 (2.0) 472 (3.0) 620 (3.9) 769 (4.8)
N = 200 409 (2.0) 623 (3.1) 837 (4.2) 1052 (5.3)
N = 240 457 (1.9) 714 (2.9) 970 (4.0) 1228 (5.1)

two-obstacle environment
N = 120 198 (1.7) 286 (2.4) 372 (3.1) 460 (3.8)
N = 160 296 (1.8) 453 (2.8) 609 (3.8) 767 (4.8)
N = 200 387 (1.9) 617 (3.1) 846 (4.2) 1077 (5.4)
N = 240 428 (1.8) 700 (2.9) 973 (4.1) 1246 (5.2)

TABLE 1

Total(/average) number (×1000) of protocol messages

required by FLOOR during a 750-second period.

7 CONCLUSION AND FUTURE WORK

We have presented two sensor deployment schemes
for mobile sensor networks in general 2-D fields. The
major difference of our schemes from previous work is
their adaptability to arbitrary network densities or com-
munication ranges, and to obstacles. Our first scheme
is an enhanced form of the traditional virtual force-
based method. We show that it performs well only in
very restricted scenarios. We then consider a floor-based
scheme which shows good performance in all cases. As
part of our future research we plan to investigate how to
extend these schemes from deployment through to the
whole life cycle of a mobile sensor network – including
tasks such as failure recovery and balancing movement
overhead. A higher degree of coverage/connectivity in
dense networks will also be considered.
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APPENDIX A
PROOF OF CPVF GUARANTEEING CONNECTIV-
ITY

We formally prove that CPVF guarantees connectivity
throughout the process of VF-driven sensor movement.
We assume that all sensors follow the connectivity pre-
serving conditions, and that the message transmission
latency is negligible compared with the length of a
period.

Following the argument made in Section 4.2, we need
to prove that for a sensor s planning for its next move
and its neighbor s′, their distance will be no greater than
rc at any time during [t, t′], given that their distances at
time t and t′ are both no greater than rc. The paths of the
two sensors are illustrated in Figure 14, where the line
segments AB and A′B′ represent s’s planned path and
s′’s moving path during [t, t′], respectively, and AA′ ≤ rc

and BB′ ≤ rc. Geometrically, we need to prove that for
any point C on AB, and point C ′ on A′B′, we satisfy
AC/AB = A′C ′/A′B′, CC ′ ≤ rc.

Now consider the case in Figure 14(a) where AB and
A′B′ do not intersect. Draw line segment EC parallel
and equal to A′C ′, and line segment CF parallel and
equal to C ′B′; also draw line segment DB parallel and
equal to A′B′. Since DB‖A′B′ and EF‖A′B′, DB‖EF ,
thus DE‖BF . Because AC/AB = A′C ′/A′B′ = EC/EF ,
we have EA‖BF . Hence, EA and DE are on the same
line.

Since A′B′BD is a parallelogram, we have A′D =
BB′; likewise A′E = CC ′. As assumed, A′D ≤ rc

and A′A ≤ rc; if A′E > rc, then 6 A′DE + 6 A′AE >
6 A′ED + 6 A′EA = 180◦, which is impossible. Therefore
A′E must be no greater than rc, as is the case for CC ′,
as desired.

The proof for the case in which AB intersects A′B′, as
shown in Figure 14(b), is similar to the above argument
and is thus omitted.
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